
MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE Dr. MOULAY TAHAR DE SAÏDA

FACULTE DES SCIENCES

DEPARTEMENT DE MATHEMATIQUES

Laboratoire de recherche

Modèles Stochastiques, Statistique & Applications

THESE

Présenté par: Mr. Iqbal HAMADA

En vue de l’obtention du Diplôme de Doctorat (LMD)

En Mathématiques: Modèles Stochastiques, Statistique & Applications

Intitulé

Controllability of Fractional Stochastic

Dynamical Systems
Soutenu publiquement le: ../../2016

Devent le jury composé de:

Président F. Madani Maître de conférences A (Univ.Saïda)

Rapporteur T. Guendouzi Professeur (Univ.Saïda)

Examinateurs A. Kandouci Maître de conférences A (Univ.Saïda)

A. Laksaci Professeur (Univ.Sidi Bel Abbes)

A. Ghriballah Professeur (Univ.Sidi Bel Abbes)

M.K. Attouch Maître de conférences A (Univ.Sidi Bel Abbes)

Année 2015/2016



If you want to run, run a mile. If you want to experience

a different life, run a marathon.

Émil Zatopek1.

1Famous runner of twentieth century



Dedication

This thesis is dedicated to

My parents, whose sincerely raised me with their caring and offered me unconditional

love, a very special thank for the myriad of ways in which, throughout my life, you have

actively supported me in my determination to find and realize my potential.

My brother, sisters who have supported me all the way since the beginning of my study.

To the best child Tesnime.

To those who have been deprived from their right to study and to all those who believe in the

richness of learning.

3



Acknowledgments

First of all, I thank Allah for His help and blessing.

This thesis would not have been possible without the invaluable support and guidance of so

many people. To whom I am greatly indebted:

I want to express my great appreciation and deepest gratitude to my supervisor, Mr.

Guendouzi Toufik , without whom this thesis would not have been emerged. It was a

great honor and an immense pleasure to be able to accomplish this work under his direction. I

could benefit from his sound advice and careful guidance, his availability, his kindness and his

constant support to carry out this work. Again thank you !

I want to thank very warmly Mr. Madani Fathi for chairing my committee members. I

heartily thank Mr. Kandouci Abdeldjebbar for his help, advice and support throughout

the course of this thesis. I am very honored that Mr. Kandouci Abdeldjebbar,

Mr. Laksaci Ali and Mr. Attouch Mohammed Kadi have agreed to participate in

my jury, thank you for your time and effort in reviewing this work.

Warm thanks to all the members of laboratory of stochastic models, statistic and applica-

tions, for their kindness and expertise.

Many thanks to all my friends and colleague: T. Dejebbouri, Y. Lahcene, M. Khal-

faoui, S. Kharez, A. Bentayeb, M. Nourredine, A. Krim, C. Reguieg, M. Brahimi,

I. Guerroudj, S. Idrissi, K. Mehdi, I. Mekkaoui., for their encouragement, backing, and

understanding, in particular during the time of preparation of this work. I hope to get the

chance to return the favor.

4



The most important persons are saved for last: My parents and my grand mother deserve

special mention for their inseparable support and prayers. I am deeply and forever indebted to

them for their love and encouragement throughout my entire life.

I would like to thank everybody who was important to the successful realization of thesis,

as well as expressing my apology that I could not mention personally one by one.

5



Contents

Acknowledgments 4

1 Introduction 8

2 Preliminary Background 20

2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Quadratic variation and Brownian motion . . . . . . . . . . . . . . . . . 22

2.2.3 Brownian paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Brownian motion and martingales . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Stochastic Integration with respect to Brownian Motion . . . . . . . . . . . . . . 23

2.3.1 Wiener integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Itô integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Controllability of non-linear stochastic systems 26

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Controllability via contraction mapping principle . . . . . . . . . . . . . . . . . 29

3.3 The local null controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Controllability of fractional stochastic dynamical systems with delays in con-

trol 36

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Relative controllability of fractional stochastic dynamical systems with multiple

delays in control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6



CONTENTS 7

4.3 Global relative controllability of fractional stochastic dynamical systems with

distributed delays in control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Controllability of fractional stochastic dynamical systems without delays in

control 60

5.1 Preliminaries and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Relative controllability of semilinear fractional stochastic control systems in

Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 74



Chapter 1

Introduction

Control theory is an interdisciplinary branch of engineering and mathematics that deals with

influence behavior of dynamical systems. Controllability is one of the fundamental concepts in

mathematical control theory. This is a qualitative property of dynamical control systems and

it is of particular importance in control theory. Systematic study of controllability was started

at the beginning of sixties in the last century, when the theory of controllability based on the

description in the form of state space for both time-invariant and time-varying linear control

systems was worked out.

Roughly speaking, controllability generally means, that it is possible to steer dynamical control

system from an arbitrary initial state to an arbitrary final state using the set of admissible

controls. It should be mentioned, that in the literature there are many different definitions of

controllability, which strongly depend on one hand on a class of dynamical control systems and

on the other hand on the form of admissible controls.

In recent years various controllability problems for different types of linear semilinear and non-

linear dynamical systems have been considered in many publications and monographs. More-

over, it should be stressed, that the most literature in this direction has been mainly concerned

with different controllability problems for dynamical systems with unconstrained controls and

without delays in the state variables or in the controls.

The main purpose of the chapter is to present without mathematical proofs a review of recent

controllability problems for a wide class of dynamical systems. Moreover, it should be pointed

out, that exact mathematical descriptions of controllability criteria can be found for example

in the following publications [49, 46]

8



Introduction 9

Controllability significance

Controllability plays an essential role in the development of modern mathematical control the-

ory. There are various important relationships between controllability, stability and stabilizabil-

ity of linear both finite-dimensional and infinitedimensional control systems. Controllability is

also strongly related with the theory of realization and so called minimal realization and canon-

ical forms for linear time-invariant control systems such as the Kalmam canonical form, the

Jordan canonical form or the Luenberger canonical form. It should be mentioned, that for

many dynamical systems there exists a formal duality between the concepts of controllability

and observability. Moreover, controllability is strongly connected with the minimum energy

control problem for many classes of linear finite dimensional, infinite dimensional dynamical

systems, and delayed systems both deterministic and stochastic.

Therefore, controllability criteria are useful in the following branches of mathematical control

theory:

• stabilizability conditions, canonical forms, minimum energy control and minimal realization

for positive systems,

•stabilizability conditions, canonical forms, minimum energy control and minimal realization

for fractional systems,

•minimum energy control problem for a wide class of stochastic systems with delays in control

and state variables,

• duality theorems, canonical forms and minimum energy control for infinite dimensional sys-

tems,

• controllability, duality, stabilizability, mathematical modeling and optimal control of quan-

tum systems.

Controllability has many important applications not only in control theory and systems theory,

but also in such areas as industrial and chemical process control, reactor control, control of

electric bulk power systems, aerospce engineering and recently in quantum systems theory.

Systematic study of controllability was started at the beginning of the sixties in the 20-th cen-

tury, when the theory of controllability based on the description in the form of state space for

both time-invariant and time-varying linear control systems was worked out. The extensive list

of these publications can be found for example in the monographs [43] and [42] or in the survey

papers [44] and [45].
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During last few years quantum dynamical systems have been discussed in many publications.

This fact is motivated by possible applications in the theory of quantum informatics [27, 95].

Quantum control systems are either defined in finite-dimensional complex space or in the space

of linear operators over finite-dimensional complex space. In the first case the quantum states

are called state vectors and in the second density operators.

Control system description of a quantum closed system is described by bilinear ordinary differ-

ential state equation in the form of Schrödinger equation for state vectors and Liouville [18, 24]

equation for density matrices. Therefore, controllability investigations require using special

mathematical methods as Lie groups and Lie algebras.

Traditional controllability concept can be extended for so called structural controllability, which

may be more reasonable in case of uncertainties [43, 42]. It should be pointed out, that in prac-

tice most of system parameter values are difficult to identify and are known only to certain

approximations. Thus structural controllability, which is independent of a specific value of

unknown parameters are of particular interest. Roughly speaking, linear system is said to be

structurally controllable if one can find a set of values for the free parameters such that the

corresponding system is controllable in the standard sense [43, 42]. Structural controllability

of linear control system is strongly related to numerical computations of distance from a given

controllable switched linear control system to the nearest an uncontrollable one [43, 42]. First

of all let us observe, that from algebraic characterization of controllability and structural con-

trollability immediately follows that controllability is a generic property in the space of matrices

defining such systems [43, 42]. Therefore, the set of controllable switched systems is an open

and dense subset. Hence, it is important to know how far a controllable linear system is from

the nearest uncontrollable linear system. This is especially important for linear systems with

matrices whose coefficients are given with some parameter uncertainty. An explicit bound for

the distance between a controllable linear control system to the closed set of uncontrollable

switched linear control system can be obtained using special norm defined for the set of matri-

ces and singular value decomposition for controllability matrix [43, 42].

Nonlinear and semilinear dynamical systems

The last decades have seen a continually growing interest in controllability theory of dynam-

ical systems. This is clearly related to the wide variety of theoretical results and possible



Introduction 11

applications. Up to the present time the problem of controllability for continuous-time and

discrete-time linear dynamical systems has been extensively investigated in many papers (see

e.g. [43, 42, 44, 93] for extensive list of references). However, this is not true for the nonlin-

ear dynamical systems especially with different types of delays in control and state variables,

and for nonlinear dynamical systems with constrained controls. Similarly, only a few papers

concern constrained controllability problems for continuous or discrete semi-linear dynamical

systems. It should be pointed out, that in the proofs of controllability results for nonlinear

and semi-linear dynamical systems linearization methods and generalization of open mapping

theorem [8, 76] are extensively used. The special case of nonlinear dynamical systems are semi-

linear systems. Let us recall that semi-linear dynamical control systems contain linear and pure

nonlinear parts in the differential state equations [38, 8, 73, 87].

Infinite-dimensional systems

Infinite-dimensional dynamical control systems plays a very important role in mathematical

control theory. This class consists of both continuous-time systems and discrete-time systems

[43, 42, 44, 45, 93]. Continuous-time infinite-dimensional systems include for example, a very

wide class of so-called distributed parameter systems described by numerous types of partial

differential equations defined in bounded or unbounded regions and with different boundary

conditions.

For infinite-dimensional dynamical systems it is necessary to distinguish between the notions

of approximate and exact controllability [43, 42]. It follows directly from the fact that in

infinite-dimensional spaces there exist linear subspaces which are not closed. On the other

hand, for nonlinear dynamical systems there exist two fundamental concepts of controllability;

namely local controllability and global controllability [43, 42]. Therefore, for nonlinear abstract

dynamical systems defined in infinite-dimensional spaces the following four main kinds of con-

trollability are considered: local approximate controllability, global approximate controllability,

local exact controllability and global exact controllability [43, 42, 44, 45].

Controllability problems for finite-dimensional nonlinear dynamical systems and stochastic dy-

namical systems have been considered in many publications; see e.g. [43, 42, 45, 57], and [58],

for review of the literature. However, there exist only a few papers on controllability problems
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for infinitedimensional nonlinear systems [73, 29].

Among the fundamental theoretical results, used in the proofs of the main results for nonlinear

or semi-linear dynamical systems, the most important include:

•generalized open mapping theorem,

•spectral theory of linear unbounded operators,

• linear semi-groups theory for bounded linear operators,

•Lie algebras and Lie groups,

•fixed-point theorems such as Banach, Schauder, Schaefer and Nussbaum theorems,

• theory of completely positive trace preserving maps,

•mild solutions of abstract differential and evolution equations in Hilbert and Banach spaces.

Nonlinear neutral impulsive integrodifferential evolution systems in Banach

spaces.

In various fields of science and engineering, many problems that are related to linear viscoelas-

ticity, nonlinear elasticity and Newtonian or non- Newtonian fluid mechanics have mathematical

models which are described by differential or integral equations or integrodifferential equations.

This part of the paper centers around the controllability for dynamical systems described by the

integrodifferential models. Such systems are modelled by abstract delay differential equations.

In particular abstract neutral differential equations arise in many areas of applied mathematics

and, for this reason, this type of equation has been receiving much attention in recent years

and they depend on the delays of state and their derivative. Related works of this kind can be

found in [72, 77].

The study of differential equations with traditional initial value problem has been extended in

several directions. One emerging direction is to consider the impulsive initial conditions. The

impulsive initial conditions are combinations of traditional initial value problems and short-

term perturbations, whose duration can be negligible in comparison with the duration of the

process. Several authors [72, 77] have investigated controllability of the impulsive differential

equations.

As far as the controllability problems associated with finite-dimensional systems modelled by

ordinary differential equations are concerned, this theory has been extensively studied during

the last decades. In the finite-dimensional context, a system is controllable if and only if the
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algebraic Kalman rank condition is satisfied. According to this property, when a system is con-

trollable for some time, it is controllable for all time. But this is no longer true in the context

of infinite-dimensional systems modelled by partial differential equations.

The large class of scientific and engineering problems modelled by partial differential and inte-

grodifferential equations can be expressed in various forms of differential and integrodifferential

equations in abstract spaces. It is interesting to study the controllability problem for such

models in Banach spaces. The controllability problem for first and second order nonlinear

functional differential and integrodifferential systems in Banach spaces has been studied by

many authors by using semigroup theory, cosine family of operators and various fixed point

theorems for nonlinear operators [73] and [87] such as Banach theorem, Nussbaum theorem,

Schaefer theorem, Schauder theorem, Monch theorem or Sadovski theorem.

In recent years, the theory of impulsive differential equations has provided a natural frame work

for mathematical modelling of many real world phenomena, namely in control, biological and

medical domains. In these models, the investigated simulating processes and phenomena are

subjected to certain perturbations whose duration is negligible in comparison with the total

duration of the process. Such perturbations can be reasonably well approximated as being in-

stantaneous changes of state, or in the form of impulses. These process tend to be more suitably

modelled by impulsive differential equations, which allow for discontinuities in the evolution of

the state.

On the other hand, the concept of controllability is of great importance in mathematical con-

trol theory. The problem of controllability is to show the existence of a control function, which

steers the solution of the system from its initial state to final state, where the initial and final

states may vary over the entire space. Many authors have studied the controllability of nonlin-

ear systems with and without impulses, see for instance [52, 70, 87].

In recent years, significant progress has been made in the controllability of linear and nonlinear

deterministic systems [7, 72, 59] and the nonlocal initial condition which in many cases, has

much better effect in applications then the traditional initial condition. The nonlocal initial

value problems can be more useful than the standard initial value problems to describe many

physical phenomena of dynamical systems. It should be pointed out, that the study of Volterra-

Fredholm integrodifferential equations plays an important role for abstract formulation of many

initial, boundary value problems of perturbed differential partial integro-differential equations.
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Recently, many authors have studied about mixed type integrodifferential systems without

(or with) delay conditions. Moreover, controllability of impulsive functional differential systems

with nonlocal conditions has been studied by using the measures of noncompactness and Monch

fixed point theorem and some sufficient conditions for controllability have been established.

It should be mentioned, that without assuming the compactness of the evolution system the

existence, uniqueness and continuous dependence of mild solutions for nonlinear mixed type in-

tegrodifferential equations with finite delay and nonlocal conditions has been also established..

The results were obtained by using Banach fixed point theorem and semi-group theory. More

recently, the existence of mild solutions for the nonlinear mixed type integro-differential func-

tional evolution equations with nonlocal conditions was derived and the results were achieved

by using Monch fixed point theorem and fixed point theory.

To the best of our knowledge, up to now no work reported on controllability of impulsive mixed

Volterra- Fredholm functional integrodifferential evolution differential system with a finite de-

lay and nonlocal conditions.

Stochastic systems

Classical control theory generally is based on deterministic approaches. However, uncertainty is

a fundamental characteristic of many real dynamical systems. Theory of stochastic dynamical

systems is now a well-established topic of research, which is still in intensive development and

offers many open problems. Important fields of application are economics problems, decision

problems, statistical physics, epidemiology, insurance mathematics, reliability theory, risk the-

ory and others methods based on stochastic equations. Stochastic modelling has been widely

used to model the phenomena arising in many branches of science and industry such as biology,

economics, mechanics, electronics and telecommunications. The inclusion of random effects

in differential equations leads to several distinct classes of stochastic equations, for which the

solution processes have differentiable or non-differentiable sample paths. Therefore, stochastic

differential equations and their controllability require many different method of analysis.

The general theory of stochastic differential equations both finite-dimensional and infinite-

dimensional and their applications to the field of physics and technique can be found in the
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many mathematical monographs and related papers. This theory formed a very active research

topic since provides a natural framework for mathematical modelling of many physical phe-

nomena.

Controllability, both for linear or nonlinear stochastic dynamical systems, has recently received

the attention of many researchers and has been discussed in several papers and monographs,

in which where many different sufficient or necessary and sufficient conditions for stochastic

controllability were formulated and proved [56, 57, 58, 66, 67]. However, it should be pointed

out that all these results were obtained only for unconstrained admissible controls, finite di-

mensional state space and without delays in state or control.

Stochastic controllability problems for stochastic infinitedimensional semi-linear impulsive

integrodifferential dynamical systems with additive noise and with or without multiple time-

varying point delays in the state variables are also discussed in the literature. The proofs of

the main results are based on certain theorems taken from the theory of stochastic processes,

linearization methods for stochastic dynamical systems, theory of semi-groups of linear oper-

ators, different fixed-point theorems as Banach, Schauder, Schaefer, or Nussbaum fixed-point

theorems and on so-called generalized open mapping theorem presented and proved in the sur-

vey paper [59, 67].

Delayed systems

Up to the present time the problem of controllability in continuous and discrete time linear dy-

namical systems has been extensively investigated in many papers (see e.g. [43, 42, 44, 41, 56,

40, 33]). However, this is not true for the nonlinear or semi-linear dynamical systems, especially

with delays in control and with constrained controls. Only a few papers concern constrained

controllability problems for continuous or discrete nonlinear or semi-linear dynamical systems

with constrained controls [40, 39].

Dynamical systems with distributed [52] delays in control and state variable were also consid-

ered. Using some mapping theorems taken from functional analysis and linear approximation

methods sufficient conditions for constrained relative and absolute controllability will be de-

rived and proved.

Let us recall that semi-linear dynamical control systems with delays may contain different types
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of delays, both in pure linear and pure nonlinear parts, in the differential state equations. Suf-

ficient conditions for constrained local relative controllability near the origin in a prescribed

finite time interval for semi-linear dynamical systems with multiple variable point delays or dis-

tributed delays in the control and in the state variables, which nonlinear term is continuously

differentiable near the origin are presented in [40] and [39].

In the above mentioned papers it is generally assumed that the values of admissible controls are

in a given convex and closed cone with vertex at zero, or in a cone with nonempty interior. The

proof of the main result are based on a so called generalized open mapping theorem presented

in the paper [76]. Moreover, necessary and sufficient conditions for constrained global relative

controllability of an associated linear dynamical system with multiple point delays in control

are also discussed.

Positive systems

In recent years, the theory of positive dynamical systems has become a natural frame work

for mathematical modelling of many real world phenomena, namely in control, biological and

medical domains. Positive dynamical systems are of fundamental importance to numerous ap-

plications in different areas of science such as economics, biology, sociology and communication.

Positive dynamical systems both linear and nonlinear are dynamical systems with states, con-

trols and outputs belonging to positive cones in linear spaces. Therefore, in fact positive

dynamical systems are nonlinear systems. Among many important developments in control

theory over last two decades, control theory of positive dynamical systems [33] has played an

essential role.

Controllability, reachability and realization problems for finite dimensional positive both

continuous-time and discretetime dynamical systems were discussed for example in monograph

[33] and paper [50], using the results taken directly from the nonlinear functional analysis

and especially from the theory of semi-groups of bounded operators and general theory of un-

bounded linear operators.

Fractional systems

The development of controllability theory both for continuous- time and discrete-time dynami-
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cal systems with fractional derivatives and fractional difference operators has seen considerable

advances since the publication of papers [34, 35] and monograph [71]. Although classic math-

ematical models are still very useful, large dynamical systems prompt the search for more

refined mathematical models, which leads to better understanding and approximations of real

processes.

The general theory of fractional differential equations and fractional impulsive integrodiffer-

ential equations and their applications to the field of physics and technique can be found in

the monograph [71]. This theory formed a very active research topic since provides a natural

framework for mathematical modelling of many physical phenomena. In particular, the fast

development of this theory has allowed to solve a wide range of problems in mathematical

modelling and simulation of certain kinds of dynamical systems in physics and electronics.

Fractional derivative techniques provide useful exploratory tools, including the suggestion of

new mathematical models and the validation of existing ones.

Mathematical fundamentals of fractional calculus and fractional differential and difference

equations are given in the monographs [71], and in the related papers [33, 35]. Most of the

earliest work on controllability for fractional dynamical systems was related to linear continuous-

time or discretetime systems with limited applications of the real dynamical systems. In ad-

dition, the earliest theoretical work concerned time-invariant processes without delays in state

variables or in control.

Using the results presented for linear fractional systems and applying linearization method the

sufficient conditions for local controllability near the origin are formulated and proved in the

paper [50]. Moreover, applying generalized open mapping theorem in Banach spaces [76] and

linear semi-group theory in the paper [93] the sufficient conditions for approximation control-

lability in finite time with conically constrained admissible controls are formulated and proved.

Quantum dynamical systems

Fast recent development of quantum information field in both theory and experiments caused

increased interest in new methods of quantum systems control. Various models for open-loop

and closed-loop control scenarios for quantum systems have been developed in recent years

[27, 24].
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Quantum systems can be classified according to their interaction with the environment. If

a quantum system exchange neither information nor energy with its environment it is called

closed and its time evolution is described completely by a Hamiltonian and its respective uni-

tary operator. On the other hand if the exchange of information or energy occurs, the system

is called open.

Due to the destructive nature of quantum measurement in some models one has to be con-

strained to open-loop control of a quantum system. This fact means that during the time

evolution of the quantum system it is physically impossible to extract any information about

the state of the system.

In the simplest case open-loop control of the closed quantum system is described by the bi-linear

model. In this case the differential equation of the evolution is described by the sum of the

drift Hamiltonian and the control Hamiltonians. The parameters of the control Hamiltonians

may be constrained in various ways due to physical constraints of the system. Many quantum

systems can be only controlled locally, which means that control Hamiltonians act only on one

of the Hilbert spaces that constitute larger tensor product Hilbert space of the system.

The control constrained to local operations is of a great interest in various applications, es-

pecially in quantum computation and spin graph systems. Other possible constraints, such

as constrained energy or constrained frequency, are possible. They are very important in the

scope of optimal control of quantum systems.

In the most generic case open quantum systems are not controllable with coherent, unitary

control due to the fact that the action of the generic completely positive trace preserving

map cannot be reversed unitarily. For example Markovian dynamics of finite-dimensional open

quantum system is not coherently controllable. However, many schemes of incoherent control of

open quantum systems have been described. Some of these schemes are based on the technique

known as quantum error correcting codes. In incoherent control schemes quantum unitary evo-

lution together with quantum measurements is used to drive the system to the desired state

even if quantum noise is present in the system.

Controllability problems for different types of dynamical systems require the application

of numerous mathematical concepts and methods taken directly from differential geometry,

functional analysis, topology, matrix analysis and theory of ordinary and partial differential
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equations and theory of difference equations. The state-space models of dynamical systems

provides a robust and universal method for studying controllability of various classes of sys-

tems.

Finally, it should be stressed, that there are numerous open problems for controllability con-

cepts for special types of dynamical systems. For example, it should be pointed out, that up

to present time the most literature on controllability problems has been mainly concerned with

unconstrained controls and without delays in the state variables or in the controls.

In this thesis in the second chapter we recall some definitions and properties of the theory

of stochastic calculus the third chapter is concerning about some controllability conditions via

one of the fixed point methods, namely the contraction mapping principle. In this method,

assuming controllability of the associated linear system under some natural conditions, we

proved the controllability of semi-linear stochastic system, and we used the generalized implicit

function theorem to show the local null controllability of non-linear stochastic system.

In the fourth chapter we talk about the controllability of stochastic dynamical system in general

case, and we study the controllability of fractional stochastic dynamical systems with delays

in control, this chapter is divide in three sections in the first section we define the Reimann-

Liouville fractional operators, Caputo fractional derivative, Mittag-Leffler function..., in the

second section we study a relative controllability of fractional stochastic dynamical systems

with multiple delays in control, in the third section we study a global relative controllability of

fractional stochastic dynamical systems with distributed delays in control.

The last chapter is about controllability of fractional stochastic dynamical systems without

delays in control, we study the relative controllability of semilinear fractional stochastic control

systems in Hilbert spaces.



Chapter 2

Preliminary Background

2.1 Basic Definitions

In this section the basic notations of the theory of stochastic calculus are considered. Let

(Ω,F ,P) be a complete probability space equipped with a normal filtration {Fs} satisfying the

usual conditions :

• Fs =
⋂
t>sFt for all s ≥ 0;

• All A ∈ F with P(A) = 0 are contained in Ft.

A family (X(t), t ≥ 0) of Rd-valued random variables on (Ω,F ,P) is called a stochastic

process, this process is adapted if all X(t) are Ft-measurable. Denoting B, the Borel σ−field

on [0,∞). The process X is measurable if (t, ω) 7→ X(t, ω) is a B
⊗
F−measurable mapping.

We say that (X(t), t ≥ 0) is continuous if the trajectories t 7→ X(t, ω) are continuous for all

ω ∈ Ω.

2.2 Brownian Motion

2.2.1 Definition and Properties

Definition 2.2.1. A stochastic process (Wt)t∈R+ is called a standard Brownian motion if it

satisfies the following conditions:

20



2.2.1 Definition and Properties 21

1. P[Wt(ω) = 0] = 1, for all ω ∈ Ω,

2. Independent increments. For each 0 ≤ t1 < t2 < . . . < tm, the real valued

W (t1),W (t2)−W (t1), . . . ,W (tm)−W (tm−1),

are independent.

3. Stationary increments. For each 0 ≤ s < t,W (t)−W (s) is a centered real valued normally

distributed with variance (t− s), i.e.,

W (t)−W (s) ∼ N (0, t− s).

4. P(ω ∈ Ω, t→ Wt(ω) is continuous) = 1.

Remark 2.2.1. 1. Notice that the natural filtration of the Brownian motion is FWt =

σ(Ws, s ≤ t).

2. We can define the Brownian motion without the last condition of continuous paths, be-

cause with a stochastic process satisfying the second and the third conditions, by applying

the Kolmogorov’s continuity theorem, there exists a modification of (Wt)t∈R+ which has

continuous paths a.s.

3. A Brownian motion is also called a Wiener process since, it is the canoncial process

defined on the Wiener space.

Proposition 2.2.1. The Brownian motion (Wt)t∈R+ is a Gaussian process with mean 0 and

covariance function Cov(Wt,Ws) = s ∧ t.

Proof. We have that Wt = Wt −W0. Thus Wt ∼ N (0, t) by definition. Moreover, without

loss of generality, we assume s < t. Hence, we have

E(WsWt) = E(Ws(Wt −Ws) +W 2
s ) = 0 + s = s. �

Note that since the Brownian motion is a continuous Gaussian process, the proposition 2.2.1
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characterizes uniquely the Brownian motion.

We will give here some properties of the standard Brownian motion.

Properties 2.2.1.1. Let W (t)t∈R+ be a standard Brownian motion

1. Self-similarity. For any T > 0, {T−1/2W (Tt)} is Brownian motion.

2. Symmetry. {−W (t), t ≥ 0} is also a Brownian motion.

3. {tW (1/t), t > 0} is also a Brownian motion.

4. If W (t) is a Brownian motion on [0, 1], then (t + 1)W (1/t + 1) −W (1) is a Brownian

motion on [0,∞).

2.2.2 Quadratic variation and Brownian motion

Proposition 2.2.2. Let W (t)t∈R+ be a Brownian motion. For t ≥ 0, for all sequence of

subdivisions ∆n[0, t], such that limn→∞ |∆n[0, t]| = 0 we have

lim
n→∞

2n∑
i=1

(
W it

2n
−W (i−1)t

2n

)2

= t, p.s.

2.2.3 Brownian paths

Proposition 2.2.3. A Brownian motion has its paths a.s., locally γ-Hölder continuous for

γ ∈ [0, 1/2).

Proposition 2.2.4. The Brownian motion’s sample paths are a.s., nowhere differentiable.

2.2.4 Brownian motion and martingales

As a stochastic process, we could ask, knowing all well properties of martingales, if the

brownian motion is one.

Proposition 2.2.5. Let (Wt)t∈R+ be a Brownian motion. Then the following processes are

(FWt )-martingales:
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1. W (t) ,

2. W 2(t)− t,

3. For any u, euW (t)−u
2

2
t.

2.3 Stochastic Integration with respect to Brownian Mo-

tion

This section is devoted to the study of an integration where the integrator is a Brownian

motion. In fact, we would like to define ∫
T
fsdWs, (2.1)

where fs is a stochastic process.

2.3.1 Wiener integral

The Wiener integral is an integral where we have deterministic integrands and a Brownian

motion (or more generally a Gaussian process) as an intergrator. First of all, we will define it

for step functions.

Integrands as step functions

Let us denote by E the set of step functions. For f ∈ E , i.e., f =
n∑
i=1

fi−11(ti−1,ti], where

t0 = a and tn = b, we define the Wiener Integral as follows

I(f) =

∫ b

a

f(t)dWt :=
n∑
i=1

fi−1(Wti −Wti−1
). (2.2)

Proposition 2.3.1. For f ∈ E, we have that I(f) is a gaussian random variable with mean

zero and variance

E(I(f)2) =

∫ b

a

f(t)2dt. (2.3)
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Integrands as square integrable function

Let f ∈ L2([a, b]) and (fn)n∈N ∈ E such that fn → f in L2([a, b]). By the Proposition 2.3.1,

I(fn)n∈N is a Cauchy sequence in L2(Ω). Because it is a Hilbert space, it is complete and thus

I(fn)n∈N converges in L2(Ω). Therefore, let us define the Wiener Integral as the L2-limit of the

sequence I(fn)n∈N , i.e.,

I(f) := lim
n→∞

I(fn), in L2(Ω). (2.4)

Definition 2.3.1. For f ∈ L2([a, b]), we define the Wiener integral of f by

I(f) :=

∫ b

a

f(t)dWt := lim
n→∞

I(fn) := lim
n→∞

fn(t)dWt. (2.5)

2.3.2 Itô integral

Here we will study the simplest stochastic integral, where the integrand and the integrator

are random variable. The first who defined this integral was K. Itô in 1944 . Therefore we

named this integral after him. In fact, the integrand will be an adapted stochastic process w.r.t

the natural filtration of the Brownian motion. Let us start with the simplest case of random

integrands.

Integrands as stochastic step processes

Let us denote by E the set of simples (Ft)-predictables processes (Ht)t∈R+ , i.e.,

Ht(ω) =
n∑
i=1

hi(ω)1(ti−1, ti](t), t ∈ T.

with 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn and hi a (Fti−1
)-measurable random variable which belongs to

L2(Ω). Then we can define the integral for H ∈ E w.r.t a Brownian motion by

I(H) = (H.W )s =

∫
T

HsdWs :=


n∑
i=1

hi(Wti −Wti−1
) if T = R+,

n∑
i=1

hi(Wti∧T −Wti−1∧T ) if T = [0, T ].

(2.6)

Clearly, if our integrand, namely H, is a constant, in the sense it is not a random variable,

then we come back to the above definition of the Wiener integral.
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Integrands as square integrable stochastic processes

The idea is to extend, by density of E in L2(Ω), the definition of I(H) in (2.6) to larger

processes, i.e., processes in L2(Ω) as the limit of processes in E , like we did for the Wiener

integral. Indeed, by density, we have for each (Ht)t∈R+ ∈ L2(Ω) there exists a sequence

((Ht,n)t∈R+ ∈ L2(Ω))n∈N ∈ E such that

lim
n→∞

∫
R+

E(|Ht −Ht,n|)dt = 0.

However, our integrands, as the L2 limit of processes in E , must satisfy certain constraints

to be well-defined. Therefore, we will take as the space of integrands L2
ad(Ω × T, (Ft)t∈T).

Obviously we have E ∈ L2
ad(Ω×T, (Ft)t∈T) and E = L2

ad(Ω×T, (Ft)t∈T). In this way, we have

the following theorem which defines the so-called Itô integral.

Theorem 2.3.2.1. There exists a unique linear application

I : L2
ad(Ω×T, (Ft)t∈T)→ L2(Ω, (F),P) (2.7)

such that: 1. For

Ht(ω) =
n∑
i=1

hi(ω)1(ti−1, ti](t) ∈ E ,

I(H) =


n∑
i=1

hi(Wti −Wti−1
) if T = R+,

n∑
i=1

hi(Wti∧t −Wti−1∧t) if T = [0, t].

(2.8)

2. For

H̃ ∈ L2
ad(Ω×T, (Ft)t∈T),

E(I(H̃)2) = E

(∫
T
H̃2
sds

)
. (2.9)



Chapter 3

Controllability of non-linear stochastic

systems

The problem of controllability of a linear stochastic system

dx(t) = [Ax(t) +Bu(t)]dt+ σ(t)dw(t), t ∈ [0, T ],

x(0) = x0,
(3.1)

has been studied by various authors (see [25] ). In this paper, we examine the controllability

of a semi-linear stochastic system

dx(t) = [Ax(t) +Bu(t) + f(t, x(t))]dt+ σ(t, x(t))dw(t),

x(0) = x0 ∈ Rn,
(3.2)

and a non-linear stochastic system

dx(t) = F (t, x(t), u(t))dt+ Σ(t, x(t), u(t))dw(t),

x(0) = x0,
(3.3)

where A and B are matrices of dimension n× n and n×m respectively,σ : [0, T ]→ Rn×n,

f : [0, T ]×Rn → Rn, σ : [0, T ]×Rn → Rn×n, F : [0, T ]×Rn×Rm → Rn, Σ : [0, T ]×Rn×Rm →

Rn×n and w is a n-dimensional Wiener process. Deterministic analogue of these problems has

been examined by several authors (see [69, 96]) using one of the following methods : methods

based on stability theory of Lyapunov, methods for systems defined on a manifold, methods

which are geometrical in nature and fixed point methods.

26
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For fixed ε, p [94] and [57] gave conditions for 0 ∈ Apε(T, x0) via the Lyapunov approach for

several types of non-linear stochastic systems, where Apε(T, x0) is the set of non-random (ε, p)-

attainable points from x0 in time T defined byApε(T, x0) = {h ∈ Rn : ∃u ∈ Uad,P(‖x(T )−h‖2 ≤

ε) ≥ p} [23] studied the sample controllability for non-linear random differential equations. In

this chapter, we study the controllability and the local null controllability of the systems (3.2)

and (3.3) respectively.

3.1 Definitions

In this section, we adopt the following notation:

• {Ft|t ∈ [0, T ]}: the filtration generated by {w(s) : 0 ≤ s ≤ t}.

• L2(Ω,FT ,Rn) the Hilbert space of all FT -measurable square integrable variables with values

in Rn

• LFP ([0, T ],Rn): the Banach space of all p-integrable and Ft-measurable processes with values

in Rn for p ≥ 2

• H2 : the Banach space of all square integrable and Ft-adapted processes ϕ(t) with norm

‖ϕ‖2 = sup
t∈[0,T ]

E‖ϕ(t)‖2

• L(X, Y ): the space of all linear bounded operators from a Banach space X to a Banach space

Y.

• φ(t) = exp(At), Uad = LF2 ([0, T ],Rm) or Uad = LF4 ([0, T ],Rm) (In section 3)

Now let usintrodu ce the following operators and sets.

1. The operator

LT0 ∈ L(LF2 ([0, T ],Rm), L2(Ω,FT ,Rn))

is defined by

LT0 u =

∫ T

0

φ(T − s)Bu(s)ds

and set of all states attainable from x0 in time t > 0

Rt(x0) = {x(t, x0, u) : u(.) ∈ LF2 ([0, T ],Rm)}
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where x(t, x0, u) is the solution of (3.3) corresponding to x0 ∈ Rn, u(.) ∈ LF2 ([0, T ],Rm).

Clearly the adjoint (LT0 )∗ : L2(Ω,FT ,Rn)→ (LF2 ([0, T ],Rm) is defined by

(LT0 )∗z = B∗φ∗(T − t)E{z|Ft}

2. The controllability operator ΠT
0 associated with (1.)

ΠT
0 {.} = LT0 (LT0 )∗{.} =

∫ T

0

φ(T − t)BB∗φ∗(T − t)E{.|Ft}

which belongs to L(LF2 ([0, T ],Rm), L2(Ω,FT ,Rn)) and the controllability matrix ΓTs ∈ L(Rn,Rn)

ΓTs =

∫ T

s

φ(T − t)BB∗φ∗(T − t)dt

In what follows, we will use the following definitions.

Definition 3.1.1. The system (3.3) is completely controllable on [0,T] if

RT (x0) = L2(Ω,Ft,Rn)

that is, all the points in L2(Ω,Ft,Rn) can be reached from the point x0 at time T.

Definition 3.1.2. Let any trajectory x(., x0, u
0) = x0(.) of (3.3) with u0 ∈ Uad and x0(0) = x0

such that x0(T ) = 0 be given. Then the system (3.3) is approximate controllable on [0, T ]

if there is a neighborhood N(x0) of x0 in Rn such that for any x∗ in N(x0), there exists an

admissible control u∗ such that x(T, x∗, u
∗) = 0.

The following lemma givesa formula for a control transferring the state x0 to an arbitrary

state xT .

Lemma 3.1.1. Assume that the operator ΠT
0 is invertible. Then for arbitrary xT ∈ L2(Ω,Ft,Rn,

f(.) ∈ LF2 ([0, T ],Rn), σ(.) ∈ LF2 ([0, T ],Rn×n), the control

u(t) = B∗φ∗(T − t)E
{

(ΠT
0 )−1 ×

(
xT − φ(T )x0 −

∫ T

0

φ(T − s)f(s)ds

−
∫ T

0

φ(T − s)σ(s)dw(s)

)
|Ft
} (3.4)

transfers the system

x(t) = φ(t)x0 +

∫ t

0

φ(t− s)[Bu(s) + f(s)]ds+

∫ t

0

φ(t− s)σ(s)dw(s) (3.5)
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from x0 ∈ Rn to xT at time T and

x(t) = φ(t)x0 + Πt
0

[
φ∗(T − s)(ΠT

0 )−1 ×
(
xT − φ(T )x0 −

∫ T

0

φ(T − r)f(r) dr

−
∫ T

0

φ(T − r)σ(r)dw(r)

)]
+

∫ t

0

φ(t− s)f(s)ds+

∫ t

0

φ(t− s)σ(s)dw(s)

(3.6)

Proof. By substituting (3.4) in (3.5), one can easily obtain

x(t) = φ(t)x0 + Πt
0

[
φ∗(T − s)(ΠT

0 )−1 ×
(
xT − φ(T )x0 −

∫ T

0

φ(T − r)f(r) dr

−
∫ T

0

φ(T − r)σ(r)dw(r)

)]
+

∫ t

0

φ(t− s)f(s)ds+

∫ t

0

φ(t− s)σ(s)dw(s)

(3.7)

Writing t = T in (3.6), we see that the control u(.) transfers the system (3.5) from x0 to xT .

�

3.2 Controllability via contraction mapping principle

In thiss ection, we derive controllability conditions for the semi-linear stochastic system (3.2)

using the contraction mapping principle.

We impose the following conditions on data of the problem:

(A1) (f, σ) satisfies the Lipschitz condition with respect to x

‖f(t, x1)− f(t, x2)‖+ ‖σ(t, x1)− σ(t, x2)‖ ≤ L‖x1 − x2‖

(A2) (f, σ) is continuous on [0, T ]×Rn and satisfies

‖f(t, x)‖+ ‖σ(t, x)‖ ≤ L(‖x‖+ 1)

(A3) The linear system (3.1) is completely controllable.

Remark: In [64], it is shown that complete controllability and approximate controllability of

the system (3.1) coincide. That is why we study the complete controllability of the semi-linear

stochastic system (3.2).

By a solution of the system (3.2), we mean a solution of the non-linear integral equation

x(t) = φ(t)x0 +

∫ t

0

φ(t− s)[Bu(s) + f(s, x(s)]ds+

∫ t

0

φ(t− s)σ(s, x(s))dw(s) (3.8)
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It is obvious that, under the conditions (A1) and (A2); for every u(.) ∈ Uad the integral

equation (3.8) has a unique solution in H2. To apply the contraction mapping principle, we

define the non-linear operator T from H2 to H2 as follows:

(Tx)(t) = φ(t)x0 +

∫ t

0

φ(t− s)[Bu(s) + f(s, x(s)]ds+

∫ t

0

φ(t− s)σ(s, x(s))dw(s) (3.9)

where

u(t) = B∗φ∗(T − t)E
{

(ΠT
0 )−1 ×

(
xT − φ(T )x0 −

∫ T

0

φ(T − s)f(s, x(s))ds

−
∫ T

0

φ(T − s)σ(s, x(s))dw(s)

)
|Ft
} (3.10)

From precedent Lemma, the control (3.10) transfers the system (3.8) from the initial state x0

to the final state xT provided that the operator T has a fixed point. So, if the operator T has

a fixed point then the system (3.8) is completely controllable.

Now for convenience, let usintr oduce the notation

l1 = max{‖φ(t)‖2 : t ∈ [0, T ]}, l2 = ‖B‖2

l3 = E‖xT‖2, M = max{‖ΓTs ‖2 : s ∈ [0, T ]}

Lemma 3.2.1. For evry z ∈ L2(Ω,FT ,Rn) there exists a process ϕ(.) ∈ LF2 ([0, T ],Rn×n) such

that

z = Ez +

∫ T

0

ϕ(s)dw(s) (3.11)

ΠT
0 z = ΓT0Ez +

∫ T

0

ΓT0 ϕ(s)dw(s) (3.12)

Moreover
E‖Πt

0z‖2 ≤ME‖E{z|Ft}‖2

≤ME‖z‖2, ∀z ∈ L2(Ω,FT ,Rn)
(3.13)

Proof. For the proof of (3.11) see [60], for (3.12) see [64]. One can easily obtain the

boundedness of Πt
0 from (3.11) and (3.12) in such a way that

E‖Πt
0z‖2 = ‖Γt0Ez‖2 + E

∫ t

0

‖Γtsϕ(s)‖2ds

≤ M

(
‖Ez‖2 +

∫ t

0

E‖ϕ(s)‖2ds
)

= ME‖E{z|Ft}‖2

≤ ME‖z‖2

(3.14)
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�

Note that if the assumption (A3) holds, then for some γ > 0

E〈Πt
0z, z〉 ≥ γE‖z‖2, for allz ∈ L2(Ω,FT ,Rn)

see [64] and consequently

‖(ΠT
0 )−1‖ ≤ 1

γ
= l4

Theorem 3.2.1. Assume that the conditions (A1), (A2) and (A3) hold. If the inequality

4l1L(Ml1l4 + 1)(T + 1)T < 1 (3.15)

holds, then the system (3.8) is completely controllable.

Proof. See [67]

Remark: Obviously hypothesis (3.15) is fulfilled if L is sufficiently small.

3.3 The local null controllability

In this section, we use the generalized implicit function theorem to consider the local null

controllability of the non-linear stochastic system (3.3) via a suitable associated linearized

system.

Theorem 3.3.1. ([4]): Let X be a topological space, Y and Z be Banach spaces. W be a neigh-

bourhood of (x0, y0) in X × Y , G be a mapping from W to Z, G(x0, y0) = z0. If

•The mapping x→ G(x0, y0) is continuous at x0

• There exists a linear bounded operator Λ : Y → Z such that for ε > 0 there exist δ > 0 and

a neighbourhood N(x0) of x0 such that

‖G(x, y′)−G(x, y′′)− Λ(y′ − y′′)‖ < ε‖y′ − y′′‖ (3.16)

• ΛY = Z

Then there exists K > 0, a neighbourhood N(x0, z0) of (x0, z0) in X × Z and a function

ϕ : N(x0, z0)→ Y such that
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1. G(x, ϕ(x, z)) = z.

2. ‖ϕ(x, z)− y0‖ ≤ K‖G(x, y0)− z‖.

We impose the following conditions on problem of the data:

(B1) (F,Σ) is continuously differentiable with respect to (x,u).

(B2) There exists M > 0 such that

‖Fx(t, x, u)‖+ ‖Σx(t, x, u)‖+ ‖Fu(t, x, u)‖+ ‖Σu(t, x, u)‖ ≤M

where Fx(Σx) denotes the derivative of F (Σ) with respect to x, Fu(Σu) denotes the deriva-

tive of F (Σ) with respect to u.

(B3) The system (3.17) defined below is completely controllable. Associate (3.3) with the linear

stochastic system

dz(t) = [A(t)z(t) +B(t)v(t)]dt+ [C(t)z(t) +D(t)v(t)]dw(t)

z(0) = h0
(3.17)

where

v ∈ Uad = LF4 ([0, T ],Rm), A(t) = Fx(t, x
0(t), u0(t))

B(t) = Fu(t, x
0(t), u0(t)), C(t) = Σx(t, x

0(t), u0(t))

D(t) = Σu(t, x
0(t), u0(t))

Theorem 3.3.2. Let x0(.) = x(., x0, u
0) and xε(.) = x(., x0, u

ε) be the solutions of (3.3) corre-

sponding to u0, uε = u0 + εv respectively, where v ∈ Uad and ε > 0 then

max
0≤t≤T

E‖xε(t)− x0(t)‖2 → 0 as ε→ 0 (3.18)

max
0≤t≤T

E‖xε(t)− x0(t)‖4 → 0 as ε→ 0 (3.19)

Proof. By the definitions of x0(.) and xε(.)
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xε(t)− x0(t) =

∫ t

0

[F (xε(s), u0(s) + εv(s))− F (x0(s), u0(s))]ds

+

∫ t

0

[Σ(xε(s), u0(s) + εv(s))− Σ(x0(s), u0(s))]dw(s)

=

∫ t

0

[F (xε(s), u0(s) + εv(s))− F (x0(s), u0(s) + εv(s))]ds

+

∫ t

0

[F (x0(s), u0(s) + εv(s))− F (x0(s), u0(s))]ds

+

∫ t

0

[Σ(xε(s), u0(s) + εv(s))− Σ(x0(s), u0(s) + εv(s))]dw(s)

+

∫ t

0

[Σ(x0(s), u0(s) + εv(s))− Σ(x0(s), u0(s))]dw(s)

(3.20)

Taking norm of both sides of the above equality and using the Lipschitz condition (which

follows from (B2)) we infer that there exist L1 > 0 and L2 > 0 such that

E‖xε(t)− x0(t)‖2 ≤ L1

∫ t

0

E‖xε(s)− x0(s)‖2ds+ ε2L2

∫ t

0

E‖v(s)‖2ds (3.21)

By the Gronwall lemma

E‖xε(t)− x0(t)‖2 ≤
[
exp

(∫ T

0

L1ds

)]
× ε2L2

∫ T

0

E‖v(s)‖2ds (3.22)

By tending ε to zero, we obtain (3.18). The limit (3.19) can be proved in a similar way.

�

Corollary 3.3.1.

max
0≤t≤T

E

∥∥∥∥xε(t)− x0(t)ε

∥∥∥∥2n ≤ [exp(∫ T

0

L1ds

)]
× L2

∫ T

0

E‖v(s)‖2ds, n = 1, 2 (3.23)

Proof. For case n = 1 see [67]. Case of n = 2 can be similarly be proved.

Theorem 3.3.3.

max
0≤t≤T

E

∥∥∥∥xε(t)− x0(t)ε
− z(t)

∥∥∥∥2 → 0 (3.24)

as ε→ 0 where z(.) is the solution to (3.17) with h0 = 0

Proof. see [67].
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Lemma 3.3.1. [67]

Let zε(.) be a solution of

dzε(t) = [Aε(t)zε(t) +Bε(t)v(t)]dt+ [Cε(t)zε(t) +Dε(t)v(t)]dw(t)

zε(0) = 0

and z(.) be a solution of (3.17) with h0 = 0, v ∈ LF4 (0, T,Rm) Suppose that there exists M > 0

such that for each t ∈ [0, T ]

‖Aε(t)‖2 + ‖Bε(t)‖2 + ‖Cε(t)‖2 + ‖Dε(t)‖2 ≤M

and

E‖Aε(t)− A(t)‖4 + E‖Bε(t)−B(t)‖4 + E‖Cε(t)− C(t)‖4 + E‖Dε(t)−D(t)‖4

tends to zero uniformly in t as ε→ 0. Then

max

{(
max
0≤t≤T

E‖zε(t)− z(t)‖2
)1/2

,E

∫ T

0

‖v‖4dt ≤ 1

}
→ 0 as ε→ 0

Theorem 3.3.4. Suppose that (B1), (B2). Then if the system (3.17) is controllable then the

system (3.3) is approximately controllable.

Proof. Assume that there is an admissible control u0(.) such that the solution x(., x0, u
0)

of (3.3) satisfies x(T, x0, u
0) = 0. In others words, G(x0, u

0)(T ) = 0 where G maps Rn ×

LF4 ([0, T ],Rm) to LF2 ([0, T ],Rn) and is defined as

G(x, u)(t) = x+

∫ t

0

F (s, x(s), u(s))ds+

∫ t

0

Σ(s, x(s), u(s))dw(s)

where the process x(.) is the solution to equation (3.3) corresponding to the control u(.) and

initial condition x. By Theorem 3.3.3, G is differentiable at u0(.) with derivative z(.) which is

the solution of (3.17) with h0 = 0, and

Gu(x0, u
0)(T )(v) = z(T )

On the other hand by precedent Lemma Gu(x0, u
0)(T ) is continuous at u0(.). So, Λ =

Gu(x0, u
0)(T ) satisfies the inequality (3.16) (see [4]). It is known that the system (3.17) is

controllable if and only if

ImGu(x0, u
0)(T ) = L2(Ω,FT ,Rn)
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By theorem 3.3.1 with z0 = 0 there exists a neighbourhood N(x0) ⊂ Rn and a function

ϕ : N(x0)→ LF4 ([0, T ],Rm) such that G(x∗, ϕ(x∗))(T ) = 0 for every x∗ ∈ N(x0).

Thus for every x∗ ∈ N(x0), there exist u∗(.) = ϕ(x∗) ∈ LF4 ([0, T ],Rm) such that x(T, x∗, u
∗) = 0.

Therefore the system (3.3) is locally null controllable.

�



Chapter 4

Controllability of fractional stochastic

dynamical systems with delays in control

This chapter is concerned with the global relative controllability of fractional stochastic dy-

namical systems with multiple delays in control for finite dimensional spaces and global relative

controllability of linear and nonlinear fractional stochastic dynamical systems with distributed

delays in control for finite dimensional spaces. Sufficient conditions for controllability results

are obtained using Banach fixed point theorem and the controllability Grammian matrix which

is defined by the Mittag-Leffler matrix function.

4.1 Preliminaries

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e. right continuous and F0 containing all P-null sets). Let α, β > 0, with n− 1 <

α < n, n − 1 < β < n and n ∈ N, D is the usual differential operator. Let Rm be the m-

dimensional Euclidean space,R+ = [0,∞) and suppose f ∈ L1(R+) The following definitions

and properties are well known, for α, β and f as a suitable function (see, for instance, [35]):

(a) Riemann-Liouville fractional operators:

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

(Dα
0+f)(x) = Dn(In−α0+ f)(x)

36
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(b) Caputo fractional derivative:

(cDα
0+f)(x) = (In−α0+ Dnf)(x),

in particular Iα0+
cDα

0+f(t) = f(t)− f(0)(0 < α < 1).

The following is a well known relation, for finite interval [a, b] ∈ R+

(Dα
a+f)(x) = (cDα

a+f)(x) +
n−1∑
j=0

f (j)(a)

Γ(1 + j − α)
(x− a)j−α, n = R(α) + 1

The Laplace transform of the Caputo fractional derivative is

L{cDα
0+f(t)} = sαF (s)−

n−1∑
k=0

f (k)(0+)sα−1−k.

The Riemann-Liouville fractional derivatives have singularity at zero and the fractional dif-

ferential equations in the Riemann-Liouville sense require initial conditions of special form

lacking physical interpretation. To overcome this difficulty Caputo introduced a new definition

of fractional derivative but in general, both the Riemann-Liouville and the Caputo fractional

operators possess neither semigroup nor commutative properties, which are inherent to the

derivatives on integer order. Due to this fact, the concept of sequential fractional differential

equations are discussed in [35].

(c) Linear Sequential Derivative:

For n ∈ N, the sequential fractional derivative for suitable function y(x) is defined by

y(αk) := (Dkαy)(x) = (DαD(k−1)αy)(x),

where k = 1, ..., n, (Dαy)(x) = y(x), and Dα is any fractional differential operator, here we

mention it as cDα
0+ .

(d) Mittag-Leffler Function

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
, for α, β > 0.

The general Mittag-Leffler function satisfies∫ ∞
0

e−ttβ−1Eα,β(tαz)dt =
1

1− z
, for |z| < 1
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The Laplace transform of Eα,β(tαz) follows from the integral∫ ∞
0

e−sttβ−1Eα,β(±atα)dt =
sα−β

sα ∓ a
.

That is

L{tβ−1Eα,β(±atα)} =
sα−β

sα ∓ a
,

In particular, for β = 1,

Eα,1(λz
α) = Eα(λzα) =

∞∑
k=0

λkzkα

Γ(kα + 1)
, λ, z ∈ C

have the interesting property cDαEα(λtα) = λEα(λtα) and

L{Eα(±atα)} =
sα−1

sα ∓ a
forβ = 1.

For brevity of notation let us take Iq0+ as Iq and cDq
0+ as cDq and the fractional derivative is

taken as Caputo sense.

(e) Solution representation:

Consider the linear fractional stochastic differential equation of the form

cDqx(t) = Ax(t) + σ(t)dw(t)
dt
, t ∈ [0, T ],

x(0) = x0,
(4.1)

where 0 < q < 1, x ∈ Rn and A is an n × n matrix, w(t) is given l-dimensional Winer

process with filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] −→ Rn×l is appropriate

function. In order to find the solution, apply Laplace transform on both sides and use the

Laplace transform of Caputo derivative, we get

sqX(s)− sq−1x(0) = AX(s) + Σ(s)
dw(s)

ds
.

Apply inverse Laplace transform on both sides (see [10]) we have

L−1{X(s)} = L−1{sq−1(sqI − A)−1}x0 + L−1
{

Σ(s)
dw(s)

ds

}
∗ L−1{(sqI − A)−1}.

Finally, substituting Laplace transformation of the Mittag-Leffler function, we get the solution

of the given system

x(t) = Eq(At
q)x0 +

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds
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Where Eq(Atq) is the matrix extension of the mentioned Mittag-Leffler functions with the

following representation:

Eq(At
q) =

∞∑
k=0

Aktkq

Γ(1 + kq)

with the property cDqEq(At
q) = AEq(At

q).

4.2 Relative controllability of fractional stochastic dynam-

ical systems with multiple delays in control

Let L2
Ft(J × Ω,Rn) be the Banach space of all Ft-measurable square integrable processes x(t)

with norm ‖x‖2L2 = sup
t∈J

E‖x(t)‖2, where E(.) denotes the expectation with respect to the mea-

sure P. Let C = C([0, T ];L2
Ft) be the Banach space of continuous maps from [0, T] into

L2
Ft(J × Ω,Rn) satisfying sup

t∈J
E‖x(t)‖2 <∞. Consider the linear fractional stochastic dynam-

ical system with multiple delays in control represented by the fractional stochastic differential

equation of the form

cDqx(t) = Ax(t) +
M∑
k=1

Bku(hk(t)) + σ(t)
dw(t)

dt
, t ∈ J := [0, T ],

x(0) = x0,

(4.2)

Where 0 < q < 1, x(t) ∈ Rn, u ∈ Rl, A is an n × n matrix, Bk are n × l matrices, for

k = 0, 1, ...,M, w(t) is a given l-dimensional Wiener process with the filtration Ft generated by

w(s), 0 ≤ s ≤ t and σ : [0, T ]→ Rn×l is appropriate function.

Let us assume the following assumptions

(i) Assume the function hk : J → R, k = 0, 1, ...,M are twice continuously differentiable and

strictly increasing in J . Moreover,

hk(t) ≤ t for t ∈ J, i = 0, 1, ...,M. (4.3)

(ii) Introduce the time lead functions rk(t) : [hk(0), hk(T )] → J, k = 0, 1, ...,M such that

rk(hk(t)) = t for t ∈ J Further assume that h0(t) = t and for t=T, the following inequal-

ities hold

hM(T ) ≤ hM1(T ) ≤ ...hm+1(T ) ≤ 0 = hm(T ) < hm−1(T ) = ...h1(T ) = h0(T ) = T. (4.4)
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(iii) Let h > 0 be given. For functions u : [−h, T ] → Rl and t ∈ J , we use the symbol ut to

denote the function on [−h, 0], defined by ut(s) = u(t+ s) for s ∈ [−h, 0).

The following definitions of complete state of the system (4.2) at time t and relative controlla-

bility are assumed.

Definition 4.2.1. The set φ(t) = {x(t), ut} is the complete state of the system (4.2) at time t.

Definition 4.2.2. System (4.2) is said to be globally relatively controllable on J if for every

complete state φ(0) and every vector x1 ∈ Rn there exists a control u(t) defined on J such that

the corresponding trajectory of the system (4.2) satisfies x(T ) = x1.

Note that the solution of system (4.2) can be expressed in the following form

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑
k=0

Bku(hk(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Taking into account the time lead functions rk(t), this solution can be further changed into

x(t) = Eq(A(t)q)x0 +
M∑
k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u(s)ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(4.5)

Using the inequalities (4.4), the above equation becomes,

x(t) = Eq(A(t)q)x0 +
m∑
k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

(4.6)

For brevity, let us introduce the following notation:

ϕ(t) =
m∑
k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds.

(4.7)
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and

χ(t) =

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

Recall the controllability Grammian matrix

ψT0 =
m∑
k=0

∫ T

0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
] [
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]∗
ds

Theorem 4.2.1. The linear stochastic control system (4.2) is relatively controllable on [0, T ]

if and only if the controllability Grammian matrix ψT0 is positive definite for some T > 0.

Proof. Since is positive definite, it is non-singular and therefore its inverse is well defined.

Define the control function as,

u(t) = [B∗kEq,q(A
∗(T − rk(t))q)r

′

k(t)]ψ
−1[x1 − Eq(Atq)x0 − ϕ(T )− χ(T )], k = 0, 1, ...,m.

(4.8)

where the complete state φ(0) and the vector x1 ∈ Rn are chosen arbitrarily. Inserting (4.8)

in (4.6) and using (4.7) we get

x(T ) = Eq(A(T )q)x0 + ϕ(T ) +
m∑
k=0

∫ T

0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]

×
[
B∗kEq,q(A

∗(T − rk(s))q)r
′

k(s)
]
ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= x1.

Thus the control u(t) transfers the initial state φ(0) to the desired vector x1 ∈ Rn at time T.

Hence the system (4.2) is controllable.

On the other hand, if it is not positive definite, there exists a nonzero φ such that φ∗ψφ = 0,

that is

φ∗
m∑
k=0

∫ T

0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
] [
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]∗
φds = 0

φ∗
m∑
k=0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]

= 0, on [0, T ].

Let x0 = [Eq(A(T )q)]−1 φ. By assumption, there exists a control u such that it steers the

complete initial state φ(0) = {x(0), u0(s)} to the origin in the interval [0, T ]. It follows that
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x(T ) = Eq(A(T )q)x0 + ϕ(T ) +
m∑
k=0

∫ T

0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]

×
[
B∗kEq,q(A

∗(T − rk(s))q)r
′

k(s)
]
ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= φ+ ϕ(T ) +
m∑
k=0

∫ T

0

(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]

×
[
B∗kEq,q(A

∗(T − rk(s))q)r
′

k(s)
]
ψ−1[x1 − Eq(AT q)x0 − ϕ(T )− χ(T )]ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= 0.

Thus,

0 = φ∗φ+
m∑
k=0

∫ T

0

φ∗(T − rk(s))q−1
[
Eq,q(A(T − rk(s))q)Bkr

′

k(s)
]
u(s)ds+ φ∗(ϕ(T ) + χ(T ))

But the second and third term are zero leading to the conclusion φ∗φ = 0. This is a contradiction

to φ 6= 0. Thus ψ is positive definite. Hence the desired result.

2

Consider a nonlinear fractional stochastic dynamical system with multiple delays in control

represented by the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +
M∑
k=1

Bku(hk(t)) + f(t, x(t))σ(t, x(t))
dw(t)

dt
, t ∈ J := [0, T ],

x(0) = x0,

(4.9)

Where 0 < q < 1, x(t) ∈ Rn, u ∈ Rl, A,Bk are defined as above and f : J × Rn → Rn,σ :

J × Rn → Rn×l are appropriate functions.Then the solution of the system (4.9) can be ex-

pressed in the following form

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
M∑
k=0

Bku(hk(s))ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
×Eq,q(A(t− s)q)ds.
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using the time leader functions rk(t) the solution becomes,

x(t) = Eq(A(t)q)x0 +
M∑
k=0

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u(s)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
×Eq,q(A(t− s)q)ds.

(4.10)

Now using the inequalities (4.4), the above equation for t = T can be expressed as

x(T ) = Eq(A(T )q)x0 +
m∑
k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ T

0

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u0(s)ds

+

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds.

(4.11)

For brevity, let us introduce the following notation using (4.7)

Υ(φ(0), x1, x) = x1 − Eq(A(T )q)x0 − ϕ(T )−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds.

(4.12)

Now let us define the controllability Grammian matrix and the control function

ψT0 =
m∑
k=0

∫ T

0

(T −rk(s))q−1[Eq,q(A(T −rk(s))q)Bkr
′

k(s)u(s)][Eq,q(A(T −rk(s))q)Bkr
′

k(s)u(s)]∗ds

(4.13)

u(t) = [B∗kEq,q(A
∗(T − rk(t))q)r

′

k(t)]ψ
−1Υ(φ(0), x1, x) for k = 0, 1, ...,m (4.14)

where the complete state φ(0) and the vector x1 ∈ Rn are chosen arbitrarily and * denotes the

matrix transpose. Inserting (4.14) in (4.11) by using (4.12) and (4.13), it is easy to verify that

the control u(t) transfers the initial complete state φ(0) to the desired vector x1 at time T for

each fixed x. Now observing (4.12) and substituting (4.14) in (4.10), we have
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x(t) = Eq(A(t)q)x0 +
m∑
k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)

×B∗kEq,q(A∗(T − rk(s))q)r
′

k(s)ψ
−1Υ(φ(0), x1, x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds.

(4.15)

Now, we impose the following conditions on data of the problem:

(iv) The linear fractional stochastic dynamical system (4.2) is globally relatively controllable.

(v) f and σ satisfy Lipschitz and linear growth conditions. That is, there exists some constants

N, Ñ, L, L̃ > 0 such that

‖f(t, x)− f(t, y)‖2 ≤ N‖x− y‖2, ‖f(t, x)‖2 ≤ Ñ(1 + ‖x‖2)

‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2, ‖σ(t, x)‖2 ≤ L̃(1 + ‖x‖2).

For our convenience, let us introduce the following notations.

a1 = max
{
‖Eq(Atq)‖2; t ∈ J

}
, a2 = max

{
‖u0(t)‖2; t ∈ J

}
, rk = max

{
‖r′k(t)‖2; t ∈ J

}
bk = max

{
‖Eq,q(A(t− rk(s))q)‖2; s ∈ [0, T ]

}
, ck =

∫ T

0

(T − rk(s))2(q−1)ds

c̃k =

∫ 0

hk(0)

(T − rk(s))2(q−1)ds; ĉk =

∫ hk(T )

hk(0)

(T − rk(s))2(q−1)ds

We claim that if (iv) holds, the operator ψT0 is strictly positive definite and thus the inverse

linear operator (ψT0 )−1 is bounded, say, by l, (see [6] for more details).

Theorem 4.2.2. Under the conditions (iv) and (v), the nonlinear system (4.9) is globally

relatively controllable on J.

Proof. Firstly, from the definition (4.14) we can write the control function u as
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u(t) = [B∗kEq,q(A
∗(T − rk(t))q)r

′

k(t)]ψ
−1

×

[
x1 − Eq(A(T )q)x0 −

m∑
k=0

∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)

−
M∑

k=m+1

∫ hk(t)

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u0(s)ds

−
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(T − s)q)ds

]
.

Secondly, we define the operator P : C −→ C by

P(x)(t) = Eq(A(T )q)x0 +
m∑
k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)

×B∗kEq,q(A∗(T − rk(s))q)r
′

k(s)ψ
−1Υ(φ(0), x1, x)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds.

In order to prove the global relative controllability of the system (4.9) it is enough to show

that P has a fixed point in C. To do this, we can employ the contraction mapping principle.

To apply the principle, first we show that P maps C into itself. We have
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E‖P(x)(t)‖2 ≤ 6a1E‖x0‖2 + 6
m∑
k=0

E

∥∥∥∥∫ 0

hk(0)

(T − rk(s))q−1Eq,q(A(T − rk(s))q)Bkr
′

k(s)u0(s)ds

∥∥∥∥2
+6

m∑
k=0

E

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)

×B∗kEq,q(A∗(T − rk(s))q)r
′

k(s)ψ
−1Υ(φ(0), x1, x)ds

∥∥∥∥∥
2

+6
M∑

k=m+1

E

∥∥∥∥∥
∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

∥∥∥∥∥
2

+6E

∥∥∥∥∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

∥∥∥∥2
+6E

∥∥∥∥∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥2 .
It follows from Lemma 2.5, in [84], and the above notation that:

E‖P(x)(t)‖2 ≤ 6a1E‖x0‖2 + 6a2

(
m∑
k=0

c̃kbkrk‖Bk‖2 +
M∑

k=m+1

ĉkbkrk‖Bk‖2
)

+6b
t2q−1

2q − 1

∫ t

0

E‖f(s, x(s))‖2ds+ 6l2
m∑
k=0

ckb
2
kr

2
k‖Bk‖4

∫ t

0

E‖Υ(φ(0), x1, x)‖2ds

+6Lb
t2q−1

2q − 1

∫ t

0

(∫ τ

0

E‖σ(θ, x(θ))‖2dθ
)
ds.

Thus we have

E‖P(x)(t)‖2 ≤ 6a1E‖x0‖2 + 6a2

(
m∑
k=0

c̃kbkrk‖Bk‖2 +
M∑

k=m+1

ĉkbkrk‖Bk‖2
)

+6b
t2q−1

2q − 1

∫ t

0

E‖f(s, x(s))‖2ds+ 6l2
m∑
k=0

ckb
2
kr

2
k‖Bk‖4

∫ t

0

E‖Υ(φ(0), x1, x)‖2ds

+6Lb
t2q−1

2q − 1

∫ t

0

(∫ τ

0

E‖σ(θ, x(θ))‖2dθ
)
ds.

Hence,

E‖P(x)(t)‖2 ≤ 6l2ηE‖x1‖2 + 6a1E‖x0‖2(1 + l2η) + 6a2β(1 + l2η)

+6b
T 2q−1

2q − 1
Ñ(1 + l2η)(1 + ‖x‖2L2) + 6LσL̃b

T 2q−1

2q − 1
(1 + l2η)(1 + T‖x‖2L2).

It follows from the above inequality and the condition (v) that there exists c > 0 such that
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E‖P(x)(t)‖2 ≤ c(1 + ‖x‖2L2).

Therefore P maps C into itself.

Secondly, we claim that P is a contraction mapping on C. For x, y ∈ C,

E‖P(x)(t)− P(y)(t)‖2 ≤ 3
m∑
k=0

E

∥∥∥∥∥
∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))qBkr
′

k

×B∗kEq,q(A∗(T − rk(s))q)r
′

k(s)ψ
−1 [Υ(φ(0), x1, x)−Υ(φ(0), x1, y)] ds

∥∥∥∥∥
2

+3E

∥∥∥∥∫ t

0

(t− s)q−1Eq,q(A(t− s)q)(f(s, x(s))− f(s, y(s)))ds

∥∥∥∥2
+3E

∥∥∥∥∫ t

0

(t− s)q−1
(∫ τ

0

(σ(θ, x(θ))− σ(θ, y(θ)))dω(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥2 .
Using Lemma 2.5, in [84], condition (v), and the above notations we get

E‖P(x)(t)− P(y)(t)‖2 ≤ 3l2
T 2q−1

2q − 1
b

m∑
k=0

ckb
2
kr

2
k‖Bk‖4

[∫ T

0

E‖f(s, x(s))− f(s, y(s))‖2ds

+Lσ

∫ τ

0

E‖σ(θ, x(θ))− σ(θ, y(θ))‖2dθ

]
+3

T 2q−1

2q − 1
b

∫ t

0

E ‖f(s, x(s))− f(s, y(s))‖2 ds

+3
T 2q−1

2q − 1
bLσ

∫ t

0

(∫ τ

0

E‖σ(θ, x(θ))− σ(θ, y(θ))‖2dθ
)
ds.

≤ 3l2bη
T 2q−1

2q − 1
[N + LLσ]

∫ T

0

E‖x(s)− y(s)‖2ds

+3b
T 2q−1

2q − 1
[N + TLLσ]

∫ T

0

E‖x(s)− y(s)‖2ds.

It results that

sup
t∈[0,T ]

E‖P(x)(t)−P(y)(t)‖2 ≤
[
3l2bη

T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ]

]
sup
t∈[0,T ]

E‖x(t)−y(t)‖2.

Therefore we conclude that if
(

3l2bη
T 2q−1

2q − 1
[N + LLσ] + 3b

T 2q−1

2q − 1
[N + TLLσ]

)
< 1, then P is

a contraction mapping on C, implies that the mapping P has a unique fixed point x(.) ∈ C.
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Hence we have

x(t) = Eq(A(t)q)x0 +
m∑
k=0

∫ 0

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+
m∑
k=0

∫ t

0

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u(s)ds

+
M∑

k=m+1

∫ hk(t)

hk(0)

(t− rk(s))q−1Eq,q(A(t− rk(s))q)Bkr
′

k(s)u0(s)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dω(θ)

)
Eq,q(A(t− s)q)ds.

Thus x(t) is the solution of the system (4.9), and it is easy to verify that x(T ) = x1. Further

the control function u(t) steers the system (4.9) from initial complete state φ(0) to x1 on J .

Hence the system (4.9) is globally relatively controllable on J .

�

Example

In this example, we apply the results obtained in the previous section for the following stochastic

fractional dynamical systems with multiple delays in control which involves sequential Caputo

derivative

cDqx(t) = Ax(t) +B1u(t) +B2u(t− h) + f(t, x(t)) + σ(t, x(t))dω(t)
dt

; 0 < q < 1, t ∈ [0, T ]

x(0) = x0
(4.16)

where

A =

 −1 0

3 −2

 , B1 = B2 =

 1 0

0 1

 ,

f(t, x(t)) =

 x1(t) cosx2(t) + 3x2(t)

x2(t) sinx1(t) + 2x1(t)

 , σ(t, x(t)) =

 (2t2 + 1)x1(t)e
−t 0

0 x2(t)e
−t

 .

Let us introduce the variables x1(t) = x(t) and x2(t) = cD
q
2x1(t).Then

cD
q
2x1(t) = cD

q
2x(t) = x2

The Mittag-Leffler matrix of the given system is given by
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Eq(At
q) =

 Eq(−tq) 0

3Eq(−tq)− 3Eq(−2tq) Eq(−2tq)

 .

Further

Eq,q(A(T − s)q) =

 Eq,q(−(T − s)q) 0

3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q) Eq,q(−2(T − s)q)

 ,

Eq,q(A(T−(s+h))q) =

 Eq,q(−(T − (s+ h))q) 0

3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q) Eq,q(−2(T − (s+ h))q)

 .

By simple matrix calculation one can see that the controllability matrix

ψT0 =
m∑
k=0

∫ T

0

(T − rk(s))q−1[Eq,q(A(T − rk(s))q)Bkr
′

k(s)][Eq,q(A(T − rk(s))q)Bkr
′

k(s)]
∗ds

=

∫ T

0

(T − s)q−1
 a2 ac

ac b2 + c2

+ (T − (s+ h))q−1

 ā2 āc̄

āc̄ b
2

+ c̄2

 ds.
is positive definite for any T > h, where

a = Eq,q(−(T − s)q), b = Eq,q(−2(T − (s+ h))q),

c = 3Eq,q(−(T − s)q)− 3Eq,q(−2(T − s)q), ā = Eq,q(−(T − (s+ h))q

b̄ = Eq,q(−2(T − (s+ h))q), c̄ = 3Eq,q(−(T − (s+ h))q)− 3Eq,q(−2(T − (s+ h))q).

Further the functions f(t, x(t)) and σ(t, x(t)) satisfies the hypothesis mentioned in Theorem

4.2.2, and so the fractional system (4.16) is globally relatively controllable on [0, T ].

4.3 Global relative controllability of fractional stochastic

dynamical systems with distributed delays in control

Let L2
Ft(J × Ω,Rn) be a Banach space of all Ft mesurable square processes x(t) with norm

‖x‖2L2 = sup
t∈J

E‖x(t)‖2, where E(.) denotes the expectation with respect to the mesure P. Let

C = C([0, T ];L2
Ft) be the Banach space of continuous maps from [0, T ] into L2

Ft(J × Ω,Rn)

satisfying sup
t∈J

E‖x(t)‖2 <∞.

Consider the linear fractional stochastic dynamical system with distributed delays in control

represented by the fractional stochastic differential equation of the form
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cDqx(t) = Ax(t) +

∫ 0

−h
dτB(t, τ)u(t+ τ) + σ(t)

dw(t)

dt
, t ∈ J := [0, T ],

x(0) = x0,

(4.17)

Where 0 < q < 1, x(t) ∈ Rn, and the second integral term is in the Lebesgue-Stieltjes sense

with respect to τ . Let h > 0 be given. For function u : [−h, T ] → Rm and t ∈ J , we use the

symbol ut to denote the function on [−h, 0], defined by ut(s) = u(t+ s) for s ∈ [−h, 0). A is an

n×n matrix, B(t, τ) is an n×m matrix continuous in t for fixed τ and is of bounded variation

in τ on [−h, 0] for each t ∈ J and continuous from left in τ on the interval (−h, 0). Here ω(t) is

a given m-dimensional Wiener process with the filtration Ft generated by ω(s), 0 ≤ s ≤ t and

σ : [0, T ]→ Rn×m.

The following definitions of complete state of the system (4.17) at time t and relative control-

lability are assumed

Definition 4.3.1. The set φ(t) = {x(t), ut} is the complete state of the system (4.17) at time

t.

Definition 4.3.2. System (4.17) is said to be globally relatively controllable on J if for every

complete state φ(0) and every vector x1 ∈ Rn there exists a control u(t) defined on J such that

the corresponding trajectory of the system (4.17) satisfies x(T ) = x1.

Note that the solution of system (4.17) can be expressed in the following form

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[∫ 0

−h
dτB(s, τ)u(s+ τ)

]
ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds.

where Eq(A(t)q) is the Mittag Leffler matrix function. Now using the well known result of
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unsymmetric Fubini theorem [19] and change of order of integration to the last term, we have

x(t) = Eq(A(t)q)x0 +

∫ 0

−h
dBτ

[∫ t

0

(t− s)q−1Eq,q(A(t− s)q)u(s+ τ)B(s, τ)

]
ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds

= Eq(A(t)q)x0 +

∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]
+

∫ 0

−h
dBτ

[∫ t+τ

0

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u(s)ds

]
+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds

= Eq(A(t)q)x0 +

∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]
+

∫ t

0

[∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)u(s)ds

]
+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds,

(4.18)

where

Bt(s, τ) =

 B(s, τ), s ≤ t

0, s > t
(4.19)

and dBτ denotes the integration of Lebesgue Stieltjes sense with respect to the variable τ in

the function B(t, τ).

For brevity, let us introduce the following notations:

ϕ(t, s) =

∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ), (4.20)

and

χ(t) =

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(t− s)q)ds. (4.21)

Recall the controllability Grammian matrix

ψT0 =

∫ T

0

ϕ(T, s)ϕ∗(T, s)ds

where the complete state φ(0) and the vector x1 ∈ Rn are chosen arbitrarily and the ∗ denotes

the matrix transpose.

Theorem 4.3.1. The linear stochastic control system (4.17) is relatively controllable on [0, T ]

if and only if the controllability Grammian matrix ψT0 is positive definite for some T > 0.
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Proof : Since ψ is positive definite, it is non-singular and therefore its inverse is well defined.

Define the control function as,

u(t) = ϕ∗(T, t)ψ−1
(
x1 − Eq(Atq)x0 −

∫ 0

−h
dBτ

[
(T − (s− τ))q−1

×Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds
]
− χ(T )

)
.

(4.22)

where the complete state φ(0) and the vector x1 ∈ Rn are chosen arbitrarily. Inserting

(4.22) in (4.18) and using (4.20) we get

x(T ) = Eq(A(T )q)x0 +

∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

+

∫ T

0

[∫ 0

−h
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ)

]
×
[∫ 0

−h
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ)

]∗
ψ−1

×
(
x1 − Eq(AT q)x0 −

∫ 0

−h
dBτ

[
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)

×B(s− τ, τ)u0(s)ds
]
− χ(T )

)
dτ

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= x1
(4.23)

Thus the control u(t) transfers the initial state φ(0) to the desired vector x1 ∈ Rn at time T .

Hence the system (4.17) is controllable.

On the other hand, if it is not positive definite, there exists a nonzero φ such that φ∗ψφ = 0,

that is

φ∗
∫ T

0

ϕ(T, s)ϕ∗(T, s)φds = 0

φ∗ϕ(T, s) = 0, on [0,T].

Let x0 = [Eq(AT
q)]−1φ. By assumption, there exists a control u such that it steers the

complete initial state φ(0) = {x(0), u0(s)} to the origin in the interval [0, T ]. It follows that
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x(T ) = Eq(A(T )q)x0 +

∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

+

∫ T

0

[∫ 0

−h
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ)

]
u(s)ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= φ+

∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

+

∫ T

0

[∫ 0

−h
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ)

]
u(s)ds

+

∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ)dw(θ)

)
Eq,q(A(T − s)q)ds

= 0.

Thus

0 = φ∗φ+

∫ T

0

φ∗ϕ(T, s)u(s)ds

+φ∗
(∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

]
+ χ(T )

)
.

Then, taking into account that both of the terms

φ∗φ+

∫ T

0

φ∗ϕ(T, s)u(s)ds and

φ∗
(∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

]
+ χ(T )

)
are zero leading to the conclusion φ∗φ = 0. This is a contradiction to φ 6= 0. Thus ψ is positive

definite. Hence the desired result.

�

Consider a nonlinear fractional stochastic dynamical system with distributed delays in con-

trol represented by the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +

∫ 0

−h
dτB(t, τ)u(t+ τ) + f(t, x(t)) + σ(t)

dw(t)

dt
, t ∈ J := [0, T ],

x(0) = x0,

(4.24)

Where 0 < q < 1, x(t) ∈ Rn, u ∈ Rm A and B are as above, f : J × Rn → Rn and

σ : J × Rn → Rn×l and w(t) is a given m-dimensional Wiener process with the filtration
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Ft generated by w(s). Then the solution of the system (4.24) can be expressed in the following

form [22]

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)
[∫ 0

−h
dτB(t, τ)u(t+ τ)

]
ds.

Using the well known result of unsymmetric Fubini theorem [19] and change of order of inte-

gration to the last term, we have

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

+

∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]
+

∫ t

0

[∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds

(4.25)

where

Bt(s, τ) =

 B(s, τ), s ≤ t

0, s > t
(4.26)

and dBτ denotes the integration of Lebesgue Stieltjes sense with respect to the variable τ in

the function B(t, τ).

For brevity, let us introduce the following notations:

Υ(φ(0), x1;x) = x1 − Eq(A(T )q)x0 −
∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds

−
∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

]
.

(4.27)

Define the control function

u(t) = ϕ∗ψ−1Υ(φ(0), x1;x), (4.28)

where the complete state φ(0) and the vector x1 ∈ Rn are chosen arbitrarily and ∗ denotes the

matrix transpose.

Now, we impose the following conditions on data of the problem:
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i. The linear fractional stochastic dynamical system (4.17) is globally relatively controllable.

ii. f and σ satisfy Lipschitz and linear growth conditions. That is, there exists some constants

N, Ñ, L, L̃ > 0 such that

‖f(t, x)− f(t, y)‖2 ≤ N‖x− y‖2, ‖f(t, x)‖2 ≤ Ñ(1 + ‖x‖2)

‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2, ‖σ(t, x)‖2 ≤ L̃(1 + ‖x‖2).

For our convenience, let us introduce the following notations.

a1 = max {‖Eq(Atq)‖2; t ∈ J} , a2 = max {‖Eq,q(A(t− s)q)‖2; t ∈ J}

a3 = max {‖Eq(A(t− (s− τ))q)‖2; t ∈ J} , c1 = max {‖u0(t)‖2; t ∈ J}

c2 =

∫ 0

−h
(t− (s− τ))2(q−1)ds, c3 =

∫ 0

−τ
(t− (s− τ))2(q−1)ds

MB = max {‖B(s− τ, τ)‖2; 0 ≤ τ < s ≤ T} , M = max {‖ϕ(t, s)‖2; 0 ≤ s < t ≤ T} .

We claim that if i. holds, the operator ψT0 is strictly positive definite and thus the inverse

linear operator (ψT0 )−1 is bounded, say, by l, (see [54] for more details)

Theorem 4.3.2. Under the conditions i. and ii., the nonlinear system (4.24) is globally

relatively controllable on J .

Proof: Firstly, from the definition of the control function (4.28), we can write u as

u(t) = ϕ∗(T, t)ψ−1Υ(φ(0), x1;x)

= ϕ∗(T, t)ψ−1
(
x1 − Eq(A(T )q)x0 −

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−
∫ T

0

(T − s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(T − s)q)ds

−
∫ 0

−h
dBτ

[∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)B(s− τ, τ)u0(s)ds

])
.

Secondly, we define the operator P : C → C by

P(x)(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

+

∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]
+

∫ t

0

[∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds
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In order to prove the global relative controllability of the system (4.24) it is enough to show

that P has a fixed point in C. To do this, we can employ the contraction mapping principle.

To apply the principle, first we show that P maps C into itself.

We have

E ‖P(x)(t)‖2 = 5a1E‖x0‖2 + 5E

∥∥∥∥∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

∥∥∥∥2
+5E

∥∥∥∥∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥2
+5E

∥∥∥∥∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]∥∥∥∥2
+5E

∥∥∥∥∫ t

0

[∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds

∥∥∥∥2
It follows from Lemma 2.5, in [84], and the above notation that:

E ‖P(x)(t)‖2 ≤ 5a1E‖x0‖2 + 5a2
t2q−1

2q − 1

∫ t

0

E ‖f(s, x(s))‖2 ds

+5Lσa2
t2q−1

2q − 1

∫ t

0

(∫ τ

0

E ‖σ(θ, x(θ))‖2 dθ
)
ds+ 5MMBa3c1c3

+5M

∫ t

0

E‖u(s)‖2ds.

Thus we have

E ‖P(x)(t)‖2 ≤ 5a1E‖x0‖2 + 5a2
t2q−1

2q − 1
Ñ

∫ t

0

(1 + E ‖x(s)‖2)ds

+5Lσa2
t2q−1

2q − 1
L̃

∫ t

0

(∫ τ

0

(1 + E ‖x(θ)‖2)dθ
)
ds+ 5MMBa3c1c3

+5M2l2
[
E‖x1‖2 + a1E‖x0‖2 + a2

T 2q−1

2q − 1
Ñ

∫ T

0

(1 + E‖x(s)‖2)ds.

+ Lσa2
T 2q−1

2q − 1
L̃

∫ T

0

(∫ τ

0

(1 + E ‖x(θ)‖2)dθ
)
ds+ 5MMBa3c1c3

]
.

Hence,

E ‖P(x)(t)‖2 ≤ 5M2l2E‖x1‖2 + 5a1E‖x0‖2(1 +M2l2)

+5MMBa3c1c3(1 +M2l2) + 5a2
T 2q−1

2q − 1
Ñ(1 +M2l2)

(
1 + ‖x‖2L2

)
+5a2LσL̃

T 2q−1

2q − 1
(1 +M2l2)

(
1 + T‖x‖2L2

)
.

It follows from from the above inequality and the condition ii. that there exists β > 0 such

that

E‖P(x)(t)‖2 ≤ β(1 + ‖x‖2L2).
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Therefore P maps C into itself. Secondly, we claim that P is a contraction mapping on C.

For x, y ∈ C,

E ‖P(x)(t)− P(y)(t)‖2 ≤ 3E

∥∥∥∥∫ t

0

(t− s)q−1Eq,q(A(t− s)q)(f(s, x(s))− f(s, y(s)))ds

∥∥∥∥2
+3E

∥∥∥∥∫ t

0

(t− s)q−1
(∫ τ

0

(σ(θ, x(θ))− σ(θ, y(θ)))dw(θ)

)
Eq,q(A(t− s)q)ds

∥∥∥∥2
+3E

∥∥∥∥∫ t

0

ϕ(t− s)ϕ∗(T, s)ψ−1 [Υ(φ(0), x1;x)−Υ(φ(0), x1; y)]

∥∥∥∥2 .
Using Lemma 2.5, in [84], condition ii., and the above notations we get

E ‖P(x)(t)− P(y)(t)‖2 ≤ 3a2
T 2q−1

2q − 1
(1 +M2l2T )

∫ t

0

E ‖f(s, x(s))− f(s, y(s))‖2 ds

+3a2
T 2q−1

2q − 1
Lσ(1 +M2l2T )

∫ t

0

(∫ τ

0

E ‖(σ(θ, x(θ))− σ(θ, y(θ)))‖2 dθ
)
ds

≤ 3a2
T 2q−1

2q − 1
(1 +M2l2T )(N + LLσT )

∫ t

0

E‖x(s)− y(s)‖2ds.

It results that

sup
t∈[0,T ]

E ‖P(x)(t)− P(y)(t)‖2 ≤ 3a2
T 2q−1

2q − 1
(1 +M2l2T )(N + LLσT ) sup

t∈[0,T ]
E‖x(t)− y(t)‖2ds.

Therefore we conclude that if 3a2
T 2q−1

2q − 1
(1 +M2l2T )(N +LLσT ) < 1, then P is contraction

mapping on C, implies that the mapping P has a unique fixed point x(.) ∈ C. Hence we have

x(t) = Eq(A(t)q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1
(∫ τ

0

σ(θ, x(θ))dw(θ)

)
Eq,q(A(t− s)q)ds

+

∫ 0

−h
dBτ

[∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ)u0(s)ds

]
+

∫ t

0

[∫ 0

−h
(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ, τ)

]
u(s)ds

Thus x(t) is the solution of the system (4.24), and it is easy to verify that x(T ) = x1. Further

the control function u(t) steers the system (4.24) from initial complete state φ(0) to x1 on J.

Hence the system (4.24) is globally relatively controllable on J.

�
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Example

In this example, we apply the results obtained in the previous section for the following stochas-

tic fractional dynamical systems with distributed delays in control which involves sequential

Caputo derivative

cDqx(t) = Ax(t) +

∫ 0

−1
dτB(t, τ)u(t+ τ) + f(t, x(t)) + σ(t, x(t))

dω(t)

dt
; 0 < q < 1, t ∈ [0, T ]

x(0) = x0
(4.29)

where

A =

 0 1

−1 0

 , B(t, τ) =

 eτ cos(t) eτ sin(t)

−eτ sin(t) eτ cos(t)

 , u(t+ τ) =

 u1(t+ τ)

u2(t+ τ)

 ,

f(t, x(t)) =

 x1(t) cosx2(t) + 3x2(t)

x2(t) sinx1(t) + 2x1(t)

 , σ(t, x(t)) =

 (2t2 + 1)x1(t)e
−t 0

0 x2(t)e
−t

 .

Let us introduce the variables x1(t) = x(t) and x2(t) = cD
q
2x1(t).Then

cD
q
2x1(t) = cD

q
2x(t) = x2

The Mittag-Leffler matrix of the given system is given by

Eq(At
q) =


∞∑
j=0

(−1)jt2jq

Γ(1 + 2jq)

∞∑
j=0

(−1)jt(2j+1)q

Γ(1 + (2j + 1)q)

−
∞∑
j=0

(−1)jt(2j+1)q

Γ(1 + (2j + 1)q)

∞∑
j=0

(−1)jt2jq

Γ(1 + 2jq)

 .

Further

Eq,q(A(T − (s− τ))q) =


∞∑
j=0

(−1)j(T − (s− τ))2jq

Γ[(1 + 2j)q]

∞∑
j=0

(−1)j(T − (s− τ))(2j+1)q

Γ[(1 + j)2q]

−
∞∑
j=0

(−1)j(T − (s− τ))(2j+1)q

Γ[(1 + j)2q]

∞∑
j=0

(−1)j(T − (s− τ))2jq

Γ[(1 + 2j)q]

 ,

and

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q) =

 cosq(t) sinq(t)

− sinq(t) cosq(t)

 ,

where cosq(t) and sinq(t) are given by

cosq(t) =
∞∑
j=0

(−1)j(T − (s− τ))(2j+1)q−1

Γ[(1 + 2j)q]
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sinq(t) =
∞∑
j=0

(−1)j(T − (s− τ))(j+1)2q−1

Γ[(1 + j)2q]

ϕ(T, s) =

∫ 0

−1
(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBT (s− τ, τ)

=

 α(s) β(s)

−β(s) α(s)


α(s) =

∫ 0

−1
expτ [cosq(T − (s− τ)) cos(s− τ)− sinq(T − (s− τ)) sin(s− τ)] dτ

β(s) =

∫ 0

−1
expτ [sinq(T − (s− τ)) cos(s− τ)− cosq(T − (s− τ)) sin(s− τ)] dτ

By simple matrix calculation one can see that the controllability matrix

ψT0 =

∫ T

0

ϕ(T, s)ϕ∗(T, s)ds

=

∫ T

0

[
α2(s) + β2(s)

] 1 0

0 1

 ds

is positive definite for any T > h,Further the functions f(t, x(t)) and σ(t, x(t)) satisfies the

hypothesis mentioned in Theorem 4.3.2, and so the fractional system (4.29) is globally relatively

controllable on [0, T ].



Chapter 5

Controllability of fractional stochastic

dynamical systems without delays in

control

This chapter is concerned with the relative controllability for a class of dynamical control

systems described by semilinear fractional stochastic differential equations with nonlocal con-

ditions in Hilbert space. Sufficient conditions for relative controllability results are obtained

using Schaefer’s fixed point theorem.

5.1 Preliminaries and basic properties

In this section, we provide definitions, lemmas and notations necessary to establish our main

results.Throughout this paper, we use the following notations. Let (Ω,F ,P)be a complete

probability space equipped with a normal filtration Ft, t ∈ J = [0, T ] satisfying the usual

conditions (i.e., right continuous and F0 containing all P-null sets). We consider three real

separable spaces X, E and U , and Q-Wiener process on (Ω,F ,P) with a linear bounded

covariance operator Q such that trQ <∞. We assume that there exists a complete orthonormal

system {en}n≥1 on E, a bounded sequence of non-negative real numbers {λn} such that

Qen = λnen, n = 1, 2, ... and a sequence {βn}n≥1 of independent Brownian motions such that

〈w(t), e〉 =
∞∑
n=1

√
λn〈en, e〉βn(t), e ∈ E, t ∈ [0, T ],

60
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and Ft = Fwt where Fwt is the sigma algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 =

L2(Q
1/2E;X) be the Banach space of all Ft− measurable square integrable random variables

with values in the Hilbert space X. Let E(.) denote the expectation with respect to the measure

P. Let C([0, T ];L2(F , X)) be the Banach space of continuous maps from [0, T ] into L2(F , X)

satisfying sup
t∈J

E‖x(t)‖2 < ∞. Let H2([0, T ];X) be the closed subspace of C([0, T ];L2(F , X))

consisting of all measurable and Ft-adapted X-valued process x ∈ C([0, T ];L2(F , X)) endowed

with the norm ‖x‖H2 = (sup
t∈J

E‖x(t)‖2X)1/2. The purpose of this paper is to investigate the

relative controllability for a class of semilinear stochastic fractional differential equation with

nonlocal conditions of the form

cDα
t x(t) + Ax(t) = Bu(t) + f(t, x(t)) + σ(t, x(t))dw(t)

dt
, t ∈ J = [0, T ],

x(0) + g(x) = x0,
(5.1)

where 0 < α < 1; cDα
t denotes the Caputo fractional derivative operator of order α;x(.)

takes its values in the Hilbert space X;A : D(A) ⊂ X → X is the infinitesimal generator

of an α-resolvent family {Sα(t), t ≥ 0}; the control function u(.) is given in L2
F([0, T ], U) of

admissible control functions, U is a Hilbert space. B is a bounded linear operator from U into

X; f : J ×X → X and σ : J ×X → L0
2 are appropriate functions to be specified later; x0 is a

suitable initial random function independent of w(t) and g ∈ C(X,X) is a given function.

Let us recall the following known definitions. For more details see [35].

Definition 5.1.1. The fractional integral of order α with the lower limit 0 for a function f is

defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Definition 5.1.2. Riemann-Liouville derivative of order α with lower limit zero for a function

f : [0,∞)→ R can be written as

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−nds t > 0, n− 1 < α < n. (5.2)

Definition 5.1.3. The Caputo derivative of order α for a function f : [0,∞) → R can be

written as
cDαf(t) =L Dα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, n− 1 < α < n (5.3)
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If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s)ds = In−αfn(s), t > 0, n− 1 < α < n

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of

the Caputo derivative of order α > 0 is given as

L{cDαf(t); s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0); n− 1 < α < n.

Definition 5.1.4. A two parameter function of the Mittag-Leffler type is defined by the series

expansion

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
C

µα−βeµ

µα − z
dµ, α, β ∈ C,Re(α) > 0,

where C is a contour which starts and ends at −∞ end encircles the disc |µ| ≤ |z|1/2 counter

clockwise.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple generalization

of the exponent function: E1(z) = ez and the cosine function: E2(z
2) = cosh(z), E2(−z2) =

cos(z), and plays a vital role in the theory of fractional differential equations. The most

interesting properties of the Mittag-Leffler functions are associated with their Laplace integral

∫ ∞
0

e−λttβ−1Eα,β(wtα)dt =
λα−β

λα − w
, Re(λ) > w

1
α , w > 0,

and for more details see [35].

Definition 5.1.5. ([91]). A closed and linear operator A is said to be sectorial if there are

constants w ∈ R, θ ∈ [
π

2
, π],M > 0 such that the following two conditions are satisfied:

• ρ(A) ⊂ Σθ,w = {λ ∈ C : λ 6= w, | arg(λ− w)| < θ},

• ‖R(λ,A)‖ ≤ M

|λ− w|
, λ ∈ Σθ,w.

Definition 5.1.6. Let A be a closed and linear operator with the domain D(A) defined in a

Banach space X. Let ρ(A) be the resolvent set of A. We say that A is the generator of an α-

resolvent family if there exist w ≥ 0 and a strongly continuous function Sα : R+ → L(X), where

L(X) is a Banach space of all bounded linear operators from X into X and the corresponding

norm is denoted by ‖.‖, such that {λα : Reλ > w} ⊂ ρ(A) and

(λαI − A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > w, x ∈ X (5.4)
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where Sα(t) is called the α-resolvent family generated by A.

Definition 5.1.7. Let A be a closed and linear operator with the domain D(A) defined in a

Banach space X and α > 0 We say that A is the generator of a solution operator if there exist

w ≥ 0 and a strongly continuous function Sα : R+ → L(X) such that {λα : Reλ > w} ⊂ ρ(A)

and

λα−1(λαI − A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > w, x ∈ X (5.5)

where Sα(t) is called the α-resolvent family generated by A.

The concept of the solution operator is closely related to the concept of a resolvent family.

For more details on α-resolvent family and solution operators, we refer the reader to [35]. Now,

we give the definition of the mild solution of (5.1) based on the paper [85].

Definition 5.1.8. ([85]). A continuous stochastic process x : J → X is called a mild solution

of (5.1) if the following conditions hold:

(i) x(t) is measurable and Ft-adapted.

(ii) x(0) + g(x) = x0

(iii) x satisfies the following equation

x(t) = Tα(t)(x0−g(x))+

∫ t

0

Sα(t−s) [Bu(s) + f(s, x(s))] ds+

∫ t

0

Sα(t−s)σ(s, x(s))dw(s) (5.6)

where Tα(t)Eα,1(At
α) =

1

2πi

∫
B̂r

eλt
λα−1

λα − A
dλ, Sα(t) = tα−1Eα,α(Atα) =

1

2πi

∫
B̂r

eλt
1

λα − A
dλ,

B̂r denotes the Bromwich path, Sα(t) is the α-resolvent family and Tα(t) is the solution operator

generated by −A.

Definition 5.1.9. ([89]). Let xT (x0, u) be the state value of (5.1) at the terminal time T

corresponding to the control u and the initial value x0. Introduce the set

R(T, x0) = {x(T ) = xT (x0, u : u(.) ∈ L2
F([0, T ], U)}

which is called the reachable set of (5.1) at the terminal time T. Then the controlled system (1)

is said to be relatively controllable at T if R(T, x0) = L2(Ω,Ft, X).

Definition 5.1.10. ([89]). The control system (5.1) is said to be relatively approximately

controllable at T if the closure set R(T, x0) = L2(Ω,Ft, X).
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To study the relative controllability of the fractional system (5.1), we will introduce the

following equivalent conditions.

Lemma 5.1.1. ([55]). The following conditions are equivalent:

(iv) The corresponding linear system with respect to (5.1) is relatively controllable on [0, T ].

(v) The corresponding linear system with respect to (5.1) is relatively approximately control-

lable on [0, T ].

(vi) The corresponding linear deterministic system with respect to (5.1) is relatively control-

lable on [0, T ].

The following lemma is required to define the control function. The reader can refer to [66]

for the proof.

Lemma 5.1.2. For any x̃T ∈ L2(FT , X) there exists g̃ ∈ L2
F(Ω, L2(0, T, L2

0)) such that

x̃T = Ex̃T +

∫ T

0

g̃(s)dw(s).

Now, we define the control function in the following form

u(t, x) = B∗S∗α(T − s)
(

(ψT0 )−1 [Ex̃T − Tα(T )(x0 − g(x))] +

∫ t

0

(ψT0 )−1g̃(s)dw(s)

)
−B∗S∗α(T − t) +

∫ t

0

(ψT0 )−1Sα(T − s)f(s, x(s))ds

−B∗S∗α(T − t) +

∫ t

0

(ψT0 )−1Sα(T − s)σ(s, x(s))dw(s),

where ψT0 =

∫ T

0

Sα(T − s)BB∗S∗α(T − s) is the controllability Gramian, B∗ denotes the adjoint

of B and S∗α(t) the adjoint of Sα(t).

5.2 Relative controllability of semilinear fractional stochas-

tic control systems in Hilbert spaces

In this section it will be shown that the system (5.1) is relatively (approximately) controllable

under appropriate conditions.

Let us assume the following conditions:
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(vii) The corresponding linear system with respect to (5.1) is relatively controllable

(viii) if α ∈ (0, 1) and A ∈ Aα(θ0, w0) then for x ∈ X and t > 0 we have ‖Tα(t)‖ ≤ Mewt and

‖Sα(t)‖ ≤ Cewt(1 + tα−1), w > w0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S,

where M̃T = sup
0≤t≤T

‖Tα(t)‖, and M̃S = sup
0≤t≤T

Cewt(1 + t1−α)(for more details, see [91]).

(ix) f ∈ C(J ×X,X), g ∈ C(X,X) and σ ∈ C(J ×X,L0
2). Moreover, there exists a constant

C1 > 0 such that for x ∈ X, E‖g(x)‖2X ≤ C1 and for s ∈ J, x ∈ Br there exist two

continuous functions L̃f , L̃σ : J → (0,∞) such that

E‖f(t, x)‖2X ≤ L̃f (t)φ(E‖x‖2X), E‖σ(t, x)‖2L0
2
≤ L̃σf(t)ϕ(E‖x‖2X),

where φ, ϕ : [0,∞)→ (0,∞) are a continuous nondecreasing functions with

∫ T

0

ξ(s)ds ≤
∫ ∞
c

ds

φ(s) + ϕ(s)
,

where ξ(t) = max

{
5M̃2

ST
α

α
tα−1ηL̃f (t), 5M̃

2
St

2(α−1)ηL̃σ(t)

}
, c = 5M̃2

T (E‖x0‖2X + C1), and

η =

[
1 + 3M̃4

S

T 2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

]
.

Our result is based on the following Schaefer’s fixed point theorem.

Theorem 5.2.1. Let K be a closed convex subset of a Banach space H such that 0 ∈ K. Let

P : K → K be a completely continuous map. Then the set {x ∈ K;x = vPx; 0 ≤ v ≤ 1} is

unbounded or P has a fixed point.

Theorem 5.2.2. The fractional stochastic system (5.1) is relatively controllable if (vii)-(ix)

are satisfied.

Proof. First, it will be show that the fractional stochastic system (5.1) has at least one

mild solution on J. Let λ : H2 → H2 be operator defined by

(λx)(t) = Tα(t)(x0−g(x))+

∫ t

0

Sα(t−s) [Bu(s, x) + f(s, x(s))] ds+

∫ t

0

Sα(t−s)σ(s, x(s))dw(s)

In order to use the Schaefer’s fixed point theorem, it will be shown that λ is a completely

continuous operator. We note that the operator λ is well defined in H2.
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For the sake of convenience, we divide the proof into several steps.

Step 1. We prove that λ is continuous. Let {xn}∞n=0 be sequence in H2 such that xn → x

in H2. Since the function f, g, u and σ are continuous, lim
n→∞

E‖λxn(t)− λx(t)‖2X = 0 in H2 for

every t ∈ J . This implies that the mapping λ is continuous on H2.

Step 2. Next we prove that λ maps bounded sets into bounded sets in H2. To prove that

for any r > 0 there exists a γ > 0 such that for x ∈ Br = {x ∈ H2 : E‖x‖2X ≤ r}, we have

E‖λx‖2X ≤ γ. For any x ∈ Br, t ∈ J, we have

E‖u(s, x)‖2 ≤ 3E

∥∥∥∥B∗S∗α(T − t)
(

(ψT0 )−1 [Ex̃T − Tα(T )(x0 − g(x))] +

∫ t

0

(ψT0 )−1g̃(s)dw(s)

)∥∥∥∥2
+3E

∥∥∥∥B∗S∗α(T − t) +

∫ t

0

(ψT0 )−1Sα(T − s)f(s, x(s))ds

∥∥∥∥2
+3E

∥∥∥∥B∗S∗α(T − t) +

∫ t

0

(ψT0 )−1Sα(T − s)σ(s, x(s))dw(s)

∥∥∥∥2
≤ 3‖B‖2T 2α−2M̃2

Sl
2
[
E‖x̃T‖2 + M̃2

T r + M̃2
TC1 + TLg̃

]
+ 3‖B‖2T 2α−2M̃4

Sl
2T

α

α

×
∫ t

0

(T − s)α−1L̃f (s)ds+ 3‖B‖2T 2α−2M̃4
Sl

2ϕ(r)

∫ t

0

(T − s)2α−2L̃σ(s)ds.

Thus

E‖λx(t)‖2X ≤ 5M̃2
T r + 5M̃2

TC1 + 15M̃4
S

Tα

α
‖B‖4 t

2α−1

2α− 1
T 2α−2l2

[
E‖x̃T‖2 + M̃2

T r + M̃2
TC1 + TLg̃

]
+5M̃2

S

Tα

α
φ(r)

[
1 + 3M̃4

S

t2α−1

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)α−1L̃f (s)ds

+5M̃2
Sϕ(r)

[
1 + 3M̃4

S

t2α−1

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)2α−2L̃σ(s)ds

= γ, t ∈ J.

Step 3. We show that λ maps bounded sets into equicontinuous sets of Br.

Let 0 < t1 < t2 ≤ T , for each x ∈ Br, we have
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E‖λx(t2)− λx(t1)‖2X

≤ 8‖Tα(t2)− Tα(t1)‖2E‖x0‖2X + 8‖Tα(t2)− Tα(t1)‖2E‖g(x)‖2X

+8E

∥∥∥∥∫ t1

0

[Sα(t2 − s)− Sα(t1 − s)] f(s, x(s))ds

∥∥∥∥2
X

+ 8E

∥∥∥∥∫ t2

t1

Sα(t2 − s)f(s, x(s))ds

∥∥∥∥2
X

+8E

∥∥∥∥∫ t1

0

[Sα(t2 − s)− Sα(t1 − s)]σ(s, x(s))dw(s)

∥∥∥∥2
X

+ 8E

∥∥∥∥∫ t2

t1

Sα(t2 − s)σ(s, x(s))dw(s)

∥∥∥∥2
X

+8E

∥∥∥∥∫ t1

0

[Sα(t2 − s)− Sα(t1 − s)]Bu(s, x)ds

∥∥∥∥2
X

+ 8E

∥∥∥∥∫ t2

t1

Sα(t2 − s)Bu(s, x)ds

∥∥∥∥2
X

.

Therefore we obtain

E‖λx(t2)− λx(t1)‖2X

≤ 8(r + C1)‖Tα(t2)− Tα(t1)‖2 +

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖ ds

×
∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖E‖f(s, x(s))‖2Xds

+8

∫ t2

t1

‖Sα(t2 − s)‖ds
∫ t2

t1

‖Sα(t2 − s)‖E‖f(s, x(s))‖2Xds

+

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖ ds
∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖ ‖B‖2E‖u(s, x)‖2Xds

+8

∫ t2

t1

‖Sα(t2 − s)‖ ds
∫ t2

t1

‖Sα(t2 − s)‖ ‖B‖2E‖u(s, x)‖2Xds

+8

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖2E‖σ(s, x(s))‖2L0
2
ds+ 8

∫ t2

t1

‖Sα(t2 − s)‖2E‖σ(s, x(s))‖2L0
2
ds.

Thus

E‖λx(t2)− λx(t1)‖2X

≤ 8(r + C1)‖Tα(t2)− Tα(t1)‖2 + 8φ(r)η̃

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖ ds

×
∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖ L̃f (s)ds

+8M̃2
S

(t2 − t1)α

α
φ(r)

[
1 + 3M̃4

S

t2α−1

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t2

t1

(t2 − s)α−1L̃f (s)ds

+8ϕ(r)η̃

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖2 L̃σ(s)ds

+8M̃2
Sϕ(r)

[
1 + 3M̃4

S

t2α−1

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t2

t1

(t2 − s)2α−2L̃σ(s)ds,

where η̃ is a positive constant depending only on α, l, B, T and M̃S. Since Tα(t) and Sα(t) are

strongly continuous, ‖Tα(t2)−Tα(t1)‖ → 0 and ‖Sα(t2− s)−Sα(t1− s)‖ → 0 as t1 → t2. Thus,

from the above inequality we have lim
t1→t2

E‖λx(t2) − λx(t1)‖2X = 0. Thus, the set {λx, x ∈ Br}
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is equicontinuous. Finally, combining Step 1 to 3 with Ascoli’s theorem, we conclude that the

operator λ is compact.

Step 4. Next, we show that the set

N = {x ∈ H2such thatx = qλx(t)for some0 < q < 1} is bounded. Let x ∈ N then x(t) = qλx(t)

for some 0 < q < 1. Then for each t ∈ J we have

x(t) = q

(
Tα(t)(x0 − g(x)) +

∫ t

0

Sα(t− s)[Bu(s, x) + f(s, x(s))]ds+

∫ t

0

Sα(t− s)σ(s, x(s))dw(s)

)
,

which implies that

E‖x(t)‖2X

≤ 5‖Tα‖2E‖x0‖2X + 5‖Tα‖2E‖g(x)‖2X + 5

∫ t

0

‖Sα(t− s)‖ ds
∫ t

0

‖Sα(t− s)‖E‖f(s, x(s))‖2Xds

+5

∫ t

0

‖Sα(t− s)‖ ds
∫ t

0

‖Sα(t− s)‖E‖Bu(s, x)‖2ds+ 5

∫ t

0

‖Sα(t− s)‖2E‖σ(s, x(s))‖2L0
2
ds

≤ 5M̃2
TE‖x0‖2X + 5M̃2

TC1

+5M̃2
S

Tα

α

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)α−1L̃f (s)φ(E‖x(s)‖2X)ds

+5M̃2
S

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)2α−2L̃σ(s)ϕ(E‖x(s)‖2X)ds

Consider the function µ(t) defined by

µ(t) = sup{E‖x(s)‖2X ; 0 ≤ s ≤ t}, 0 ≤ t ≤ T.

µ(t) ≤ 5M̃2
T [E‖x0‖2X + C1]

+5M̃2
S

Tα

α

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)α−1L̃f (s)φ(µ(s))ds

+5M̃2
S

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

] ∫ t

0

(t− s)2α−2L̃σ(s)ϕ(µ(s))ds.

Denoting by ν(t) the right hand side of the last inequality, we have ν(0) = c = 5M̃2
T [E‖x0‖2X +

C1], µ(t) ≤ ν(t), t ∈ J Moreover,

ν ′(t) = 5M̃2
S

Tα

α

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

]
tα−1L̃f (t)φ(µ(t))

+5M̃2
S

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

]
t2α−2L̃σ(t)ϕ(µ(t))

≤ 5M̃2
S

Tα

α

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

]
tα−1L̃f (t)φ(ν(t))

+5M̃2
S

[
1 + 3M̃4

S

t2α

2α− 1
‖B‖4T 2α−1l2

Tα

α

]
t2α−2L̃σ(t)ϕ(ν(t)),
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or equivalently by (ix), we have

∫ ν(t)

ν(0)

ds

φ(s) + ϕ(s)
≤
∫ T

0

ξ(s)ds <

∫ ∞
c

ds

φ(s) + ϕ(s)
, 0 ≤ t ≤ T

This inequality implies that there is a constant k such that ν(t) ≤ k, t ∈ J , and hence, µ(t) ≤ k.

Furthermore, we get ‖x(t)‖2≤µ(t) ≤ ν(t) ≤ k t ∈ J . By the Schaefer’s fixed point theorem, we

deduce that λ has a fixed point x(t) on J, with x(T ) = xT , which is a mild solution of (5.1).

That means it is along this trajectory that the solution of (5.1) will be steered by u from x0 to

xT . That completes the proof.

�

In order to study the approximate controllability for the fractional stochastic control system

(5.1), we introduce the approximate controllability of its linear part

cDα
t x(t) = Ax(t) + (Bu)(t)

x(0) + g(x) = x0
(5.7)

For this purpose, we need to introduce the relevant operator

ψT0 =

∫ T

0

Sα(T − s)BB∗S∗α(T − s)

R(q, ψT0 ) = (qI + ψT0 )−1,

where q > 0 and ψT0 is a linear bounded operator.

We assume the following additional conditions

(x) qR(q, ψT0 )→ 0 as q → 0+ in the strong operator topology.

(xi) f(t, x) : J ×X → X and σ(t,X) : J ×X → L0
2 are bounded for t ∈ J and x ∈ X.

Remark 5.2.1. From [66] (Theorem 2) the condition (x) is equivalent to the fact that the linear

fractional control system (5.7) is approximately controllable on J := [0, T ]. Hence, by Lemma

5.1.1, (vii) is equivalent to qR(q, ψT0 ) := (qI + ψT0 )−1 → 0 as q → 0+. Moreover,(vii) can be

replaced by the following more verifiable criterion:

There exists some positive constant γ̃ such that 〈ψTs z, z〉 ≤ γ̃‖z‖2 for all z ∈ X.

Theorem 5.2.3. Under the conditions (vii)-(xi), and if Sα(t) is a compact, then system (5.1)

is relatively approximately controllable on [0, T ].
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Proof. For all q > 0 define the control function as

uq(t, x) = B∗S∗α(T − s)
(

(qI + ψT0 )−1[Ex̃T − Tα(T )(x0 − g(x))] +

∫ t

0

(qI + ψT0 )−1g̃(s)dw(s)

)
−B∗S∗α(T − t)

∫ t

0

(qI + ψT0 )−1Sα(T − s)f(s, x(s))ds

−B∗S∗α(T − t)
∫ t

0

(qI + ψT0 )−1Sα(T − s)σ(s, x(s))dw(s),

(5.8)

and the operator λq : H2 → H2 as follows

(λqx)(t) = Tα(t)(x0−g(x))+

∫ t

0

Sα(t−s) [Buq(s, x) + f(s, x(s))] ds+

∫ t

0

Sα(t−s)σ(s, x(s))dw(s).

(5.9)

Replacing l2 with
1

q2
and using the same procedure as in the proof of Theorem 5.2.2, one

can prove that λq has a unique fixed point xq.

By using the stochastic Fubini theorem, it is easy to see that

xq(T ) = x̃T − q(qI + ψ)−1[Ex̃T − Tα(T )(x0 − g(x))] + q

∫ T

0

(qI + ψTs )−1Sα(T − s)f(s, xq(s))ds

+q

∫ T

0

(qI + ψTs )−1 [Sα(T − s)σ(s, xq(s))− g̃(s)] dw(s).

(5.10)

It follows from the properties of f and σ that ‖f(s, xq(s))‖2+‖σ(s, xq(s))‖2 ≤ L1. Then there

is a subsequence denoted by {f(s, xq(s)), σ(s, xq(s))} weakly converging to say {f(s), σ(s)}.

Thus from the above equation, we have

E‖xq(T )− x̃T‖2 ≤ 6
∥∥q(qI + ψT0 )−1[Ex̃T − Tα(T )(x0 − g(x))]

∥∥2 + 6E

(∫ T

0

∥∥q(qI + ψTs )−1g̃(s)
∥∥2
L0
2
ds

)
+6E

(∫ T

0

∥∥q(qI + ψT0 )−1
∥∥ ‖Sα(T − s)(f(s, xq(s))− f(s))‖ ds

)2

+6E

(∫ T

0

∥∥q(qI + ψTs )−1Sα(T − s)f(s)
∥∥ ds)2

+6E

(∫ T

0

∥∥q(qI + ψTs )−1
∥∥ ‖Sα(T − s)(σ(s, xq(s))− σ(s))‖2L0

2
ds

)
+6E

(∫ T

0

∥∥q(qI + ψTs )−1Sα(T − s)σ(s)
∥∥2
L0
2
ds

)
.
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On the other hand, by assumption (x) for all 0 ≤ s ≤ T , the operator q(qI + ψTs )−1 → 0

strongly as q → 0+, and moreover q(qI + ψTs )−1 ≤ 1. Thus, by the Lebesgue dominated

convergence theorem and the compactness of Sα(t) we obtain E‖xq(T )− x̃T‖2 → 0 as q → 0+.

This gives the approximate controllability of (5.1) . Hence the proof is complete.

�



Conclusion

The main goals of this thesis is to investigate the subject controllability of Fractional stochastic

dynamical systems.

The third chapter contains some controllability results for stochastic systems. The first re-

sult shows that the Banach fixed point theorem can effectively be used in control problems to

obtain sufficient conditions. Here it is proved that under some hypotheses together with the

assumption that the linear stochastic system is completely controllable, the semilinear stochas-

tic system iscomplete ly controllable.

Another result is obtained via the generalized implicit function theorem. It presents the result

that under some natural conditions the non-linear stochastic system islocal ly null controllable

provided that its linearized system is controllable.

In fourth chapter of this thesis we have study some controllability results of fractional

stochastic dynamical systems with delays in control, we have study global relative controlla-

bility for the linear and nonlinear fractional stochastic dynamical systems with multiple delays

in control function. The result shows that the Banach fixed point theorem can effectively be

used to study the control problems for establishing sufficient conditions. Here it is proved

that under some hypotheses together with the assumption that the linear stochastic system is

globally relatively controllable, the nonlinear fractional stochastic system is also globally rela-

tively controllable, and we have study also global relative controllability of linear and nonlinear

stochastic fractional dynamical systems with distributed delays in control. With Lipschitz and

linear growth conditions, some sufficient conditions have been presented for global relative con-

trollability of stochastic nonlinear systems in finite dimensional space.
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In the fifth chapter of this thesis we have study some controllability results of fractional

stochastic dynamical systems without delays in control, we have study the relative control-

lability for a class of dynamical control systems described by semilinear fractional stochastic

differential equations with nonlocal conditions in Hilbert space. A new set of sufficient condi-

tions for the relative controllability of the considered system have been formulated and proved.

As the differential inclusion system is considered as a generalization of the system described by

differential equations, it should be pointed out that under some suitable conditions on f and σ,

one can establish the relative controllability of fractional stochastic differential inclusions with

nonlocal conditions by adapting the techniques and ideas established in this paper and suitably

introducing the technique of single valued maps defined in [13]. This is one of our future goals.
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