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General Introduction

Differential equations and inclusions with fractional order arise in many engineer-

ing and scientific disciplines as the mathematical modeling of systems and processes

in the fields of physics, mechanic, biology, ecology, aerodynamic, polymer rheology

and many others. Fractional differential equations or inclusions also serve as an excel-

lent tool for describing the memory and genetic properties of different materials and

processes. As a consequence there was an intensive development of the theory of dif-

ferential equations and inclusions of fractional order. One can see the monographs

of Abbas et al. [52], Kilbas et al. [6], Miller and Ross [33], Podlubny [7], Zhou [64], the

survey of Agarwal et al [49] [51] and the references therein. Many articles have been de-

voted to the existence of solutions for fractional differential equations and inclusions,

for example, [12][39][44][53][70]. As for the study of the existence of mild solutions for

fractional differential inclusions, please see [26][9][27].

The theory of impulsive differential equations or inclusions has also attracted in-

creasing attention because of its wide applicability in science and engineering. Im-

pulsive differential inclusions arising from the real world problems to describe the dy-

namics of processes in which sudden, discontinuous jumps occurs. Such processes are

naturally seen in biology, physics, medical fields, etc. Due to their significance, many

authors have been established the solvability of impulsive differential inclusions. For

the general theory and applications of such equations we refer the interested reader to

Benchohra et al. [40], Graef et al. [30].

The deterministic systems often fluctuate due to noise, which is random or at least

appears to be so. Therefor, we must move from deterministic problems to stochas-

tic ones. As the generalization of classic impulsive differential and partial differential

inclusions, impulsive stochastic differential and partial differential inclusions have at-

tracted the researchers great interest, and some works have done on the existence re-

sults of mild solutions for these equation (see [8] [28] and references therein). Recently,

attempts were made to combine fractional derivatives and stochastic differential inclu-

sions. One can see [59][60][61][71] and references therein.

On the other hand, fractional Brownian motion has become an object of intense

study, due to its interesting properties and applications in various scientific areas in-
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cluding telecommunication, turbulence and finance. The fractional Brownian motion

with Hurst parameter H ∈ (0,1) is a suitable generalization of the classical Brownian

motion, but exhibits lon-rang dependence, self similarity and which has stationary in-

crements. When H = 1
2 the fBm coincide with the classical Brownian motion. When

H 6= 1
2 , the fBm is neither a semimartingale nor a Markov process. For additional details

on the fractional Brownian motion, we refer the reader to [14]. A general theory for the

infinite dimensional stochastic differential equations driven by a fractional Brownian

motion has begun to receive attention by various researchers see e.g. [13][66]. The exis-

tence, uniqueness, stability and qualitative analysis of the mild solutions of stochastic

differential equations driven by fractional Brownian motion with infinite delay have

been studied by many authors (see [57] and references therein). Recently, Ren et al.

[67]proved the existence and uniqueness of mild solution for a class of impulsive neu-

tral stochastic functional integro-differential equations with infinite delay driven by

standard cylindrical Wiener process and an independent cylindrical fractional Brow-

nian motion with Hurst parameter H ∈ ( 1
2 ,1) in the Hilbert space. Boudaoui et al. [2]

proved the existence of mild solutions to stochastic impulsive evolution equations with

time delay, driven by fractional Brownian motion and Krasnoselski Schaefer type fixed

point theorem. Ren et al. [69] proved the existence and uniqueness of the integral so-

lution for a class of non-densely defined impulsive neutral stochastic functional differ-

ential equation driven by an independent cylindrical fractional Brownian motion with

Hurst parameter H ∈ ( 1
2 ,1) in the Hilbert space. However, there are very few contribu-

tions regarding the existence of solutions to stochastic differential inclusions driven by

fractional Brownian motion [5] [7]. An existence result of mild solutions for a first-order

impulsive semilinear stochastic functional differential inclusions driven by a fractional

Brownian motion with infinite delay has been proved by Boudaoui et al. [5].

This thesis is divide into four chapter. In the first one we recal some basic def-

initions and properties of different processes in Hilbert space, and we study the in-

tegration with respect to this processes at the end of this chapter we will present the

definitions and some properties of semigroup and sectorial operator. Secondly we will

generalize derivatives and integrals that have been studied in calculus to a more gen-

eral setting, we start with some history of fractional calculus, we recall some defini-

tions of how to define derivatives and integrals of arbitrary order. The third chapter is

devoted to study the stochastic differential inclusion. The principal aim of this chapter

is to proof the existence of mild solution for stochastic differential inclusion driven by

cylindrical sub fractional Brownian motion. In the first section we give the definition

of phases space, next in the second section we introduce some basic definitions and

results of multivalued maps in the third section, we give the solution of the stochastic

differential inclusion driven by cylindrical Wiener process at the end of this chapter
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we study the existence of mild solution for stochastic differential inclusion with Hilfer

fractional derivative The last chapter is the heart of our present study, First we start

with an introduction next in section two we give some basic definitions to establish

our main results and in section three we proof the existence of mild solution of our

problem at the end an example is given to illustrate our results.

8



Chapter 1

Stochastic Calculus In Hilbert Space

Stochastic calculus is the branch of mathematics that operates on stochastic pro-

cesses. It follows a consistent theory of integration to be defined for integrals of stochas-

tic process with respect to stochastic processes. It is used to model systems that behave

randomly.

Many stochastic processes are based on functions which are continuous, but nowhere

differentiable.

Let (Ω,F ,P) be a probability space, and K be a real separable Hilbert space with

the norm and scalar product denoted by ∥ . ∥K and 〈., .〉K . We will alway assume that

(Ω,F ,P) is complete, i.e., that F contains all subsets A ofΩwithP-outer measure zero,

P∗(A) = inf{P(F ) : A ⊂ F ⊂F } = 0.

1.1 Cylindrical Gaussian Random Variables

We introduce cylindrical standard Gaussian random variables and Hilbert-space-

valued Gaussian random variables.

Definition 1.1.1. [36] We say that X̃ is a cylindrical standard Gaussian random variable

on K if X̃ : K −→ L2(Ω,F ,P) satisfies the following conditions.

1. The mapping X̃ is linear.

2. For an arbitrary k ∈K , X̃ (k) is a Gaussian random variable with mean zero and

variance ∥ k ∥2
K .

3. If k,k ′ ∈K are orthogonal, i.e., 〈k,k ′〉K = 0, then the random variables X̃ (k) and

X̃ (k ′) are independent.

9



1.1. CYLINDRICAL GAUSSIAN RANDOM VARIABLES

Note that if { f j }∞j=1 is an orthonormal basis (ONB) in K , then {X̃ ( f j )}∞j=1 is a se-

quence of independent Gaussian random variables with mean zero and variance one.

By linearity of the mapping X̃ : K −→ L2(Ω,F ,P), we can represent X̃ as

X̃ (k) =
∞∑

j=1
〈k, f j 〉K X̃ ( f j ),

with the series convergent P-a.s by Kolmogorov’s three-series theorem ([45], theorem

22.3). In order to produce a K -valued Gaussian random variable, we proceed as fol-

lows.

Let L (K ) the space of linear and bounded operator. We denote by L1(K ) the space

of trace- class operators on K ,

L1(K ) = {L ∈L (K ) : τ(L) := tr ((LL∗)
1
2 ) <∞},

where the trace of the operator [L] = (LL∗)
1
2 is defined by

tr ([L]) =
∞∑

j=1
〈[L] f j , f j 〉K ,

for an ONB { f j }∞j=1 ⊂K . It is well known [48] that tr ([L]) is independent of the choice

of the ONB and that L1(K ) equipped with the trace norm τ is a Banach space.

Let Q : K −→K be a symmetric nonnegative definite trace-class operator.

Assume that X : K −→ L2(Ω,F ,P) satisfies the following conditions:

1. The mapping X is linear.

2. For an arbitrary k ∈K , X (k) is a Gaussian random variable with mean zero.

3. For arbitrary k,k ′ ∈K , E(X (k)X (k ′)) = 〈Qk,k ′〉K .

Let { f j }∞j=1 be an ONB in K diagonalizing Q, and let the eigenvalues corresponding

to the eigenvectors f j be denote λ j , so that Q f j =λ j f j . We define

X (ω) =
∞∑

j=1
X ( f j )(ω) f j .

Since
∞∑

j=1
λ j <∞, the series converges in L2((Ω,F ,P),H ) and hence P-a.s.

Definition 1.1.2. [36] We call X :Ω−→K defined above a K -valued Gaussian random

variable with covariance Q.
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1.2. CYLINDRICAL AND Q-WIENER PROCESS

Definition 1.1.3. [36] Let K be a separable Hilbert space. The measure P◦X −1 induced

by a K -valued Gaussian random variable X with the covariance Q on the measurable

Hilbert space (K ,B(K )) is called a Gaussian measure with covariance Q on K , where

B(K )) denote the Borel σ-field on H .

1.2 Cylindrical and Q-Wiener Process

1.2.1 Cylindrical Wiener Process

Let (Ω,F , {Ft }t≥0,P) be a filtered probability space, C ([0,T ],H ) be the Banach space

of H -valued continuous functions on [0,T ] and K be a real separable Hilbert space.

We will always assume that the filtration Ft satisfies the usual conditions

1. F0 contains all A ∈F such that P(A) = 0.

2. Ft = ⋂
s>t

Fs .

Definition 1.2.1. [36] A K -valued stochastic process {X t }t≥0 defined on probability space

(Ω,F ,P) is called Gaussian if for any positive integer n and t1, ..., tn ≥ 0, X t1 , ..., X tn is a

K n-valued Gaussian random variable.

A standard cylindrical Wiener process can now be introduced by using the concept

of a cylindrical random variable.

Definition 1.2.2. [36] We call a family {W̃t }t≥0 defined on a filtered probability space

(Ω,F , {Ft }t≥0,P) a cylindrical Wiener process in a Hilbert space K if:

1. For an arbitrary t ≥ 0, the mapping W̃t : K −→ L2(Ω,F ,P) is linear.

2. For an arbitrary k ∈K , W̃t (k) is an Ft -Brownian motion.

3. For arbitrary k,k ′ ∈K and t ≥ 0, E(W̃t (k)W̃t (k ′)) = t〈k,k ′〉K .

For every t > 0, W̃t /
p

t is a standard cylindrical Gaussian random variable, so that

for any k ∈K , W̃t (k) can be represented as P-a.s. convergent series

W̃t (k) =
∞∑

j=1
〈k, f j 〉K W̃t ( f j ),

where { f j }∞j=1 is an ONB in K .

11



1.2. CYLINDRICAL AND Q-WIENER PROCESS

1.2.2 Q-Wiener Process

Let Q be a nonnegative definite symmetric trace-class operator on K , then a K -

valued Q-Wiener process can be defined.

Definition 1.2.3. [36] Let Q be a nonnegative definite symmetric trace-class operator on

a separable Hilbert space K , { f j }∞j=1 be an OBN in K diagonalizing Q, and let the corre-

sponding eigenvalues be {λ j }∞j=1. Let {w j (t )}t>0, j = 1,2, ..., be a sequence of independent

Brownian motion defined on (Ω,F , {Ft }t≥0,P). The process

Wt =
∞∑

j=1
λ

1
2
j w j (t ) f j , (1.1)

is called a Q-Wiener process in K .

We can assume that the Brownian motion w j (t ) are continuous. Then the series

1.1 converges in L2(Ω,C ([0,T ],K )) for every interval [0,T ]. Therefore, the K -valued

Q-Wiener process can be assumed to be continuous. We denote

Wt (k) =
∞∑

j=1
λ

1
2
j w j (t )〈 f j ,k〉K ,

for any k ∈K , with the series converging in L2(Ω,C ([0,T ],K )) on every interval [0,T ].

Remark 1.2.1. A stronger convergence result can be obtained for the series 1.1. Since

P
(

sup
0≤t≤T

∥∥∥ n∑
j=m

λ
1
2
j w j (t ) f j

∥∥∥
K

> ε
)
≤ 1

ε2
E

∥∥∥ n∑
j=m

λ
1
2
j w j (T ) f j

∥∥∥2

K

= T

ε2

n∑
j=m

λ j −→ 0,

with m ≤ n and m,n −→∞, the series 1.1 converges in probability on [0,T ] and hence,

by the Lévy- I t ô-Nisio theorem ([43], Theorem 2.4), it also converges P-a.s. uniformly on

[0,T ].

Some basic properties of a Q-Wiener process are summarized in the next theorem.

Theorem 1.2.1. [36] A K -valued Q-Wiener process {Wt }t≥0 has the following properties:

1. W0 = 0.

2. Wt has continuous trajectories in K .

3. Wt has independent increments.

12



1.3. CYLINDRICAL AND Q-FRACTIONAL BROWNIAN MOTION

4. Wt is a Gaussian process with the covariance operator Q, i.e., for any k,k ′ ∈K and

s, t ≥ 0,

E(Wt (k)Ws(k ′)) = (t ∧ s)〈Qk,k ′〉K .

5. For an arbitrary k ∈K , the law L ((Wt −Ws)(k)) ∼N (0, (t − s)〈Qk,k〉K ).

1.3 Cylindrical and Q-Fractional Brownian Motion

Fractional Brownian motion is a family of Gaussian processes that are indexed by

the Hurst parameter H ∈ (0,1). In a finite dimensional Euclidean space these pro-

cesses were introduced by Kolomogorov [1] and some properties of these processes

were given by Mandelbrot and Van Ness [14].

The fractional Brownian motion, for H 6= 1
2 is not a semi martingale it is necessary

to define a stochastic calculus, these processes have a self similarity in probability law

and for H ∈ ( 1
2 ,1), a long range dependence property described by the covariance func-

tion.

Let (Ω,F ,P) be a complete probability space and K be a real separable Hilbert

space with the norm and scalar product denoted by ∥ . ∥K .

1.3.1 Cylindrical Fractional Brownian Motion

Definition 1.3.1. [54] A K -valued Gaussian process (B H
t (k), t ≥ 0,k ∈ K ) on (Ω,F ,P)

is said to be cylindrical fractional Brownian motion with Hurst parameter H ∈ ( 1
2 ,1) if:

1. E(〈k,B H (t )〉K ) = 0 for all t ∈R+ and k ∈K .

2. E〈k,B H (s)〉K 〈k ′
,B H (t )〉K = 1

2〈k,k
′〉K (t 2H + s2H −|t − s|2H ) for all s, t ∈R+

and k,k
′ ∈K .

Remark 1.3.1. For H = 1
2 this definition is the usual one for a standard cylindrical

Wiener process.

Definition 1.3.2. [54] Let Q be a nonnegative, self adjoint bounded linear operator that

is not nuclear, then a cylindrical fractional Brownian motion is defined by the formal

series,

B H (t ) =
∞∑

n=1
enβ

H
n (t ) =

∞∑
n=1

en〈en ,B H (t )〉,

where {en}∞n=1 is a complete orthonormal basis in the Hilbert space Q
1
2 K and {B H

n (t )}∞n=1

for all t ∈ R+ is a sequence of independent, real-valued standard fractional Brownian

motion with Hurst parameter H ∈ ( 1
2 ,1).

13



1.4. CYLINDRICAL AND Q-SUB-FRACTIONAL BROWNIAN MOTION

1.3.2 Q-Fractional Brownian Motion

If Q is a non negative, definite symmetric trace class operator on K , then a K -

valued Q-fractional Brownian motion can be defined

Definition 1.3.3. [54] LetK be a separable Hilbert space and Q be a non negative, nu-

clear, self adjoint operator on K . A continuous, zero mean, K -valued Gaussian pro-

cess (B H
Q (t ), t ∈ R+) is said to be Q-fractional Brownian motion with Hurst parameter

H ∈ (0,1) and associated with the covariance operator Q if:

1. E〈k,B H
Q (t )〉K = 0, for all k ∈K and t ∈R+.

2. E〈k,B H
Q (s)〉K 〈k ′

,B H
Q (t )〉K = 1

2〈Qk,k
′〉K (t 2H +s2H −|t −s|2H ) for any s, t ∈R+ and

k,k
′ ∈K .

3. (B H
Q (t ), t ≥ 0) has K -valued continuous sample path P.a.s.

Definition 1.3.4. [54] Let Q be a non negative definite symetric-class operator on a sepa-

rable Hilbert space K , {en}∞n=1 be an ONB in K diagonalizing Q and the corresponding

eigenvalues {λn}∞n=1. Let βH
n (t ) be a sequence of real, independent standard fractional

Brownian motion on (Ω,F ,P) for n = 1,2, ... and t ∈R. The process

Wt =
∞∑

n=1

√
λnβn(t )en ,

is called a Q-fractional Brownian motion in K .

Remark 1.3.2. Proposition2.2 [54] ensures the existence of fractional Brownian motion

and the existence of cylindrical (i.e. Q = I d) fractional Brownian motion for H > 1
2 , but

the arguments are valid for arbitrary Q.

However B H
Q takes values in the large Hilbert space K1, where K ,→K1 and the embed-

ding is the Hilbert-Schmidt operator.

Remark 1.3.3. If Q is a nuclear operator, then a cylindrical fractional Brownian motion

is a Q-fractional Brownian motion.

1.4 Cylindrical and Q-Sub-Fractional Brownian motion

As an extension of Brownian motion, recently, Bojdecki et al [55] introduced and

studied a rather special class of self-similar Gaussian process. This process arises from

occupation time fluctuations of branching particle systems with Poisson initial condi-

tion. This process is called Sub-fractional Brownian motion.

14



1.4. CYLINDRICAL AND Q-SUB-FRACTIONAL BROWNIAN MOTION

1.4.1 Cylindrical Sub Fractional Brownian Motion

Definition 1.4.1. Let K be a separable Hilbert space. A continuous, zero mean, K -

valued Gaussian process
(
SH

I (t ), t ≥ 0
)

is said to be cylindrical sub-fractional Brownian

motion with Hurst parameter H ∈ (0,1) if his covariance is given by

E
〈

k,SH
I (s)

〉〈
k ′,SH

I (t )
〉= 〈

k,k
′〉[

s2H + t 2H − 1

2

[
(s + t )2H +|t − s|2H]]

for all s, t ∈R+and k,k
′ ∈K .

Definition 1.4.2. Let Q be a non negative, self adjoint bounded linear operator that is

not nuclear, then a cylindrical sub fractional Brownian motion is defined by the formal

series

SH
I (t ) =

∞∑
n=1

SH
n (t )en t ≥ 0;

where {SH
n (t )}∞n=1 is a sequence of independent, real valued standard sub fractional Brow-

nian motion with Hurst parameter H ∈ (0,1) and {en}∞n=1 be a complete orthonormal

basis in the Hilbert space K .

1.4.2 Q-Sub Fractional Brownian Motion

Let (U ,‖.‖U ,〈.〉U ) and (K K ,‖.‖K ,〈.〉K ) be two separable Hilbert space. Let L (K ,U )

denote the space of all bounded linear operator from K to U and Q ∈ L (K ,U ) be a

non negative self adjoint operator.

Definition 1.4.3. Let K be a separable Hilbert space and Q be a non negative self adjoint

operator on K . A continuous, zero mean K -valued Gaussian process
(
SH

Q (t ), t ≥ 0
)

is

said to be Q-sub fractional Brownian motion with Hurst parameter H ∈ (0,1) associated

with the covariance operator Q if:

E
〈

k,SH
Q (s)

〉〈
k ′,SH

Q (t )
〉
=

〈
Qk,k

′〉[
s2H + t 2H − 1

2

[
(s + t )2H +|t − s|2H]]

for all s, t ∈R+.

Definition 1.4.4. Let Q ∈ L (K ,U ) be a non negative, self adjoint trace class operator

on a separable Hilbert space K , {en}∞n=1 be a complete orthonormal basis in the Hilbert

space K diagonalizing Q and the corresponding eigenvalues {λn}∞n=1. Let {SH
n (t )}∞n=1 be

a sequence of real independent standard sub fractional Brownian motion, the process

SH
Q (t ) =

∞∑
n=1

SH
n (t )Q

1
2 en =

∞∑
n=1

SH
n (t )

√
λnen ;

is called a K -valued Q sub fractional Brownian motion.
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1.5 Stochastic Integral

1.5.1 Stochastic integral with respect to cylindrical Wiener process

We will introduce the concept of Itô’s stochastic integral with respect to a Q-Wiener

process and with respect to a cylindrical Wiener process simultaneously.

Let K and H be a separable Hilbert space, and Q be either a symetric nonnegative

definite trace-class operator on K or Q = Ik , the identity operator on K .

In case Q is trace-class operator, we will always assume that its all eigenvalues λ j , j =
1, ...; otherwise we can start with the Hilbert space ker (Q)⊥ instead of K .

The associated eigenvalues forming an ONB in K will be denoted by fk . Then the

space KQ =Q
1
2 K equipped with the scalar product.

〈u, v〉KQ =
∞∑

j=1

1

λ j
〈u, f j 〉K 〈v, f j 〉K

is a separable Hilbert space with an ONB {λ
1
2
j f j }∞j=1.

If H1, H2 are two real separable Hilbert spaces with {ei }∞i=1 an ONB in H1, then the

space of Hilbert-Schmidt operators from H1 to H2 defined as

L2(H1,H2) = {L ∈L (H1,H2) :
∞∑

i=1
∥ Lei ∥2

H2
<∞}.

It is well known (see [62]) that L2(H1,H2) equipped with the norm

∥ L ∥L2(H1,H2)=
( ∞∑

i=1
∥ Lei ∥2

H2

) 1
2

,

is a Hilbert space . Since the Hilbert spaces H1 and H2 are separable, the space

L2(H1,H2) is also separable, as Hilbert-Schmidt operators are limits of sequences of

finite-dimensional linear operators.

Consider L2(KQ ,H ) the space of Hilbert Schmidt operators from KQ to H . If

{e j }∞j=1 is an ONB in H , then the Hilbert-Schmidt norm of an operator L ∈L2(KQ ,H )

16



1.5. STOCHASTIC INTEGRAL

is given by

∥ L ∥2
L2(KQ ,H ) =

∞∑
i , j=1

〈L(λ
1
2
j f j ),ei 〉2

H

=
∞∑

i , j=1
〈L(Q

1
2 f j ),ei 〉2

H

=∥ LQ
1
2 ∥2

L2(K ,H )

= tr ((LQ
1
2 )(LQ

1
2 )∗).

The scalar product between two operators L, M ∈L2(KQ ,H ) is defined by

〈L, M〉L2(KQ ,H ) = tr ((LQ
1
2 )(MQ

1
2 )∗). (1.2)

Since the Hilbert space KQ and H are separable, the space L2(KQ ,H ) is also separa-

ble.

Let L ∈L (K ,H ), if k ∈KQ , then

k =
∞∑

j=1
〈k,λ

1
2
j f j 〉KQλ

1
2
j f j ,

and L considered as an operator from KQ to H defined as

Lk =
∞∑

j=1
〈k,λ

1
2
j f j 〉λ

1
2
j L f j ,

has a finite Hilbert-Schmidt norm, since

∥ L ∥2
L2(KQ ,H ) =

∞∑
j=1

∥ L(λ
1
2
j f j ) ∥2

H

=
∞∑

j=1
λ j ∥ L( f j ) ∥2

H

≤∥ L ∥2
L (K ,H ) tr (Q).

Thus, L (K ,H ) ⊂L2(KQ ,H ). If L, M ∈L (K ,H ), formula 1.2 reduce to

∥ L ∥2
L2(KQ ,H )= tr (LQL∗)

and

〈L, M〉L2(KQ ,H ) = tr (LQM∗),

17



1.5. STOCHASTIC INTEGRAL

allowing for separation of Q
1
2 and L∗. This is usually exploited in calculations where

L ∈L2(KQ ,H ) is approximated with a sequence Ln ∈L (K ,H ).

The space L2(KQ ,H ) consists of linear operators L : K −→H not necessarily bounded,

with domain D(L) ⊃Q
1
2 K , and such that tr ((LQ

1
2 )(LQ

1
2 )∗) is finite.

If Q = IK then KQ = K , we denote that the space L2(KQ ,H ) contains genuinely

bounded linear operators from K to H .

Stochastic Itô Integral for Elementary Processes

Let ε(L (K ,H )) denote the class of L (K ,H )-valued elementary processes adapted

to the filtration {Ft }t≤T that are of the form

Φ(t ,ω) =φ(ω)I{0}(t )+
n−1∑
j=0

φ j (ω)I(t j ,t j+1](t ),

where 0 ≤ t1 ≤ ... ≤ tn = T , and φ,φ j , j = 0,1, ...,n −1 are respectively F0-measurable

and Ft j -measurable L2(KQ ,H )-valued random variable such thatφ(ω),φ j (ω) ∈L (K ,H ),

j = 0,1, ...,n −1 (recall that L (K ,H ) ⊂L2(KQ ,H )).

Note that if Q = IH , then the random variables φ j are in fact L2(K ,H )-valued.

We shall say that an elementary processΦ ∈ ε(L (K ,H )) is bounded if it is bounded

in L2(KQ ,H ).

We define the Itô stochastic integral with respect to a Q-Wiener process Wt by

∫ t

0
Φ(s)dWs =

n−1∑
j=0

φ j (Wt j+1∧t −Wt j∧t ),

for t ∈ [0,T ]. The term φω0 is neglected since P(W0 = 0) = 1. This stochastic integral is

an H -valued stochastic process.

We define the Itô cylindrical stochastic integral of an elementary processΦ ∈ ε(L (K ,H ))

with respect to a cylindrical Winer process W̃ by

(∫ t

0
Φ(s)dW̃s

)
(h) =

n−1∑
j=0

(
W̃t j+1∧t (φ∗

j (h))−W̃t j∧t (φ∗
j (h))

)
,

for t ∈ [0,T ] and h ∈H . The following proposition states Itô’s isometry, which is essen-

tial in furthering the construction of the stochastic integral.

Property 1.5.1. [36] For a bounded elementary process Φ ∈ ε(L (K ,H ))

E ∥
∫ t

0
Φ(s)dWs ∥2

H = E
∫ t

0
∥Φ(s) ∥L2(KQ ,H )<∞, (1.3)

18
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for t ∈ [0,T ].

We have the following counterpart of 1.3 for the Itô cylindrical stochastic integral of a

bounded elementary process Φ ∈ ε(L (K ,H )):

E
((∫ t

0
φ(s)dW̃s

)
(h)

)2
=

∫ t

0
E ∥Φ∗(s)(h) ∥2

K d s <∞.

Let Λ2(KQ ,H ) be a class of L2(KQ ,H )-valued processes measurable mapping

from
(
[0,T ]×Ω,B[0,T ]

⊗
F

)
to

(
L2(KQ ,H ),B(L2(KQ ,H ))

)
adapted to the filtration

{Ft }t≤T (thus can be replaced with FT ) and satisfying the condition

E
∫ T

0
∥Φ(t ) ∥2

L2(KQ ,H ) d t <∞.

We note that Λ2(KQ ,H ) equipped with the norm

∥Φ ∥Λ2(KQ ,H )=
(
E

∫ t

0
∥Φ(t ) ∥2

L2(KQ ,H ) d t
) 1

2
,

is a Hilbert space.

Property 1.5.2. [36] If Φ ∈Λ2(KQ ,H ), then there exists a sequence of bounded elemen-

tary processes Φn ∈ ε(L (K ,H )) approximating Φ in Λ2(KQ ,H ), i.e

∥Φn −Φ ∥2
Λ2(KQ ,H )= E

∫ t

0
∥Φn(t )−Φ(t ) ∥2

L2(KQ ,H ) d t −→ 0.

Stochastic Itô Integral with respect to a Q-Wiener process

We are ready to extend the definition of the Itô stochastic integral with respect to a

Q-Wiener process to adapted stochastic processes Φ(s) satisfying the condition

E
∫ T

0
∥Φ(s) ∥2

L2(KQ ,H ) d s <∞,

which will be further relaxed to the condition

P
(∫ T

0
∥Φ(s) ∥2

L2(KQ ,H ) d s <∞
)
= 1.

Definition 1.5.1. [36] The stochastic integral of a processΦ ∈Λ2(KQ ,H ) with respect to

a H -valued Q-Wiener process Wt is the unique isometric linear extension of the map-

ping

Φ(.) −→
∫ T

0
Φ(s)dWs ,
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from the class of bounded elementary processes to L2(Ω,H ), to a mapping fromΛ2(KQ ,H )

to L2(Ω,H ) such that the image of Φ(t ) =φ1{0} +
n−1∑
j=0

φ j 1(t j ,t j+1](t ) the stochastic integral

process
∫ t

0 Φ(s)dWs , 0 ≤ t ≤ T , for Φ ∈Λ2(KQ ,H ) and given by

∫ t

0
Φ(s)dWs =

∫ T

0
Φ(s)I[0,t ](s)dWs .

Theorem 1.5.1. [36] The stochastic integral Φ −→ ∫ .
0Φ(s)dWs with respect to a H -

valued Q-Wiener process Wt is an isometry between Λ2(KQ ,H ) and the space of con-

tinuous square-integrable martingales M 2
T (H ).

E ∥
∫ t

0
Φ(s)dWs ∥2

H = E
∫ t

0
∥Φ(s) ∥2

L2(KQ ,H ) d s <∞,

for t ∈ [0,T ].

The quadratic variation process of the stochastic integral process
∫ t

0 Φ(s)dWs and

the increasing process related to ∥ ∫ t
0 Φ(s)dWs ∥2

H
are given by

〈〈 .∫
0

Φ(s)dWs

〉〉
t
=

∫ t

0

(
Φ(s)Q

1
2

)(
Φ(s)Q

1
2

)∗
d s

and

〈 .∫
0

Φ(s)dWs

〉
t
=

t∫
0

tr
(
(Φ(s)Q

1
2 )(Φ(s)Q

1
2 )∗

)
d s

=
∫ t

0
∥Φ(s) ∥2

L2(KQ ,H ) d s.

Remark 1.5.1. For Φ ∈Λ2(KQ ,H ) such that Φ(s) ∈L (K ,H ), the quadratic variation

process of the stochastic integral process
t∫

0
Φ(s)dWs and the increasing process related to

∥ ∫ t
0 Φ(s)dWs ∥2

H
simplify to

〈〈 .∫
0

Φ(s)dWs

〉〉
t
=

∫ t

0
Φ(s)QΦ(s)∗d s

and 〈 .∫
0

Φ(s)dWs

〉
t
=

t∫
0

tr
(
(Φ(s)QΦ(s)∗

)
d s.

Let P (KQ ,H ) denote the class of L2(KQ ,H )-valued stochastic processes adapted

to the filtration {Ft }t≤T , measurable as mapping from
(
[0,T ]×Ω,B[0,T ]⊗Ft

)
to
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(
L2(KQ ,H ),B(L2(KQ ,H ))

)
, and satisfying the condition

P
{∫ T

0
∥Φ(t ) ∥2

L2(KQ ,H ) d t <∞
}
= 1.

Obviously, Λ2(KQ ,H ) ⊂P (KQ ,H ).

The processes from P (KQ ,H ) can be approximated in a suitable way by processes

from Λ2(KQ ,H ) and, in fact, by bounded elementary processes from ε(L (K ,H )).

Lemma 1.5.1. [36] LetΦ ∈P (KQ ,H ), then there exists a sequence of bounded processes

Φn ∈ ε(L (K ,H )) ⊂Λ2(KQ ,H ) such that

∫ T

0
∥Φ(t ,ω)−Φn(t ,ω) ∥2

L2(KQ ,H ) d t −→ 0 as n −→∞, (1.4)

in probability and P-a.s.

We can define a class of H -valued elementary processes ε(H ) adapted to the fil-

tration {Ft }t≤T as all processes of the form

Ψ(t ,ω) =ψ(ω)I{0}(t )+
n−1∑
j=0

ψ j (ω)I(t j ,t j+1](t ),

where 0 = t0 ≤ t1 ≤ ... ≤ tn = T , ψ is F0-measurable and ψ j ( j = 0,1, ...,n −1) are Ft j -

measurable H -valued random variables.

Lemma 1.5.2. [36] Let Ψ(t ), t ≤ T , be an H -valued, Ft -adapted stochastic process sat-

isfying the condition

P
{∫ T

0
∥Ψ(t ) ∥H d t <∞

}
= 1,

then there exists a sequence of bounded elementary processes Ψn ∈ ε(H ) such that∫ T

0
∥Ψ(t ,ω)−Ψn(t ,ω) ∥H d t −→ 0 as n −→∞,

in probability and almost surely.

We will need the following estimate useful estimate.

Lemma 1.5.3. [36] Let Φ⊂Λ2(KQ ,H ). Then for arbitrary δ> 0 and n > 0

P
(

sup
t≤T

∥
∫ t

0
Φ(s)dWs ∥H > δ

)
≤ n

δ2
+P

(∫ T

0
∥Φ(s) ∥2

Λ2(KQ ,H ) d s > n
)
.

We are ready to conclude the construction of the stochastic integral now
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Lemma 1.5.4. LetΦn be a sequence inΛ2(KQ ,H ) approximating a processΦ ∈P (KQ ,H )

in the sens of 1.4, i.e.,

P
(∫ T

0
∥Φn(t ,ω)−Φ(t ,ω) ∥2

L2(KQ ,H ) d t > 0
)
−→ 0.

Then, there exist an H -valued FT -measurable random, denote by
∫ T

0 Φ(t )dWt , such

that ∫ T

0
Φn(t )dWt −→

∫ T

0
Φ(t )dWt ,

in probability. The random variable
∫ T

0 Φ(t )dWt does not depend (up to stochastic equiv-

alence) on the choice of the approximating sequence.

Definition 1.5.2. The H -valued random variable
∫ T

0 Φ(t )dWt defined in 1.5.4 is called

the stochastic integral of a process in P (KQ ,H ) with respect to a Q-Wiener process. For

0 ≤ t ≤ T , we define an H -valued stochastic integral process
∫ t

0 Φ(s)dWs by

∫ t

0
Φ(s)dWs =

∫ T

0
Φ(s)I[0,T ](s)dWs .

The stochastic integral process for Φ ∈ P (KQ ,H ) may not be a martingale, but it

is a local martingale.

Definition 1.5.3. A stochastic process {Mt }t≤T , adapted to a filtration Ft , with values

in a separable Hilbert space H is called a local martingale if there exists a sequence of

increasing stopping time τn , with P( lim
n−→∞τn = T ) = 1, such that for every n, Mt∧τn is a

uniformly integrable martingale.

1.5.2 Stochastic integral with respect to cylindrical Fractional Brow-

nian Motion

A Hilbert- valued stochastic integration is defined for an integrator that is a cylin-

drical fractional Brownian motion in a Hilbert space. Since the integrator is not semi

martingale for the fractional Brownian motion considered, a different definition of in-

tegration is required. The approach to integration has an analogue with Skorokhod

integrals for fractional Brownian motion by the basic use of derivative of some func-

tionals of Brownian motion.

Let KH (t , s) be the kernel function, for 0 ≤ s ≤ t ≤ T

KH (t , s) = cH (t − s)H− 1
2 + cH

(1

2
−H

)∫ t

s
(u − s)H− 3

2
(
1− ( s

u

) 1
2−H )

;
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where cH = [2HΓ(H+ 1
2 )Γ( 3

2−H)
Γ(2−2H)

] 1
2 and H ∈ (0,1).

If H ∈ ( 1
2 ,1), then KH has a simpler form as

KH (t , s) = cH (H − 1

2
)s

1
2−H

t∫
s

(
u − s

)H− 3
2 uH− 1

2 du.

A definition of stochastic integral of deterministic K -valued function with respect

to a scalar fractional Brownian motion (B(t ), t ≥ 0) is described.

Let K ∗
H : ε−→ L2([0,T ],K ) be the linear operator given by

K ∗
Hϕ(t ) =ϕ(t )KH (T, t )+

∫ T

t

(
ϕ(s)−ϕ(t )

)∂KH (s, t )

∂s
d s; (1.5)

for ϕ ∈ ε, where ε is the linear space of K -valued step function on [0,T ].

For ϕ ∈ ε,

ϕ(t ) =
n−1∑
i=1

xi 1[ti ,ti+1](t ),

where xi ∈ K , i ∈ {1, ...,n −1} and 0 = t1 < t2 < ... < tn = T.

We define ∫ T

0
ϕdB =

n−1∑
i=1

xi (Bti+1 −Bti ). (1.6)

It follows directly that

E
∥∥∫ T

0
ϕdB

∥∥2 =| K ∗
Hϕ |2L2([0,T ],K ) . (1.7)

Let (H ,∥ . ∥H ,〈., .〉H ) be the Hilbert space obtained by the completion of the pre

Hilbert space ε with the inner product 〈ϕ,ψ〉H := 〈K ∗
Hϕ,K ∗

Hψ〉L2([0,T ],K ), for ϕ,ψ ∈ ε.

The stochastic integral 1.6 is extended to ϕ ∈H by the isometry 1.7.

Thus H is the space of integrable functions. If H ∈ ( 1
2 ,1) then it is easily verified that

H̃ ⊂ H , where H̃ is the Banach space of Borel measurable functions with the norm

∥ . ∥H̃ given by

∥ϕ ∥2
H̃
=

∫ T

0

∫ T

0
|ϕ(u)||ϕ(v)|φ(u − v)dud v ;

where φ(u) = H(2H −1)|u|2H−2 and it is elementary to verify that Lp ([0, t ],K ) ⊂ H̃ for

p > 1
H then

E‖
∫ T

0
ϕdB‖2 =

∫ T

0

∫ T

0
〈ϕ(u),ϕ(v)〉φ(u − v)dud v.

If H ∈ (0, 1
2 ), then the space of integral functions is smaller than for H ∈ ( 1

2 ,1).

Associated with (B(t ), t ≥ 0) is a standard cylindrical Wiener process (W (t ), t ≥ 0) in K
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such that formally B(t ) = KH (W (t )).

For x ∈ K à {0}, let Bx(t ) = 〈B(t ), x〉, it is elementary to verify from 1.6 that there is a

scalar Wiener process (wx(t ), t ≥ 0) such that

Bx(t ) = 〈B(t ), x〉 =
∫ t

0
KH (t , s)d wx(s);

for t ∈R+. Furthermore, wx(t ) = Bx
(
(K ∗

H )−11[0,t ]
)

, where K ∗
H is given by 1.5.

Now we define the stochastic integral
∫ T

0 GdB for an operator-valued function

G : [0,T ] −→L (K ) is a K -valued random variable.

Definition 1.5.4. [11] Let G : [0,T ] −→ L (K ), (en ,n ∈ N) be a complete orthonormal

basis in K, Gen(t ) =G(t )en , Gen ∈H for n ∈N and B is a standard cylindrical fractional

Brownian motion. Define
T∫

0

GdB :=
∞∑

n=1

T∫
0

GendBn ; (1.8)

provided the infinite series converges in L2(Ω).

Property 1.5.3. [11] Let G : [0,T ] −→ L (K ) and G(.)x ∈ H for each x ∈ V . Let ΓT :

K −→ L2([0,T ],K ) be given as

(ΓT (x))(t ) = (K ∗
HGx)(t );

for t ∈ [0,T ] and x ∈ K . If ΓT ∈ L2(K ,L2([0,T ],K )) is a Hilbert Schmidt operator

then the stochastic integral (1.8) is a well-defined centered Gaussian K -valued random

variable with covariance operator Q̃T given by

Q̃T x =
T∫

0

∞∑
n=1

〈(ΓT en)(s), x〉 (ΓT en)(s)d s. (1.9)

This integral does not depend on the choice of the complete orthonormal basis

(en ,n ∈N).

Remark 1.5.2. Since ΓT ∈ L2(K ,L2([0,T ],K )), it follows that the map x −→ (ΓT x)(t )

is the Hilbert -Schmidt on K for almost all t ∈ [0,T ]. Let Γ∗T be the adjoint of ΓT . Then

Γ∗T is also Hilbert-Schmidt and Q̃T can be expressed as

Q̃T x =
T∫

0

(ΓT (Γ∗T x))(t )d t ; (1.10)

for x ∈K .
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If H ∈ ( 1
2 ,1) and G satisfies

‖G‖2
H̃
=

T∫
0

T∫
0

|G(u)|L2(K )|G(v)|L2(K )φ(u − v)dud v <∞;

then

Q̃T =
T∫

0

T∫
0

G(u)G∗(v)φ(u − v)dud v ;

where φ(u − v) = H(2H −1) | u − v |2H−2.

Property 1.5.4. [11] If Ã : Dom(Ã) −→ K is closed linear operator, G : [0,T ] −→ K

satisfies G([0,T ]) ⊂ Dom(Ã) and both G and ÃG satisfy the conditions for G in property

1.5.3, then
T∫

0

GdB ⊂ Dom(Ã) P.a.s;

and

Ã

T∫
0

GdB =
T∫

0

ÃGdB P.a.s.

1.5.3 Stochastic integral with respect to Q-cylindrical fractional Brow-

nian motion

Let K , U be two separable real Hilbert space. We recall that the process B H
Q (t ) is

given the following series:

B H
Q (t ) =

∞∑
n=1

B H
n (t )Q

1
2 en t ≥ 0;

is said to be K -valued Q-cylindrical fractional Brownian motion with covariance Q.

Let L 0
Q (K ,U ) be the space of all ξ ∈L (K ,U ) such that ξQ

1
2 is Hilbert Schmidt op-

erator the norm is given by

∥ ξ ∥2
L 0

Q (K ,U )
=∥ ξQ

1
2 ∥2

HS= tr (ξQξ∗).

Let ϕ : [0,T ] −→L 0
Q (K ,U ) such that:

∞∑
n=1

‖K ∗
H (ϕQ

1
2 en)‖L2([0,T ],U ))<∞. (1.11)
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Definition 1.5.5. [54] Letϕ : [0,T ] −→L 0
Q (K ,U ) satisfy 1.11, then its stochastic integral

with respect to fractional Brownian motion B H
Q is defined for t ≥ 0, as follows

t∫
0

ϕ(s)dB H
Q (s) :=

∞∑
n=1

ϕ(s)Q
1
2 endB H

n (s) =
∞∑

n=1

t∫
0

K ∗
H (ϕQ

1
2 en)(s)dW (s).

Notice that if
∞∑

n=1
‖ϕQ

1
2 en‖

L
1
H ([0,T ],U )

<∞, (1.12)

then the particular 1.11 holds.

Lemma 1.5.5. For any ϕ : [0,T ] −→ L 0
Q (K ,U ) such that 1.12 holds, and for any α,β ∈

[0,T ] with α>β,

E‖
β∫
α

ϕ(s)dB H
Q (s)‖2

U ≤ cH(2H −1)(α−β)2H−1
∞∑

n=1

α∫
β

‖ϕ(s)Q
1
2 en‖2

U d s;

where c = c(H). If in addition
∞∑

n=1
‖ϕ(t )Q

1
2 en‖U ; (1.13)

is uniformly convergent for t ∈ [0,T ], then

E‖
β∫
α

ϕ(s)dB H
Q (s)‖2

U ≤ cH(2H −1)
∫ α

β
‖ϕ(s)‖2

L 0
Q (K ,U )

d s.

Remark 1.5.3. If {σn}n∈N is a bounded sequence of nonnegative real numbers such that

the nuclear operator Q satisfies Qen = σnen , assuming that there exists a positive con-

stant Kϕ such that

∥ϕ(t ) ∥L 2
Q (K ,U )< Kϕ uniformely in [0,T ];

then 1.13 holds automatically.

1.5.4 Stochastic integral with respect to Q-Sub Fractional Brownian

Motion

Let ε the linear space of R-valued step functions on [0,T ]. For ϕ ∈ ε, we define

its wiener integral with respect to one dimensional sub fractional Brownian motion
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{SH (t )}t≥0 as follows ∫ T

0
ϕ(s)dSH (s) =

∞∑
n=1

xi (SH
ti+1 −SH

ti
).

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That is HSH

is the cloture of the linear span ε with respect to the scalar product,

〈
1[0,t ],1[0,s]

〉
HSH

=Cov
(
SH (t ),SH (s)

)
.

We know that the covariance of sub-fBm can be written as

E
[
SH (t )SH (s)

]= ∫ t

0

∫ s

0
φH (u, v)dud v =CH (t , s), (1.14)

where φH (u, v) = H(2H −1)
(| u − v |2H−2 −(u + v)2H−2

)
.

Equation (1.14) implies that

〈
ϕ,ψ

〉
HSH

=
∫ t

0

∫ t

0
ϕuψvφ(u, v)dud v. (1.15)

Now we consider the kernel

KH (t , s) = 21−Hp
π

Γ(H − 1
2 )

s3/2−H

 t∫
s

(x2 − s2)H−3/2d x

1[0,t ](s). (1.16)

By Dzhaparidze and Van Zanten [31], we have

CH (t , s) = c2
H

t∧s∫
0

KH (t ,u)KH (s,u)du; (1.17)

where

c2
H = Γ(1+2H)si n(πH)

π
.

Let K ∗
H be the linear operator from ε to L2[0,T ] defined by

(
K ∗

Hϕ
)

(s) = cH

∫ r

s
ϕr
∂KH

∂r
(r, s)dr.
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By using the equalities (1.15) (1.17), we obtain

〈
K ∗

Hϕ,K ∗
H

〉
L2([0,T ]) = c2

H

T∫
0

 T∫
s

ϕr
∂KH

∂r
(r, s)dr

 T∫
s

ψu
∂KH

∂u
(u, s)du

d s,

= c2
H

T∫
0

T∫
0

 r∧u∫
0

∂KH

∂r
(r, s)

∂KH

∂u
(u, s)d s

ϕrψudr du,

= c2
H

T∫
0

T∫
0

∂2KH

∂r∂u
(u, s)ϕrψudr du,

= H(2H −1)

T∫
0

T∫
0

(| u − r |2H−2 −(u + r )2H−2)ϕrψudr du,

= 〈
ϕ,ψ

〉
HSH

.

(1.18)

As a consequence, the operator K ∗
H provides an isometry between the Hilbert space

HSH and L2([0,T ]).

Hence, the process W defined by W (t ) := SH
(
(K ∗

H )−11[0,t ]
)

is a Wiener process, and SH

has the following Wiener integral representation:

SH (t ) = cH

t∫
0

KH (t , s)dW (s),

because (K ∗
H )(1[0,t ])(s) = cH KH (t , s).

By Dzhapridze and Van Zanten [31], we have

W (t ) =
t∫

0

ψH (t , s)dSH (s),

where

ψH (t , s) = sH−1/2

Γ(3/2−H)

[
t H−3/2(t 2 − s2)1/2−H − (H −3/2)

∫ t

s
(x2 − s2)1/2−H xH−3/2d x

]
1[0,t ](s).

In addition, for any ϕ ∈HSH ,

t∫
0

ϕ(s)dSH (s) =
t∫

0

(K ∗
Hϕ)(t )dW (t );
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if and only if K ∗
Hϕ ∈ L2([0,T ]).

Also, denoting L2
HSH

([0,T ]) = {
ϕ ∈HSH ,K ∗

Hϕ ∈ L2([0,T ])
}
.

Since H > 1
2 , we have by (1.18) and lemma 2.1 of [24],

L2([0,T ]) ⊂ L
1
H ([0,T ]) ⊂ L2

HSH
([0,T ]). (1.19)

Lemma 1.5.6. (Nualart[17]) For ϕ ∈ L
1
H ([0,T ]),

H(2H −1)
∫ T

0

∫ T

0
|ϕr ||ϕu || u − r |2H−2 dr du ≤CH ∥ϕ ∥

L
1
H ([0,T ])

,

where CH =
(

H(2H−1)
β(2−2H ,H− 1

2 )

)1/2

, with β denoting the beta function.

To define the stochastic integral with respect to Q-sub-fractional Brownian motion

we proceed as follows: Let L 0
Q (K ,U ) be the space of all ξ ∈L (K ,U ) such that ξQ

1
2 is

a Hilbert-Schmidt operator. The norm is given by

‖ξ‖2
L0

Q (K ,U )
= ‖ξQ

1
2 ‖2

HS = tr (ξQξ∗).

Then ξ is called a Q-Hilbert Schmidt operator from K to U.

Let ϕ : [0,T ] −→ L0
Q (K ,U ) such that

∞∑
n=1

‖K ∗
H (ϕQ

1
2 en)‖L2([0,T ],U ) <∞. (1.20)

Theorem 1.5.2. Letϕ : [0,T ] −→ L0
Q (K ,U ) satisfy 1.20. Then its stochastic integral with

respect to the sub-fBm SH
Q is defined, for t ≥ 0, as follows

t∫
0

ϕ(s)dSH
Q (s) :=

∞∑
n=1

t∫
0

ϕ(s)Q
1
2 endSH

n (s),

=
∞∑

n=1

t∫
0

K ∗(ϕQ
1
2 en)dW (s).

Notice that if
∞∑

n=1
‖ϕ(s)Q

1
2 en‖

L
1
H ([0,T ],U )

<∞, (1.21)

then in particular (1.20) holds, which follows immediately form (1.19).

The following lemma is obtained as a simple application of lemma 1.5.6.
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Lemma 1.5.7. ([17]) For any ϕ : [0,T ] −→ L0
Q (K ,U ) such that 1.21 holds, and for any

u, v ∈ [0,T ] with u > v,

E
∥∥∫ u

v
ϕ(s)dSH

Q (s)
∥∥2

U ≤CH (u − v)2H−1
∞∑

n=1

∫ u

v
‖ϕ(s)Q

1
2 en‖2

U d s.

If, in addition,

∞∑
n=1

‖ϕ(s)Q
1
2 en‖2

U is uniformly convergent for t ∈ [0,T ], (1.22)

then

E
∥∥∫ u

v
ϕ(s)dSH

Q (s)
∥∥2

U ≤CH (u − v)2H−1
∫ u

v
‖ϕ(s)‖2

L0
Q (K ,U )

d s.

Proof. Let {en}∞n=1 be the complete orthonormal basis of K introduced above. Apply-

ing lemma 1.5.6, we obtain

E‖
∫ u

v
ϕ(s)dSH

Q (s)‖2
U = E‖

∞∑
n=1

∫ u

v
ϕ(s)Q

1
2 endSH (s)‖2

U .

=
∞∑

n=1
E‖

∫ u

v
ϕ(s)Q

1
2 dSH (s)‖2

U .

=
∞∑

n=1
H(2H −1)

∫ u

v

∫ u

v
‖ϕ(t )Q

1
2 en‖U‖ϕ(s)Q

1
2 en‖U |t − s|2H−2d td s.

≤ cH

∞∑
n=1

(∫ u

v
‖ϕ(s)Q

1
2 en‖

1
H
U

)2H

.

≤ cH (u − v)
∞∑

n=1

∫ u

v
‖ϕ(s)Q

1
2 en‖2

U d s.

Remark 1.5.4. If {λn}∞n=1 is bounded sequence of non-negative real numbers such that

the nuclear operator Q satisfies Qen = λnen , assuming that there exists a positive con-

stant Kϕ such that

‖ϕ(t )‖L 2
Q (K ,U ) ≤ Kϕ uniformly in [0, T];

then 1.22 holds automatically.
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1.6 Theory of Semigroup

1.6.1 Uniformly continuous semigroups of bounded linear operators

Definition 1.6.1. [4] Let X be a Banach space. A one parameter family {T (t )}tÊ0 of

bounded linear operators from X into X is a semigroup of bounded linear operators on X

if

1. T (0) = I (I is the identity operator on X).

2. T (t + s) = T (t ).T (s) for every t , s Ê 0 (the semigroup property).

A semigroup of bounded linear operators ,T (t ) is uniformly continuous if

lim
t−→0

∥ T (t )− I ∥= 0.

Definition 1.6.2. [4] Let T (t ) be a semigroup of bounded linear operator A with domain

D(A) =
{

x ∈ X : lim
t→0+

T (t )x −x

t
exi st s

}
,

defined by

Ax = lim
t→0+

T (t )x −x

t
,

is called the infinitesimal generators of the semigroup T (t ).

Theorem 1.6.1. [4] A linear operator A is the infinitesimal generator of a uniformly con-

tinuous semigroup if and only if A is a bounded linear operator. We have

T (t ) = e t A =
∞∑

n=0

(t A)n

n!
,

the series converging in norm for every t ≥ 0.

From the definition 1.6.1 it is clear that a semigroup T (t ) has a unique infinitesimal

generator. If T (t ) is uniformly continuous its infinitesimal generator is a bounded lin-

ear operator. On the other hand, every bounded linear operator A is the infinitesimal

generator of a uniformly continuous semigroup T (t ).

Is this semigroup is unique? the affirmative answer to this question is given next.

Theorem 1.6.2. [4] Let T (t ) and S(t ) be uniformly continuous semigroups of bounded

linear operators. If

lim
t−→0

T (t )− I

t
= A = lim

t−→0

S(t )− I

t
,

then T (t ) = S(t ) for t Ê 0.
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Corollaire 1.6.1. [4] Let T (t ) be a uniformly continuous semigroup of bounded linear

operators. Then

1. There exists a constant w Ê 0 such that ∥ T (t ) ∥< ew t .

2. There exists a unique bounded linear operator A such that T (t ) = e t A.

3. The operator A in part (2) is the infinitesimal generator of T (t ).

4. t −→ T (t ) is differentiable in norm and

dT (t )

d t
= AT (t ) = T (t )A.

1.6.2 Strongly continuous semigroups of bounded linear operator

Definition 1.6.3. [4] A semigroup T (t ), 0 ≤ t <∞ of bounded linear operators on X is a

strongly continuous semigroup of bounded linear operators if

lim
t−→0

T (t )x = x, for every x ∈ X .

A strongly continuous semigroup of bounded linear operators on X will be called a semi-

group of class C0 or simply a C0- semigroup.

Theorem 1.6.3. [4] Let T (t ) be a C0-semigroup there exist constants w ≥ 0 and M ≥ 1

such that

∥ T (t ) ∥≤ Mew t for 0 ≤ t <∞.

Corollaire 1.6.2. If T (t ) is a C0-semigroup, then for every x ∈ X , t −→ T (t )x is a contin-

uous function from R+ into X.

Theorem 1.6.4. [4] Let T (t ) be a C0-semigroup and let A be its infinitesimal generator.

Then

1. For x ∈ X ,

lim
h−→0

1

h

t+h∫
t

T (t )xd s = T (t )x.

2. For x ∈ X ,
t∫

0
T (s)xd s ∈D(A), and

A
( t∫

0

T (s)xd s
)
= T (t )x −x.
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3. For x ∈D(A), T (t )x ∈D(A) and

d

d t
T (t )x = AT (t )x = T (t )Ax.

4. For x ∈D(A),

T (t )x −T (s)x =
t∫

s

T (τ)Axdτ=
t∫

s

AT (τ)xdτ.

Proof. Please see [4].

Corollaire 1.6.3. If A is the infinitesimal generator of a C0-semigroup T (t ) then D(A),

the domain of A is dense in X and A is a closed linear operator.

Theorem 1.6.5. Let T (t ) and S(t ) be C0-semigroups of bounded linear operators with

infinitesimal generators A and B respectively. If A = B then T (t )=S(t ) for t ≥ 0.

If A is the infinitesimal generator of a C0-semigroup then by corollary 1.6.3, D(A) =
X . Actually, a much stronger result is true. Indeed we have,

Theorem 1.6.6. Let A be the infinitesimal generator of C0-semigroup T (t ). If D(An) is

the domain of An , then
∞⋂

n=1
D(An) is dense in X.

The Hille Yosida Theorem

Let T (t ) be a C0-semigroup. From theorem 1.6.3 it follows that there are constant

ω≥ 0 and M ≥ 1 such that ∥ T (t ) ∥≤ M exp(ωt ) for t ≥ 0.

If ω= 0, T (t ) is called uniformly bounded if M = 1, it is called a C0-semigroup of con-

tractions.

This section is devoted to the characterization of the infinitesimal generators of C0-

semigroup of contraction. Conditions of the behavior of the resolvent of an operator

A, which are necessary and sufficient for A to be the infinitesimal generator of a C0-

semigroup of contractions are given.

Recall that if A is a linear, not necessary bounded operator in X, the resolvent set

ρ(A) of A is the set of all complex numbersλ for whichλI−A is invertible, i.e. (λI−A)−1

is a bounded linear operator on X. The family R(Λ; A) = (λI −A)−1, λ ∈ ρ(A) of bounded

linear operators is called the resolvent of A.

Theorem 1.6.7. (Hille Yosida) A linear (unbounded) operator A is the infinitesimal gen-

erator of C0-semigroup of contraction T (t ), t ≥ 0 if and only if

(i) A is closed and D(A) = X .
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(ii) The resolvent set ρ(A) of A contains R+ and for every λ> 0,

∥ R(A,λ) ∥≤ 1

λ
.

Lemma 1.6.1. [4] Let A satisfy the condition (i ) and (i i ) of theorem 1.6.7 and let

R(λ, A) = (λI − A)−1. Then lim
λ−→∞

λR(λ, A)x = x for x ∈ X .

Now we define, for every λ> 0, the Yosida approximation of A by

Aλ =λAR(λ; A) =λ2R(λ; A)−λI .

Aλ is an approximation of A in the following sense:

Lemma 1.6.2. Let A satisfy the condition (i) and (ii) of theorem 1.6.7. If Aλ is the Yosida

approximation of A, then lim
λ−→∞

Aλx = Ax, for x ∈D(A).

Lemma 1.6.3. Let A satisfy the condition (i) and (ii) of theorem1.6.7. If Aλ is the Yosida

approximation of A, then Aλ is the infinitesimal generator of uniformly continuous semi-

group of contractions e t Aλ .

Furthermore, for every x ∈ X , λ,µ> 0 we have

∥ e t Aλx −e t Aµx ∥≤ t ∥ Aλx − Aµx ∥ .

Corollaire 1.6.4. Let A be the infinitesimal generator of a C0-semigroup of contractions

T (t ). If Aλ is the Yosida approximation of A, then

T (t )x = lim
λ−→∞

e t Aλx, for x ∈ X .

Corollaire 1.6.5. Let A be the infinitesimal generator of a C0-semigroup of contractions

T (t ). The resolvent set of A contains the open right half-plane, i.e., {λ : Re(λ) > 0} ⊂ ρ(A)

and for such λ,

∥ R(λ; A) ∥É 1

Re(λ)
.

1.6.3 Sectorial operator

Let X be a Banach space and A a (single-valued linear) operator. For 0 <ω<π, let

S0
ω = {z ∈Cà {0} : |ar g z| <ω},

denote the open sector symmetric about the positive real axis with opening angle ω.

Let Sω be its closure, that is,

Sω = {z ∈Cà {0} : |ar g z| ≤ω}∪ {0}.
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Definition 1.6.4. [3] Let −1 < p < 0 and 0 <ω< π
2 . By Θp

ω(X ) we denote the family of all

linear closed operators A : D(A) ⊂ X −→ X which satisfy

i) σ(A) ⊂ Sω.

ii) for every ω<µ<π, there exist a constant cµ such that

∥ R(z, A) ∥≤ cµ|z|p , for all z ∈CàSµ.

Where the family R(z, A) = (zI − A)−1, z ∈ ρ(A) of bounded linear operators is the resol-

vent of A.

A linear operator A will be called an almost sectorial operator on X if A ∈Θp
ω(X ).

Remark 1.6.1. Let A ∈Θp
ω(X ). Then the definition implies that 0 ∈ ρ(A).

We denote the semigroup associated with A by {Q(t )}t≥0,

Q(t ) = e−t z(A) = 1

2πi

∫
Γθ

e−t zR(z; A)d z, t ∈ S0
π
2 −ω

;

where the integral contour Γθ = {R+e iθ}∪ {R+e−iθ} is oriented counter clockwise and

ω< θ <µ< π
2 −|ar g t | forms and analytic semigroup of growth order 1+p.

Property 1.6.1. [19] Let A ∈ Θp
ω(X ) with −1 < p < 0 and 0 < ω < π

2 , then the following

properties remain true:

i) Q(t ) is analytic in S0
π
2 −ω

and d n

d t n Q(t ) = (−A)nQ(t ), t ∈ S0
π
2 −ω

.

ii) The functional equation Q(s + t ) =Q(s)Q(t ) for all s, t ∈ S0
π
2 −ω

holds.

iii) There is a constant c0 = c0(p) > 0 such that

∥Q(t ) ∥≤ c0t−p−1 fort > 0.

iv) if β> 1+p, then D(Aβ) ⊂ΣQ = {x ∈ X : lim
t−→0+

Q(t )x = x}.

v) R(λ; A) =
∞∫
0

e−λtQ(t )d t for every λ ∈Cwith Re(λ) > 0.
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Definition 1.6.5. [26] A closed densely defined operator A on a Banach space X is called

sectorial of angle ω<π(in short: A ∈ sect (ω) if

i) σ(A) ⊂ Sω and

ii) M(A,ω
′
) := sup{∥λR(λ, A) ∥|λ ∉ Sω′ } <∞, for all ω<ω′ <π.

Definition 1.6.6. An operator A is simply called sectorial if it is sectorial of angle ω for

some ω ∈ (0,π). In this case, is called the sectoriality angle of A. Analogously to the half-

plane case, we say that a set A of operators is uniformly sectorial of angle ω<π if

sup
A∈A

M(A,α) <∞,

for all α ∈ (ω,π).

Remark 1.6.2. The definition of sectorial operators is not universal in the literature.

Some authors require a sectorial operator to be injective and to have dense range as well.

We will omit these condition from our definition and add explicitly one or both to our

assumptions when necessary. Notice that for a sectorial operator A on a Banach space

one always has N (A)∩R(A) = 0. In particular, if A has dense range, A is injective as well.

Remark 1.6.3. Let A be a densely defined operator on some Banach space X. Then it is

well known that −A generates an analytic C0-semigroup if and only if A is with

ω(A) < π
2 . Moreover, if −A is the generator of a C0-semigroup, then A is sectorial with

ω(A) < π
2 . However, there exist sectorial operators with sectorial angle equal to π

2 that do

not generate C0-semigroups.

Theorem 1.6.8. An operator A on a Banach space X is sectorial if and only if (−∞,0) ⊆
ρ(A) and M := sup

t>0
∥ t (t +A)−1 ∥.Moreover, if A is sectorial, the following assertions hold:

i) x ∈ dom(A) if and only if lim
t→∞ t (t + A)−1x = x,

x ∈ r an(A)if and only if lim
t→0

t (t + A)−1x = 0,

ii) r an(A)∪ker (A) = {0}.

Remark 1.6.4. If A is sectorial, then A generates an analytic semigroup {T (t )}t≥0.
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Chapter 2

Fractional Calculus

2.1 Birth of Fractional Calculus

In a letter dated 30th September 1695, L’Hopital wrote to Leibniz asking him partic-

ular notation he has used in his publication for the n-th derivative of a function

Dn f (x)

Dxn

i.e. what would the result be if n = 1
2 . Leibniz’s response “an apparent paradox from

which one day useful consequences will be drawn.” In these words fractional calculus

was born. Studies over the intervening three hundred years have proven at least half

right. It is clear, that with in the XX century, especially numerous applications have

been found. However, these applications and mathematical background surrounding

fractional calculus are far from paradoxical. While the physical meaning is difficult

to grasp, the definitions are no more rigorous than integer order counterpart. Later

the question became: Can n , be any number: fractional, irrational, or complex? Be-

cause the latter question was answered affirmatively, the name ‘fractional calculus’ has

become a misnomer and might better be called ‘integration and differentiation of ar-

bitrary order’ or ‘arbitrary ordered differ-integrations’. In 1812, P.S. Laplace defined a

fractional derivative of arbitrary order appeared in Lacroix’s (1819) writings. He devel-

oped a mere mathematical exercise generalizing from a case of integer order. Starting

with y = xm , where m a positive integer, Lacroix easily develops n th derivative:

d n y

d xn
= m !

(m −n) !
xm−n , m ≥ n.
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Using Legengdre’s symbol for the generalized factorial (the complete Gamma func-

tion), Lacroix gets:
d n y

d xn
= Γ(m +1)

Γ(m −n +1)
xm−n .

He then gives example for y = x and n = 1
2 , and obtains:

d
1
2 y

d x
1
2

= 2
p

xp
π

.

It is interesting to note that the result of Lacroix in the manner typical of the classi-

cal formalists of the periods is same as that yielded by the formalists Riemann Liou-

velli definition of fractional derivative. This expression of Lacroix is also referred to

as Euler’s formula (1730). Let us try and use this to evaluate fractional derivative of

f (x) = exp(t ). The exponential function is represented as series

f (t ) = e t =
∞∑

k=0

t k

k !
,

applying this term to the Euler expression (as above) we get,

dνe t

d tν
=

∞∑
k=0

t k−ν

Γ(k −ν+1)
,

where ν is a positif real number.

2.2 Special Functions of fractional calculus

We will recall in this section some results of the special functions of Fractional Cal-

culus which are important for other parts of this work.

2.2.1 Gamma function

Definition 2.2.1. [51] The gamma function Γ (z) is defined by the integral:

Γ (z) =
∫ ∞

0
e−t t z−1d t .

Property 2.2.1. The gamma function satisfies the following functional equation:

Γ (z +1) = zΓ (z) . (2.1)
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Another important property can be represented also by the following limit:

Γ (z) = lim
n→∞

n!n2

z (z +1) ... (z +n)
, (2.2)

where we initially suppose that Re (z) > 0.

2.2.2 Beta function

Definition 2.2.2. The beta function is defined by the following integral:

B (z, w) =
∫ 1

0
τz−1 (1−τ)w−1 dτ , (Re (z) > 0,Re (w) > 0) . (2.3)

Property 2.2.2. The principal property of the function Beta is:

B (z, w) = Γ (z)Γ (w)

Γ (z +w)
, (2.4)

from which it follows that:

B (z, w) = B (w, z) .

2.3 Fractional Integrals and Derivatives

In this section we give some definitions and properties of fractional calculus.

2.3.1 Riemann-Liouville fractional integrals and Derivatives

In this part we give the definitions of the Riemann Liouville fractional integrals and

fractional derivatives on a finite interval, real line and present some of their properties.

Definition 2.3.1. We consider the weighted spaces of continuous functions

Cγ[a,b] = { f : [a,b] −→R : (x −a)γ f (x) ∈C [a,b]},

and

C n
γ [a,b] = { f ∈C n−1[a,b] : f (n) ∈Cγ[a,b],n ∈N},

C 0
γ[a,b] =Cγ[a,b].
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Definition 2.3.2. [51] The Riemann Liouville fractional integrals Iαa+ f and Iαb− f of order

α≥ 0 are defined by

Iαa+ f (t ) = 1

Γ(α)

∫ t

a

f (s)

(t − s)1−αd s, t > a

Iαb− f (t ) = 1

Γ(α)

∫ b

t

f (s)

(s − t )1−αd s, t < b.

This integrals are called the left-sidel and the right sidel fractional integrals. Her Γ(.) is

the gamma function.

Property 2.3.1. [51] If α> 0 and β> 0 then the equations

Iαa+ Iβa+ f (t ) = Iα+βa+ f (t ); Iαb− Iβb− f (t ) = Iα+βb− f (t ), (2.5)

are satisfied at almost every point x ∈ [a,b] for f (x) ∈ Lp (a,b) (1 5 p 5∞). If α+β> 1

then the relations in 2.5 hold at any point of [a,b].

Lemma 2.3.1. [51] For x > a we have

[Iαa+(t −a)β−1](x) = Γ(β)

Γ(β+α)
(x −a)β+α−1 α≥ 0,β> 0,

[Dα
a+(t −a)α−1](x) = 0, 0 ≤α≤ 1.

Lemma 2.3.2. [51] Let α > 0 and 0 ≤ γ ≤ 1. Then Iαa+ is bounded from Cγ[a,b] into

Cγ[a,b].

Lemma 2.3.3. [51] Let α> 0 and 0 ≤ γ≤ 1 if γ≤α, then Iαa+ is bounded from C [a,b].

Lemma 2.3.4. [51] Let 0 ≤ γ≤ 1 and f ∈Cγ[a,b], then Iαa+ f (a) = lim
x−→a+ Iαa+ f (x) = 0,0 ≤

γ≤α.

Proof. Note that by lemma 2.3.3, Iαa+ f ∈C [a,b].

Since f ∈Cγ[a,b] then (x−a)γ f (x) is continuous on [a,b] and thus | (x−a)γ f (x) |< M ,

x ∈ [a,b] for some positive constant M. Therefor

| Iαa+ f (x) |< M [Iαa+(t −a)−γ](x),

and by lemma 2.3.1

| Iαa+ f (x) |≤ M
Γ(1−γ)

Γ(α+1−γ)
(x −a)α−γ.

Since α> γ, the right hand side −→ 0 as x −→ a+, This completes the proof.
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Definition 2.3.3. [68](Riemann-Liouville fractional integral on the real line) The Riemann-

Liouville fractional integral on R are defined as

(
Iα+ f

)
(x) := 1

Γ(α)

∫ x

−∞
(x − t )α−1 f (t )d t = 1

Γ(α)

∫ x

−∞
(x − t )α−1

+ f (t )d t , (2.6)

and (
Iα− f

)
(x) := 1

Γ(α)

∫ ∞

x
(t −x)α−1 f (t )d t = 1

Γ(α)

∫ ∞

x
(t −x)α−1

− f (t )d t , (2.7)

Remark 2.3.1. The function f ∈ D
(
Iα+,−

)
if the corresponding integrals converge for a.a

x ∈R.

Property 2.3.2. [68]

i. Fractional integration admits the following composition formulas for fractional

integrals:

Iα+,−Iβ+,− f = Iα+β+,− f (2.8)

for f ∈ Lp (R), α,β> 0 and α+β< 1
p .

ii. We consider f ∈ Lp (R), g ∈ Lq (R), p > 1, q > 1, and 1
p + 1

q = 1, then we obtain the

following integration by parts formula∫
R

g (x)
(
Iα+ f

)
(x)d x =

∫
R

f (x)
(
Iα−g

)
(x)d x. (2.9)

iii. (Inclusion property)

Let Cλ(T) be the set of Hölder continuous functions f :T→R of order λ i.e,

Cλ(T) =
{

f :T→R | ∥ f ∥λ:= supt∈T | f (t ) | +sups,t∈T | f (s)− f (t ) | (t − s)−λ <∞
}

.

If α> 0, and αp > 1, then

Iα+,−
(
Lp (R)

)⊂Cλ[a,b]

for any −∞< a < b <∞ and 0 <λ<α− 1
p .

Definition 2.3.4. [51] The Riemann-Liouville fractional derivative Iαa+ f and Iαb− f of or-

der α≥ 0 are defined by

(R−L)Dα
a+ f (t ) = 1

Γ(n −α)

( d

d t

)n ∫ t

a
(t − s)n−1−α f (s)d s, t > a

(R−L)Dα
b− f (t ) = 1

Γ(n −α)

(−d

d t

)n ∫ b

t
(s − t )n−1−α f (s)d s, t < b
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where the function f (t ) has absolutely continuous derivative up to order (n −1).

Remark 2.3.2. When α= n be a natural number, then we have

(D0
a+ f )(t ) = (D0

b− f )(t ) = f (t ).

(Dn
a+ f )(t ) = f (n)(t ).

(Dn
b− f )(t ) = (−1)n f (n)(t ).

Where f (n)(t ) is the usual derivative of f (t ) of order n.

Lemma 2.3.5. [68] If f be a continuous function and f ∈ Lp [a,b] with p > 0 and t > a

then the following equalities (
Dp

a+ I p
a+ f

)
(t ) = f (t ),

and (
Dp

b− I p
b− f

)
(t ) = f (t ),

hold almost everywhere on [a,b].

Property 2.3.3. [68] If 0 < q < p then for f (x) ∈ Lp ([a,b]), the relations:(
Dq

a+ I p
a+ f

)
(t ) =

(
I p−q

a+ f
)
(t ),

(
Dq

b− I p
b− f

)
(t ) =

(
I p−q

b− f
)
(t ),

hold almost everywhere on [a,b].

2.3.2 Caputo Fractional Derivatives

In this section we present the definitions and some properties of the Caputo frac-

tional derivatives. Let [a,b] be a finite interval of the real line R.

Definition 2.3.5. [68] The fractional derivatives (c Dα
a+ f )(t ) and (c Dα

b− f )(t ) of order α>
0 on [a,b] are defined via the above Riemann-Liouville fractional derivatives by

(c Dα
a+ f

)
(t ) =

(
Dα

a+

[
f (x)−

n−1∑
k=0

f (k)(a)

k
(x −a)k

])
. (2.10)

(c Dα
b− f )(t ) =

(
Dα

b−

[
f (x)−

n−1∑
k=0

f (k)(b)

k
(b −x)k

])
. (2.11)

These derivatives are called left-sided and right sided Caputo fractional derivatives of

order α.
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Remark 2.3.3. Ifα be a real number then the Caputo fractional derivative 2.10 and 2.11

coincide with the Riemann Liouville fractional derivatives,

(c Dα
a+ f

)
(t ) = (Dα

a+ f )(t ).

Remark 2.3.4. If α= n ∈N and the derivative f (n)(t ) of order n exists, then
(

c Dα
a+ f

)
(t )

concides with f (n)(t ).

(c Dn
a+ f

)
(t ) = f (n)(t ) and

(c Dn
b− f

)
(t ) = (−1)n f (n)(t ). (2.12)

The Caputo fractional derivatives
(

c Dn
a+ f

)
and

(
c Dn

b− f
)

(t ) are defined for functions

f (t ) for which the Riemann-Liouville fractional derivatives of the right hand sides of

2.10 and 2.11 exist.

In particular, they are defined for f (t ) belonging to the space AC n[a,b] of absolutely

continuous functions.

Theorem 2.3.1. [68] Let a > 0 and n =α for α ∈N. If f (t ) ∈ AC n[a,b], then the Caputo

fractional derivatives
(

c Dα
a+ f

)
(t ) and

(
c Dα

b− f
)

(t ) exist almost every where on [a,b].

a) If a ∉N,
(

c Dα
a+ f

)
(t ) and

(
c Dα

b− f
)

(t ) are represented by

(c Dα
a+ f

)
(t ) = 1

Γ(n −α)

∫ t

a

f n(s)

(t − s)α−n+1
d s = (I n−α

a+ Dn f )(t ).

and (c Dα
b− f

)
(t ) = (−1)n

Γ(n −α)

∫ b

t

f n(s)

(s − t )α−n+1
d s = (−1)n(I n−α

b− Dn f )(t ),

where D = d/d x.

b) Ifα= n ∈N, then
(

c Dn
a+ f

)
(t ) and

(
c Dn

b− f
)

(t ) are represented by 2.12. In particular

(c D0
a+ f

)
(t ) = (c D0

b− f
)

(t ) = f (t ).

Theorem 2.3.2. [68] Let α > 0 and n = α for α ∈ N. Also let f (t ) ∈ C n[a,b]. Then the

Caputo fractional derivatives
(

c Dα
a+ f

)
(t ) and

(
c Dα

b− f
)

(t ) are continuous on [a,b].

Remark 2.3.5. The Caputo derivatives have similar properties to those of the Riemann-

Liouville fractional derivatives.

Lemma 2.3.6. Let α> 0 and let f (t ) ∈C [a,b]

• If α= n ∉N or α ∈N then

(c Dα
a+ Iαa+ f )(t ) = f (t ); (c Dα

b− Iαb− f )(t ) = f (t ).
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2.3.3 Hifler fractional derivative

Hilfer [50] proposed a general operator for fractional derivative, called “Hilfer frac-

tional derivative,” which combines Caputo and Riemann-Liouville fractional deriva-

tives. Hilfer fractional derivative is performed, for example, in the theoretical simula-

tion of dielectric relaxation in glass forming materials.

Definition 2.3.6. [50] The Hilfer fractional derivative of order 0 ≤ α ≤ 1 and 0 < β < 1

for a function f is defined by

Dα,β
0+ f (t ) = Iα(1−β)

0+
d

d t
I (1−α)(1−β)

0+ f (t ).

Remark 2.3.6. When α = 0, 0 < β < 1, the Hilfer fractional derivative coincides with

classical Riemann-Liouville farctional derivative

D0,β
0+ f (t ) = d

d t
I 1−β

0+ f (t ) =L Dβ

0+ f (t ).

When α = 1, 0 < β < 1, the Hilfer fractional derivative coincides with classical Caputo

fractional derivative

D1,β
0+ f (t ) = I 1−β

0+
d

d t
f (t ) =c Dβ

0+ f (t ).

Now, we introduce the space

Cα,β
1−γ[a,b] = { f ∈C1−γ[a,b] : Dα,β

a+ f ∈C1−γ[a,b]},

and

Cγ
1−γ[a,b] = { f ∈C1−γ[a,b] : Dγ

a+ f ∈C1−γ[a,b]}.

Since Cγ
1−γ[a,b] ⊂Cα,β

1−γ[a,b].

The following lemma follows directly from the semigroup property in property 2.3.1

Lemma 2.3.7. [34] Let 0 ≤α≤ 1, 0 ≤β≤ 1 and γ=α+β−αβ. If f ∈Cγ
1−γ[a,b] then

Iγa+Dγ

a+ f = Iαa+Dα,β
a+ f ,

and

Dγ

a+ Iαa+ f = Dβ(1−α)
a+ f .

Lemma 2.3.8. [34] Let f ∈ L1[a,b]. If Dβ(1−α)
a+ f exists and in L1[a,b] then

Dα,β
a+ Iαa+ f = Iβ(1−α)

a+ Dβ(1−α)
a+ f .
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Proof. Dα,β
a+ Iαa+ = Iβ(1−α)

a+ D I (1−β)(1−α)
a+ Iαa+ = Iβ(1−α)

a+ D I 1−β(1−α)
a+ = Iβ(1−α)

a+ Dβ(1−α)
a+

Lemma 2.3.9. [34] Let 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and γ = α+β−αβ. If f ∈ C1−γ[a,b] and

I 1−β(1−α)
a+ f ∈C 1

1−γ[a,b] then Dα,β
a+ Iαa+ f exists in (a,b] and

Dα,β
a+ Iαa+ f (x) = f (x) x ∈ (a,b].
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Chapter 3

Stochastic Differential Inclusions

Differential inclusion is a generalization of the notion of an ordinary differential

equation, therefore all problems considered for differential equation, that is, existence

of solutions, continuation of solution dependence on initial conditions and parame-

ters, are present in the theory of differential inclusions.

3.1 Phase Space

The notation of the space B play an important role in the study of both qualita-

tive and quantitative theory for functional differential equations. A usual choice is a

seminormed space satisfying suitable axioms, which was introduced by Hale and Kato

[29].

1. If x : (−∞,b) → H , b > 0, is continuous on (0,b] and x0 in B, then for every

t ∈ [0, a) the following conditions hold:

(a) xt is in B.

(b) ∥ x(t ) ∥β≤ H̃ ∥ xt ∥B .

(c)∥ xt ∥B≤ K (t )sup{∥ x(s) ∥β: 0 ≤ s ≤ t }+M(t ) ∥ x0 ∥B , where H̃ ≥ 0 is a constant;

K , M : [0,∞) → [0,∞), K is continuous, M is locally bounded, and H̃ , K, M are

independent of x(.).

2. For the function x(.) in i., xt is a B-valued function [0, a).

3. The space B is complete.

3.2 Multi-valued mapps

A multivalued map F of a set X into a set Y is a correspondence which associates to

every x ∈ X a nonempty subset F (x) ⊂ Y called the value of x. Denoting by P (Y ) the
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collection of all-nonempty subsets of Y we write this correspondence as

F : X âP (Y ).

The notion of multivalued arises naturally in various branches of modern mathe-

matics, such as mathematical economics, theory of games, convex analysis, ect. Now

we give some basic definitions and properties of multivalued function.

Let (X ,∥ . ∥) be a Banach space and Y be a subset of X. We use the notations

P (X ) = {Y ∈ X : Y 6= ;},

Pcl (X ) = {Y ∈P (X ) : Y closed},

Pb(X ) = {Y ∈P (X ) : Y bounded},

Pcp (X ) = {Y ∈P (X ) : Y compact},

Pcv (X ) = {Y ∈P (X ) : Y convex},

Pcp,cv (X ) = {Y ∈P (X ) : Y compact and convex}.

Let A,B ∈ P (X ). Consider Hd : P (X )×P (X ) −→ R+∪ {∞} the Hausdorff distance

between A and B given by

Hd (A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(A,b)}

where d(A,B) = inf
a∈A

d(a,b) and d(a,B) inf
b∈B

d(a,b). As usual, d(x,;) =+∞.

Then (Pb,cl (X ), Hd ) is a metric space and (Pcl (X ), Hd ) is a generalized (complete) met-

ric space.

Definition 3.2.1. [8] A multivalued operator N : X −→Pcl (X ) is called

1. γ-Lipschitz if there exists γ> 0 such that

Hd (N (x), N (y)) ≤ γd(x, y) for all x, y ∈ X .

2. A contraction if it is γ-Lipschitz with γ< 1.

Definition 3.2.2. [8] A multivalued F : J −→Pcl (X ) is said to be measurable if, for each

y ∈ X , the function

t −→ d(y,F (x)) = inf{d(x, z) : z ∈ F (t )}

is measurable.
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Definition 3.2.3. [8] The selection set of a multivalued map G : J −→P (X ) is defined by

SG = {u ∈ L1 : u(t ) ∈G(t ), a.et ∈ J },

The set SF◦u known as the set of selectors from F is defined by

SF◦u = {v ∈ L1(J ) : v(t ) ∈ F (t ,u(t )),a.e.t ∈ J }.

Definition 3.2.4. [8] Let X and Y be metric space. A set-valued F from X to Y is charac-

terized by its graph

Gr (F ) := {(x, y) ∈ X ×Y : y ∈ F (x)}.

Definition 3.2.5. [8] Let (X , |.|) be a Banach space. A multivalued map F : X −→ P (X )

is convex closed if F (X ) is convex (closed) for all x ∈ X .

The map F is bounded on bounded sets if F (B) = ⋃
x∈B

F (x) is bounded in X for all

B ∈Pb(X ) i.e

sup
x∈B

{sup{|y | : y ∈ F (x)}} <∞.

Definition 3.2.6. [8] A multivalued map F is called upper semi continuous (u.s.c) on X

if for each x0 ∈ X , the set F (x0) is a nonempty, closed subset of X, and for each open set U

of X containing F (x0), there exists an open neighborhood V of x0 such that F (V ) ⊆U .

A set-valued map F is said to be u.s.c if it is so at every point x0 ∈ X . F is said to be

completely continuous if F (B) is relatively compact for every B ∈Pb(X ).

If the multivalued map F is completely continuous with nonempty compact values,

then F is u.s.c. if and only if F has closed graph

(i .e.xn −→ x∗, yn −→ y∗, yn ∈G(xn) imply y∗ ∈ F (x∗)).

The map F has a fixed point is there exists x ∈ X such that x ∈Gx. The set of fixed point

of the multivalued operator G will be denoted by FixG.

Definition 3.2.7. [8] A measurable multivalued function F : J −→Pb,cl (X ) is said to be

integrably bounded if there exists a function g ∈ L1(R+) such that | f | ≤ g (t ) for almost

all t ∈ J for all f ∈ F (t ).

Lemma 3.2.1. [8] Let G be a completely continuous multivalued map with nonempty

compact values. Then G is u.s.c if and only if G has a closed graph

(i .eun −→ u, wn −→ w, wn ∈G(un) imply w ∈G(u)).

48



3.3. SEMILINEAR STOCHASTIC INCLUSIONS IN A HILBERT SPACE

Definition 3.2.8. [8] A multivalued map F : J×R×R−→P (R) is said to be L1-caratheodory

if

1. t −→ F (t , x, y) is measurable for each x, y ∈R.

2. x −→ F (t , x, y) is u.s.c for almost all t ∈ J .

3. For each q > 0 there exists ϕq ∈ L1(J ,R+) such that

∥ F (t , x, y) ∥P = sup{| f | : f ∈ F (t , x, y)} ≤ϕq (t )for all |x| ≤ q, |y | ≤ q and for a.e. t ∈ J .

The multivalued map F is said to be caratheodory if it satisfies (1) and (2).

Lemma 3.2.2. Let X be a Banach space. Let F : J×X −→Pcp,cv (X ) be an L1-caratheodory

multivalued map, and let Λ be a linear continuous mapping from L1(J , X ) to C (J , X ).

Then the operator

Λ◦SF◦u : C (J , X ) −→ Pcp,cv (C (J , X ))

w −→ (Λ◦SF◦u)(w) := (ΛSF◦u)(w)

is a closed graph operator in C (J , X )×C (J , X ).

Property 3.2.1. Let F : X −→ Y be an u.s.c map with closed values. Then Gr(F) is closed.

Lemma 3.2.3. Let X be a seperable metric space. Then every measurable multivalued

map F : X −→Pcl (X ) has a measurable selection.

Definition 3.2.9. [8] The multivalued map F : J×H −→P (H ) is said to be L2-Carathéodory

if

i) t −→ F (t , v) is measurable for each v ∈H .

ii) t −→ F (t , v) is u.s.c for almost all t ∈ J .

iii) For each q > 0, there exists hq ∈ L1(J ,R+) such that

‖F (t , v)‖2 = sup
f ∈F (t ,v)

E‖ f ‖2 ≤ hq (t ), for all ‖v‖2
H

≤ q and for a.e. t ∈ J .

3.3 Semilinear stochastic inclusions in a Hilbert space

Let us consider the semilinear stochastic evolution inclusion with delays in a Hilbert

space, defined byd x(t ) ∈ [Ax(t )+F (x(ϕ(t )))]d t +σ(xτ(t ))d wt t ∈ J = [0,T ]

x(t ) =φ(t ), t ∈ J0 = [−r,0],
(3.1)
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where φ is F0-measurable and A is the infinitesimal generator of strongly contin-

uous semigroup of closed linear operator S(t ), t Ê 0 on the separable Hilbert space H

with inner product 〈., .〉 and norm ∥ . ∥. ρ,τ : [0,+∞[−→ [−r,+∞], r Ê 0 are suitable

delay functions. x : [−r,T ] −→H and φ : J0 −→H is the initial datum such that φ(t ) is

F0-measurable for all t ∈ J0, E ∥φ(0) ∥p<∞ and
∫ 0
−r E ∥φ(0) ∥p d s <∞, p ≥ 2.

Let K be another separable Hilbert space with inner product 〈., .〉K and norm

∥ . ∥K . Suppose w(t ) is a given K -valued Brownian motion or wiener process with a

finite trace nuclear covariance operator Q ≥ 0.

Let L (K ,H ) denotes the Banach space of all bounded linear operators from K

into H . Assume F : H −→ 2H \;, the space of nonempty subsets of the space H and

σ : H −→L (K ,H ), are two measurable mappings in H -norm and L2(K ,H )-norm,

respectively.

Definition 3.3.1. [46] Let A be the infinitesimal generator of strongly continuous semi-

group of closed linear operators S(t ), t ≥ 0. Letφ be F0-measurable H -valued stochastic

process satisfying E | φ |p<∞, and f ∈ Lp (H ) is a selection of F (x(ϕ(t ))). The function

x(t ) is given byx(t ) = S(t )φ(0)+∫ t
0 S(t − s) f (s)d s +∫ t

0 S(t − s)σ(x(τ(s)))d w(s) t ∈ J

x(t ) =φ(t ), t ∈ J0 = [−r,0].
(3.2)

is the mild solution of the problem 3.1.

We denotes by BCC (H ) the set of all nonempty bounded, closed and convex sub-

sets of H .

Lemma 3.3.1. [46] Let H be a Hilbert space and Φ : H −→ BCC (H ) a u.s.c and con-

densing map. If the set

U = {x ∈H :λx ∈Φx for some λ> 1} is bonded , then Φ has a fixed point.

The following lemma is crucial in the prof.

Lemma 3.3.2. [46] Let I be a compact interval and Y be a Hilbert space. Let F be a mul-

tivalued map which is measurable for each u ∈ H upper semi continuous with respact

to u and for each fixed u ∈H the set,

NF,u = { f ∈ Lp (H ) : f (t ) ∈ F (u) for a.e. t ∈ J } is nonempty.

Also let Γ be a linear continuous mapping from Lp (I ,Y ) to C (I ,Y ). Then the operator
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Γ◦NF : C (I ,Y ) −→ BCC (C (I ,Y ))

x −→ (Γ◦NF )(x) = Γ(NF,x)

is a closed graph operator in C (I ,Y )×C (I ,Y ).

Let us introduce the following hypothesis

(H1) A : D(A) ⊂H −→H is the infinitesimal generator of a strongly continuous semi

group S(t ) in H , wich is a compact for t ≥ 0 such that

∥ S(t ) ∥≤ Me−γt for all t ≥ 0 where M ≥ 1 and γ> 0.

(H2) ρ,τ : [0,∞) −→ [−r,+∞) r Ê 0, are continuous functions such that

−r É ρ(t ) É t and − r É τ(t ) É t for all t Ê 0.

(H3) There exists constants c1,c2 ≥ 0 such that

E ∥σ(u) ∥p≤ c1E ∥ u ∥p +c2 u ∈H , p ≥ 2.

(H4) F : H −→ BCC (H ); u −→ F (u) is a measurable for each u ∈ H , upper semi

continuous with respect to u and for each fixed u ∈H the set

NF,u = { f ∈ Lp (H ) : f (t ) ∈ F (u) for a.e. t ∈ J } is nonempty.

(H5) E | F (u) |p= sup{E | v |p : v ∈ F (u)} É η(t )Ψ(E | u |p ) for almost all t ∈ J and u ∈H ,

where η ∈ Lp (J ,R+) and Ψ : R+ −→ (0,∞) is continuous and increasing function

with ∫ T

0
m(s)d s <

∫ ∞

c

du

1+u +Ψ(u)

where c = 3p−1M p ∥φ ∥p and

m(t ) = max[3p−1T p−1M p epγtη(t ),3p−1T
p
2 −1M p c1epγt ,3p−1T

p
2 −1M p c2epγt ].

(H6) The function σ is completely continuous and for any bounded set V ⊆H the set

{t −→σ(x(τ(t ))) : x ∈V } is equicontinuous in H .

Remark 3.3.1. NF,u is nonempty if and only if the function X : J −→R defined by

X (t ) = inf{E |v |p : v ∈ F (u)} belongs to Lp (J ,R).
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Theorem 3.3.1. [46] Assume that hypotheses (H1)–(H6) hold. Then the stochastic inclu-

sion 3.1 has at least one mild solution on J.

Proof. We transform the problem 3.1 into a fixed point problem. We consider the mul-

tivalued map Φ : C −→ 2C defined by

(Φx)(t ) =
φ(t ), t ∈ J0

S(t )φ(0)+∫ t
0 S(t − s) f (s)d s +∫ t

0 S(t − s)σ((x(τ(s))))dWs , t ∈ J .
(3.3)

Where f ∈ NF,x = { f ∈ Lp (H : f (t ) ∈ F (x(ρ(s)))) for a.e. t ∈ J }.

It is clearly that the fixed point of Φ are mild solution to 3.1.

First we prove that Φ is a completely continuous multivalued map, u.s.c, with convex

closed values.

The proof is given by the following steps. In the step one we shall that Φx is convex for

every x ∈C . Next in step two we prove that Φ is a completely continuous operator.

As a consequence of step two and the hypotheses (H6) together with the Arzela-Ascoli

theorem it is concluded that Φ : C −→ 2C is a compact multivalued map, after we show

that Φ has a closed graph.

By this steps, and by lemma 3.3.1 we deduce thatΦ has a fixed point which is a solution

of the stochastic inclusion 3.1.

Proof. See [46] for more details.

Example 3.3.1. As an application of the above result, consider a one-dimensional rod

of length π whose ends are maintained at 00 and whose sides are insulated. Suppose

there is an exothermic reaction taking place inside the rod with heat being produced

proportionally to the temperature at a previous time t − r (for the sake of simplicity, we

assume the delay r ≥ 0 is constant). Consequently, the temperature in the rod may be

modeled to satisfy 
∂u(t ,x)
∂t = ∂2u(t ,x)

∂x2 +hu(t − r, x) 0 < x <π, t > 0

u(t ,0) = u(t ,π) = 0 t > 0

u(t , x) =φ(t , x) t ∈ [−r,0], x ∈ [0,π]

(3.4)

where h depends on the rate of reaction andφ : [−r,0]×[0,π] −→R is a given function. We

observe that, when there is no heat production (i.e., h = 0), the problem 3.4 has solutions

given by

u(t , x) =
∞∑

n=1
ane−n2t sin(nx),
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where r = 0 and φ(0, x) =
∞∑

n=1
an sin(nx).

However, it often occurs that the exothermic reaction can be random. In some cases, this

can be modeled by writing the term hu(t−r, x) in the form (h0+h1w ′(t ))u(t−r, x) where

w(t ) is real standard Brownian motion, h0 : R −→ 2R is measurable with respect to first

argument and for each second argument, it is u.s.c. satisfying Lipschitz continuity and

h1 :R−→R is completely continuous. Thus, 3.4 can be written as
∂u(t ,x)
∂t ∈ ∂2u(t ,x)

∂x2 +h0u(t − r, x)+h1u(t − r, x)w ′(t ) 0 < x <π, t > 0

u(t ,0) = u(t ,π) = 0 t > 0

u(t , x) =φ(t , x) t ∈ [−r,0], x ∈ [0,π]

(3.5)

and setting H = Lp (0,π) and K =R and A the operator A = d 2

d x2 with domain

D(A) = {y ∈ H :
d y

d x
,

d 2 y

d x2
∈ H , y(0) = y(π) = 0},

F (u) = h0u, σ(u) = h1u and ρ(t ),τ(t ) = t − r , the problem 3.4 can be reformulated as

follows (see Caraballo and Liu [58]):du(t ) ∈ [Au(t )+F (u(σ(t )))]d t +σ(u(σ(t )))d w(t ), t > 0,

u(t ) =φ(t ), t ∈ [−r,0].
(3.6)

One can compute immediately that A generates a strongly continuous analytic semi

group S(t ) and |S(t )| ≤ Meγt , for all t ≥ 0 where γ= M = 1.

Under these assumptions, Theorem 3.3.1 applies and hence the problem 3.6 has a mild

solution.

3.4 Stochastic differential inclusion with Hilfer fractional

derivative

Let us consider the stochastic differential inclusion driven by sub-fractional Brow-

nian motion with Hilfer fractional derivative of the formDα,β
0+ x(t ) ∈ Ax(t )+F (t , xt )+ g (t )

dSH
Q

d t , t ∈ J = [0,b],

(I 1−γ
0 x)(t )|t=0 =ϕ ∈B.

(3.7)

Where Dα,β
0+ is the generalized Hilfer fractional derivative of orders α ∈ (0,1) and type

β ∈ [0,1]. A is the infinitesimal generator of strongly continuous semigroup of bounded
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linear operator {T (t )}t≥0.

Assume that F : J ×H → P (H ) is a bounded, closed and convex multivalued map,

g : J → L 0
Q (K ,H ), K is a real separable Hilbert space with product 〈., .〉K . Here

L 0
Q (K ,H ) denotes the space of all Q-Hilbert-Schmidt operators from K into H and

SH
Q is an Q-sub-fBm with Hurst parameter H ∈ ( 1

2 ,1). I 1−γ
0 is the fractional integral of

orders 1−γ (γ=α+β−αβ).

Lemma 3.4.1. Let I be a compact interval and H be a Hilbert space. Let F be an L2-

Carathéodory multivalued map with SF,x 6= ; and let Γ be a linear continuous mapping

from L2(J ,H ) to C (J ,H ). Then the operator F ◦SF : C (J ,H ) −→ Pcp,cv (H ), x −→ (Γ◦
SF )(x) = Γ(SF,x) is a closed graph operator in C (J ,H )×C (J ,H ), where SF,x is known as

the selectors set from F and given by

f ∈ SF,x = { f ∈ L2([0, t ],H ) : f (t ) ∈ F (t , x) for a.e. t ∈ [0,T ]}.

Now we introduce the space P C formed by all Ft -adapted measurable square in-

tegrable H -valued stochastic process {x(t ) : t ∈ [0,b]} with norm ‖x‖2
P C

= sup
t∈[0,b]

E‖x(t )‖2,

then (P C ,‖.‖P C ) is a Banach space.

We define P C γ = {x : (−∞,b] −→H : t 1−γx(t ) ∈P C } with norm ‖.‖P C γ defined by

‖.‖2
P C γ

= sup
t∈[0,b]

E‖t 1−γx(t )‖2.

Obviously, P C γ is a Banach space.

Let us define the operators {Sα,β(t ) : t ≥ 0} and {Pβ(t ) : t ≥ 0} by

Sα,β(t ) = Iα(1−β)
0+ Pβ(t ),

Pβ(t ) = tβ−1Tβ(t ),

Tβ(t ) =
∫ ∞

0
βθΨβ(θ)T (tβθ)dθ;

where

Ψβ(θ) =
∞∑

n=1

(−θ)n−1

(n −1)Γ(1−nβ)
,0 <β< 1,θ ∈ (0,∞)

is a function of wright type which satisfies∫ ∞

0
θξΨβ(θ)dθ = Γ(1+ξ)

Γ(1+βξ)
, ξ ∈ (−1,∞).

54



3.4. STOCHASTIC DIFFERENTIAL INCLUSION WITH HILFER FRACTIONAL
DERIVATIVE

Lemma 3.4.2. [48] The operator Sα,β and Pβ have the following properties

i) For any fixed t ≥ 0, Sα,β(t ) and Pβ are bounded linear operators, and

‖Pβ(t )x‖2 ≤ M
t 2(β−1)

(Γ(β))2
‖x‖2 and

‖Sα,β(t )x‖2 ≤ M
t 2(α−1)(1−β)

(Γ(α(1−β)+β))2
‖x‖2.

ii) {Pβ(t ) : t ≥ 0} is compact if {T (t ) : t ≥ 0} is compact.

Definition 3.4.1. An H -valued stochastic process {x(t )} is said to be mild solution of

system 3.7 if the process x satisfies the following equation:

x(t ) = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)F (s, x(s))d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s), t ∈ J .

3.4.1 Existence of Mild Solution

The convex case.

In this section, we will show the existence results of mild solutions for convex case

of system 3.7. So we impose the following assumptions to show the main results:

(H1) The operator A is the infinitesimal generator of a strongly continuous of bounded

linear operators {S(t )}t≥0 which is compact for t > 0 in H such that ∥ S(t ) ∥2≤ M for

each t ∈ [0,b].

(H2)The maps F : J ×H −→ Pcp,cv (H ) is an L2-Caratheodory function and for any

t ∈ [0,b] the multifunction t −→ F (t , x(t )) is measurable.

(H3) There exists a function hq ∈ L2(J ,H ) such that

∥ F (t , x) ∥2≤ hq (t ).

(H4) There exist a constant k ≥ 0 such that

∥ F (t , x2(t ))−F (t , x1(t )) ∥2≤ K ∥ x2 −x1 ∥2 .

(H5) There exist a constant p > 1
2β−1 such that g : J −→ L0

2(J ,H ) satisfies
b∫
0
‖g (s)‖2p

L0
2

d s <∞.
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Theorem 3.4.1. If the assumptions (H1)-(H4) are satisfied then system 3.7 has a unique

mild solution on P C γ provided that

M̃b2(β−γ)+1

(Γ(β))2(2β−1)
< 1.

Proof. For an arbitrary x, we define the operator Φ on P C γ as follows

(Φx)(t ) = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)F (s, x(s))d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

We will prove that Φ has a fixed point on P C γ, the proof will be given in serval steps.

Step1: We show that Φ maps P C γ into itself.

We divide the proof into two claims

Claim1: from lemma 3.4.2, Holder’s inequality and hypotheses (H1)-(H4), we have

E
∥∥t 1−γx(t )

∥∥2 = E

∥∥∥∥t 1−γSα,β(t )ϕ+ t 1−γ
∫ t

0
Pβ(t − s)F (s, x(s))d s + t 1−γ

∫ t

0
Pβ(t − s)g (s)dSH

Q (s)

∥∥∥∥2

≤ 3E
∥∥t 1−γSα,β(t )ϕ

∥∥2 +3E

∥∥∥∥t 1−γ
∫ t

0
Pβ(t − s)F (s, x(s))d s

∥∥∥∥2

+3E

∥∥∥∥t 1−γ
∫ t

0
Pβ(t − s)g (s)dSH

Q (s)

∥∥∥∥2

≤ I1 + I2 + I3.

I1 : = 3E
∥∥t 1−γSα,β(t )ϕ

∥∥2

≤ 3t 2(1−γ)M
t 2(γ−1)

(Γ(γ))2
E‖ϕ‖2

≤ 3
M

(Γ(γ))2
E‖ϕ‖2.
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I2 : = 3E

∥∥∥∥t 1−γ
∫ t

0
Pβ(t − s)F (s, x(s))d s

∥∥∥∥2

≤ 3b2(1−γ)E

(∫ t

0
‖Pβ(t − s)F (s, x(s))‖d s

)2

≤ 3b2(1−γ) M

(Γ(β))2
E

(∫ t

0
(t − s)(β−1)‖F (s, x(s))‖d s

)2

≤ 3Mb2α(β−1)

(Γ(β))2(2β−1)
E

∫ t

0
‖F (s, x(s))‖2d s

≤ 3Mb2α(β−1)

(Γ(β))2(2β−1)
E

∫ t

0
hq (s)d s.

I3 : = 3E

∥∥∥∥t 1−γ
∫ t

0
Pβ(t − s)g (s)dSH

Q (s)

∥∥∥∥2

≤ 3t 2(1−γ)cH (−t )2H−1
∫ t

0
‖Pβ(t − s)g (s)‖2

L 0
Q (K ,H )

d s

≤ 3b2(1−γ)cH (−b)2H−1 M

(Γ(β))2

∫ t

0
(t − s)2(β−1)‖g (s)‖2

L 0
Q (K ,H )

d s

≤ 3b2(1−γ)cH (−b)2H−1 M

(Γ(β))2

(∫ t

0
(t − s)

2p(β−1)
p−1 d s

) p−1
p

(∫ t

0
‖g (s)‖2p

L 0
Q (K ,H )

d s

) 1
p

≤ 3b1−2γ+2H cH
M

(Γ(β))2

(∫ t

0
(t − s)

2p(β−1)
p−1 d s

) p−1
p

(∫ t

0
‖g (s)‖2p

L 0
Q (K ,H )

d s

) 1
p

.

Therefore Φ maps P C γ into itself.

Claim2: We prove that (Φx)(t ) is continuous on J for any x ∈P C γ.

Let ε> 0 and t ∈ J , then
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∥ (Φx)(t +ε)− (Φx)(t ) ∥2
P C γ

= sup
0≤t≤b

E ∥ t (1−γ)((Φx)(t +ε)− (Φx)(t )) ∥2

= sup
0≤t≤b

t 2(1−γ)E ∥ (Φx)(t +ε)− (Φx)(t ) ∥2

≤ sup
0≤t≤b

t 2(1−γ)E ∥ Sα,β(t +ε)ϕ+
∫ t+ε

0
Pβ(t +ε− s)F (s, x(s))d s

+
∫ t+ε

0
Pβ(t +ε− s)g (s)dSH

Q (s)−Sα,β(t )ϕ−
∫ t

0
Pβ(t − s)F (s, x(s))d s

−
∫ t

0
Pβ(t − s)g (s)dSH

Q (s) ∥2

≤3 sup
0≤t≤b

t 2(1−γ)E ∥ Sα,β(t +ε)ϕ−Sα,β(t )ϕ ∥2 +3 sup
0≤t≤b

t 2(1−γ)

E ∥
∫ t+ε

0
Pβ(t +ε− s)F (s, x(s))d s −

∫ t

0
Pβ(t − s)F (s, x(s))d s ∥2

+3 sup
0≤t≤b

t 2(1−γ)E ∥
∫ t+ε

0
Pβ(t +ε− s)g (s)dSH

Q (s)−
∫ t

0
Pβ(t − s)g (s)dSH

Q (s) ∥2 .

By lemma3.4.2 and hypothesis (H1)-(H4), we deduce that the right hand side of the

above inequality tends to zero as ε−→ 0, then (Φx)(t ) is continuous.

Step2: (Φx) is convex for each x ∈P C γ.

If ρ1,ρ2 ∈Φ(x), then we have

ρi = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)F (s, xi (s))d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

Let 0 ≤ δ≤ 1, then for each t ∈ [0,b] we have

(δρ1 + (1−δ)ρ2)(t ) =δSα,β(t )ϕ+δ
∫ t

0
Pβ(t − s)F (s, x1(s))d s +δ

∫ t

0
Pβ(t − s)g (s)dSH

Q (s)+ (1−δ)Sα,β(t )ϕ

+(1−δ)
∫ t

0
Pβ(t − s)F (s, x2(s))d s + (1−δ)

∫ t

0
Pβ(t − s)g (s)dSH

Q (s)

=Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)(δF (s, x1(s))+ (1−δ)F (s, x2(s))d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s)

F (t , x) has a convex values, then δρ1 + (1−δ)ρ2 ∈Φ(x).

Step3: Φ is a contraction.

For any x1 and x2 ∈P C γ, we have

(Φx1)(t ) = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)F (s, x1(s))d s −

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).
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‖(Φx2)(t )− (Φx1)(t )‖2
P C γ

= sup
0≤t≤b

E
∥∥t 1−γ ((Φx2)(t )− (Φx1)(t ))

∥∥2

≤ sup
0≤t≤b

t 2(1−γ)E ‖((Φx2)(t )− (Φx1)(t ))‖2

≤ sup
0≤t≤b

t 2(1−γ)E ∥
∫ t

0
Pβ(t − s)(F (s, x2(s))−F (s, x1(s))d s ∥2

≤ sup
0≤t≤b

t 2(1−γ)E
∫ t

0
∥ Pβ(t − s)(F (s, x2(s))−F (s, x1(s)) ∥2 d s

≤b2(1−γ) M

(Γ(β))2
∥ F (s, x2(s))−F (s, x1(s)) ∥2

∫ t

0
(t − s)2(β−1)d s

≤ M̃

(Γ(β))2(2β−1)
b2(β−γ)+1 ∥ x2 −x1 ∥2 .

Step4: Φ(x) is closed for each x ∈P C γ.

Let {hn}n≥0 ∈Φ(x) such that hn −→ h in P Cγ. Then h ∈P Cγ and there exist {vn} ∈ SF,x

such that for each t ∈ J

hn(t ) = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)vn(s)d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

Due to the fact that F has compact values, we may pass to a subsequence if necessary

to get that vn converges to v in L2(J ,H ) and hence v ∈ SF,x . Then for each t ∈ J

hn(t ) −→ h(t ) = Sα,β(t )ϕ+
∫ t

0
Pβ(t − s)v(s)d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

Thus, h ∈Φ(x).

The non convex case.

In this section, we give a non convex version of system 3.7.

Let A be a subset of J ×B. A is L ⊗D measurable if A belongs to the σ-algebra

generated by all sets of the form J ×B, where J is Lebesgue measurable in J and B is

Borel measurable in B. A subset A of L2(J ,H ) is decomposable if for all w, v ∈A and

J ∈ J measurable, wXJ + vXJ−J ∈ A, where X denotes the characteristic function.

Let F : J ×H −→Pcp (H ). Assign to F the multivalued operator

F : C (J ,H ) −→P (L2(J ,H )),

Let F (x) = SF,x = { f ∈ L2(J ,H ) : f (t ) ∈ F (t , x(t )) for a.e t ∈ J }. The operator F is called

the Niemytzki operator associated to F.

Definition 3.4.2. [41] Let Y be a separable metric space and let N : Y −→ P (L2(J ,H ))

be a multivalued operator. We say that N has property (BC) if
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1) N is lower semi continuous.

2) N has nonempty closed and decomposable values .

Definition 3.4.3. [41] F : J ×H −→Pcp (H ) be a multivalued function with nonempty

compact values. We say that F is lower semi continuous type (l.s.c type) if its associated

Niemytski operator F is l.s.c and has nonempty closed and decomposable values.

Consider Hd : P (H )×P (H ) −→R∪{∞} given by Hd (A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(A,b)},

where d(A,b) = inf
a∈A

d(a,b).

Now, we give a selection theorem due to Bressan and Colombo [10].

Theorem 3.4.2. [41] Let Y be a separable metric space and let N : Y −→P (L2(J ,H )) be

a multivalued operator which has property (BC). Then N has a continuous selection, i.e.

there exists a continuous function (single-valued) g̃ : Y −→ L2(J ,H ) such that g̃ (y) ∈
N (y) for every y ∈ Y .

Lemma 3.4.3. Let (X ,d) be a complete metric space. If the multivalued operator G :

X −→Pcl (X ) is a contraction then G has at least one fixed point.

Now, we introduce the following hypothesis

(H6) F : J ×H −→P (H ) is nonempty compact valued multifunction map such that

a) (t , y) −→ F (t , y) is L ×D measurable and for every t ∈ J , the multifunction

t −→ F (t , yt ) is measurable.

b) (t , y) −→ F (t , y) is lower semi continuous for a.e.t ∈ J .

Theorem 3.4.3. Under assumption (H1)-(H6), the problem 3.7 has at least one P C γ-

mild solution.

Proof. the proof is given in serval steps.

Consider the problem 3.7 on [0,b]Dα,β
0+ x(t ) ∈ Ax(t )+F (t , xt )+ g (t )

dSH
Q

d t , t ∈ J = [0,b],

(I 1−γ
0 x)(t )|t=0 =ϕ ∈B.

(3.8)

Let P C γ = {x : (−∞,b] −→ H : t 1−γx(t ) ∈ P C }, with ∥ x ∥P C γ= (sup
t∈J

E ∥ t 1−γx(t ) ∥2)
1
2 .

Thus (P C γ,∥ . ∥P C γ) is a Banach space.

Let D =B∩P C γ.

We transform the problem into fixed point theorem. Consider the multivalued op-

erator Φ : D −→P (D) defined by

Φ(x) = {ρ ∈D : ρ(t ) = Sα,β(t )ϕ+
t∫

0

Pβ(t − s)F (s, x(s))d s +
t∫

0

Pβ(t − s)g (s)dSH
Q (s)}.
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Let φ̂ : [0,b] −→H be a function defined by φ̂(t ) = Sα,β(t )ϕ. Then φ̂(t ) is an element

of D. Let x(t ) = z(t )+ φ̂(t ) for t ∈ [0,b], with

z(t ) =
t∫

0
Pβ(t − s) f (s)d s +

t∫
0

Pβ(t − s)g (s)dSH
Q (s), where f (s) ∈ F (t , zt + φ̂t ) for a.e. t ∈

[0,b].

Let consider the operator Φ̂ : P C γ −→P (P C γ) defined by

Φ̂(z) = {ρ̂ ∈P C γ : ρ̂(t ) =
∫ t

0
Pβ(t − s) f (s)d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s)}.

Now we show that Φ̂ satisfies the assumption of lemma 3.4.3.

Step1: Φ̂(t ) ∈P C γ for each z ∈P C γ.

Let zn ∈ Φ̂(z) and ∥ zn − z ∥2
P C γ

−→ 0 for z ∈P C γ and there exist fn ∈ SF,z+φ̂ such that

zn(t ) =
∫ t

0
Pβ(t − s) fn(s)d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

Since F (t , z(t )+ φ̂(t )) is compact values and from hypothesis (H6), we pass to a subse-

quence if necessary to get that fn converges to f in L2(J ,H ).

Then for each t ∈ [0,b],

E ∥ zn(t )−
∫ t

0
Pβ(t − s) f (s)d s −

∫ t

0
Pβ(t − s)g (s)dSH

Q (s) ∥−→ 0 as n −→ 0,

so there exist a f (.) ∈ SF,zt+φ̂ such that z(t ) =
t∫

0
Pβ(t − s) f (s)d s +

t∫
0

Pβ(t − s)g (s)dSH
Q (s).

Step2: There exist δ< 1 such that E H 2
d (Φ̂(z1),Φ̂(z2)) ≤ δ ∥ z1 − z2 ∥P C γ for any z1, z2 ∈

P C γ.

Since for all h1 ∈ Φ̂(z1), there exist f1(.) ∈ SF,z1+φ̂ such that

h1(t ) =
∫ t

0
Pβ(t − s) f1(s)d s +

∫ t

0
Pβ(t − s)g (s)dSH

Q (s).

We have Hd (F (t , z1(t ))+ φ̂(t ),F (t , z2(t ))+ φ̂(t )) ≤ l (t ) ∥ z1 − z2 ∥, so there exist

h2(t ) =
t∫

0
Pβ(t − s) f2(s)d s +

t∫
0

Pβ(t − s)g (s)dSH
Q .
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We have

‖h2(t )−h1(t )‖2
P C γ

= ∥
∫ t

0
Pβ(t − s)( f2(s)− f1(s))d s ∥2

P C γ

≤ sup
0≤t≤b

t 2(1−γ)E
∫ t

0
∥ Pβ(t − s)( f2(s)− f1(s)) ∥2 d s

≤b2(1−γ) M

(Γ(β))2
l f (t ) ∥ z2(t )− z1(t ) ∥2

∫ t

0
(t − s)2(β−1)d s

≤ Ml f (t )

(Γ(β))2(2β−1)
b2(β−γ)+1 ∥ z2 − z1 ∥2

≤l̃ (t ) ∥ z1 − z2 ∥2 .

with l̃ (t ) = b2β−2γ+1

(2β−1)(Γ(β))2 Ml f (t ).

E H 2
d (Φ̂(z1)− Φ̂(z2)) ≤ l̃ (t ) ∥ z2 − z1 ∥2 . So we conclude that Φ̂ is a contraction, and

thus by lemma 3.4.3, Φ̂ has a fixed point so the problem admit at least one mild solu-

tion.

3.4.2 An example

Consider the following stochastic differential inclusion
D

1
2 , 1

4
0+ y(t ,ξ) ∈ ∂2 y(t ,ξ)

∂ξ2 +F (t , xt )+ g (t )
dSH

Q

d t , t ∈ J = [0,b],ξ ∈ [0,π],

(I 1−γ
0 y)(0) = y0,

y(t ,0) = y(t ,π) = 0.

Where D
1
2 , 1

4
0+ denotes the Hilfer fractional derivative.

Let H = L2([0,π],R), F : [0,b]×H −→P (H ) is bounded, closed and convex multival-

ued map and satisfies the condition (H1)-(H3).

The operator A : D(A) ⊂H −→H is defined by

D(A) = {y ∈H /y, y
′
are obsolutely continuous, x

′′ ∈H |y(0) = y(π) = 0}.

SH
Q is Q-sub fractional Brownian motion with Hurst parameter H ∈ ( 1

2 ,1).

I 1−γ
0 is the fractional integral of orders 1−γ.

Ay = y
′′

then Ay =
∞∑

n=1
n2 < y, yn > yn . where yn(t ) =

√
2
n sin(nt ) n = 1,2, ...

We see that A generates a compact analytic semi group {T (t )}t>0 in H .

We assume that fi : [0,b]×H −→H , i = 1,2 such that

i) f1 and f2 are u.s.c.
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ii) f1 < f2.

iii) For every s > 0 there exists a function hq ∈ L2([0,b]×H ) such that fi (t , x) ≤ hq (t ).

Let g : J −→ L0
2([0,4],H ) such that

4∫
0

sin(t )

t
1
3

d s <∞, p >−1
2 .

We take F (t , x) = [ f1(t , x), f2(t , x)].

All the assumptions in theorem 3.4.1 are verified thus this inclusion has a mild solution.
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Chapter 4

Impulsive fractional stochastic

differential inclusions

4.1 Introduction

In this section, we aim to study this interesting problem. We prove the existence of

P C - mild solutions for impulsive fractional stochastic differential inclusions driven by

sub-fractional Brownian motion with infinite delay and non-instantaneous impulses

of the form
c Dα

t x(t ) ∈ Ax(t )+F (t , xt )+ g (t )
dSH

Q

d t , t ∈ (si , ti+1], i = 0,1, ..., N

x(0) =ϕ ∈B,

x(t ) = Ii (t , xt ), t ∈ (ti , si ], i = 1, ..., N

(4.1)

Where c Dα denotes the Caputo fractional derivative operator of orderα ∈ (0,1) with

the lower limit zero; x(.) takes its values in the separable Hilbert spaces H with in-

ner product 〈., .〉H and norm ∥ . ∥H ; A is a fractional sectorial operator defined on H ;

F : J ×H → 2H − {;} is a multifunction, J := [0,b], 0 = t0 = s0 < t1 ≤ s1 ≤ s2 ≤ t2 < ... <
tN−1 ≤ sN ≤ tN ≤ tN+1 = b be prefixed numbers; g : J → L 0

Q (K ,H ), K is another real

separable Hilbert space with inner product 〈., .〉K and norm ∥ . ∥K . Here L 0
Q (K ,H )

denotes the space of all Q-Hilbert-Schmidt operators from K into H and SH
Q is an Q-

sub-fBm with Hurst parameter H ∈ ( 1
2 ,1). The history xt : (−∞,0] →H , xt (θ) = x(t +θ)

belongs to some abstract phase B, Ii ∈C ((ti , si ]×B,H ), for all i = 1, ..., N . The initial

data
{
ϕ(t ) : −∞< t ≤ 0

}
is an F0-adapted B-valued random variable independent of

the sub-fBm with infinite second moment.

64



4.2. PRELIMINARIES

4.2 Preliminaries

In this part, we discuss some basic definitions, notations, theorems, lemmas and

some basic facts about sub-fractional Brownian motion, the fractional calculus and

sectorial operators.

Let (H ,∥ . ∥H ,〈., .〉H ) and (K ,∥ . ∥K ,〈., .〉K ) the separable Hilbert spaces. The no-

tation C (J ,H ) stand for the Banach space of continuous functions from J to H with

supermum norm i.e., ∥ x ∥J= sup
t∈J

∥ x(t ) ∥ and L1(J ,H ) denotes the Banach space of

function x : J → H which are Bochner integrable normed by ∥ x ∥L1= ∫ b
0 ∥ x(t ) ∥ d t ,

for all x ∈ L1(J ,H ). A measurable function x : J →H is Bochner integrable if and only

if ∥ x ∥ is Lebesgue integrable. B(H ) is a Banach space of all linear bounded operator

from H into itself with norm ∥ F ∥B(H )= sup{∥ F (x) ∥:∥ x ∥≤ 1}.

Let (Ω,F ,P) be a complete probability space equipped with a normal filtration {Ft }t≥0

satisfying the usual conditions (i.e., right continuous and F0 containing allP-null sets).

Lemma 4.2.1. ([72]) Let x : (−∞,b] → H be an Ft -adapted measurable process such

that the F0-adapted process x0 =ϕ(t ) ∈ L0
2(Ω,B) and the restriction

x : J → LF
2 (Ω,B) is continuous, then

∥ xs ∥B≤ MbE ∥ϕ ∥B +Kb sup
0≤s≤b

E ∥ x(s) ∥B ,

where Kb = sup{K (t ) : t ∈ J } and Mb = sup{M(t ) : t ∈ J }.

We introduce the space P C formed by all Ft -adapted measurable square inte-

grable H -valued stochastic processes {x(t ) : t ∈ [0,b]} such that x is continuous at

t 6= ti , x(tt ) = x(t−t ) and x(t+t ) exist for all i = 1, ..., N . We always assume that P C is

endowed with the norm

∥ x ∥P C =
(

sup
0≤t≤b

E ∥ x(t ) ∥2
) 1

2

.

Then (P C ,∥ . ∥P C ) is a Banach space.

Definition 4.2.1. ([25]) Let {Yn}n∈N≥1 be a sequence of subsets of H . Suppose there is a

compact and convex subset Y ⊂H such that for any neighborhood N of Y there is an n

so that for any m ≥ n : Ym ⊂ N . Then
⋂

N>0
conv(

⋃
n≥N

Yn) ⊂Y .

Lemma 4.2.2. ([25]) Every semicompact sequence in L1([0,b],H ) is weakly compact in

L1([0,b],H ).
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Now, we introduce the Hausdorff measure of noncompactness χZ (.) defined by

χZ (B) = inf{ε> 0 : B admits a finite cover by balls of radius ≤ ε in Z }

for any Hilbert space Z .

Some basic properties of χZ (.) are given in the following lemma.

Lemma 4.2.3. Let Z be a real Hilbert space and B be a bounded set in Z. Then, the fol-

lowing properties are satisfied:

i. B is pre-compact if and only if χZ (B) = 0.

ii. χZ (B) = χZ (B) = χZ (convB), where B and convB are the closure and the convex

hull of B, respectively.

iii. χZ (B) ≤χZ (C ) when B ⊆C .

iv.χZ (B +C ) ≤χZ (B)+χZ (C ) where B +C = {x + y : x ∈ B , y ∈C }.

v. χZ (B ∪C ) = max{χZ (B),χZ (C )}.

vi. χZ (λB) ≤|λ |χZ (B) for any λ ∈R.

vii. If the map φ : D(φ) ⊆ Z → Z
′

is Lipschitz continuous with constant k then

χZ (φB) ≤ kχZ (B) for any bounded subset B ⊆ D(φ), where Z
′

is another real Hilbert

space.

viii. If {Vn}∞n=1 is a decreasing sequence of bounded closed nonempty subset of Z and

lim
n→∞χZ (Vn) = 0, then

∞⋂
n=1

Vn is nonempty and compact in Z .

Lemma 4.2.4. Let W be a closed convex subset of a Banach space X and R : W → Pcl (X )

be a closed multifunction which is X -condensing where X is a non singular measure of

noncompactness defined on subsets of W, then R has a fixed point.

Lemma 4.2.5. Let W be a closed subset of a Banach space X and R : W → Pk (X ) be a

closed multifunction which is X -condensing on every bounded subset of W, where X is

a monotone measure of noncompactness defined on X. if the set of fixed points for R is a

bounded subset of X then it is compact.

Lemma 4.2.6. Let (X ,d) be a complete metric space. If R : X → Pclb(X ) is contraction,

then R has a fixed point.
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Lemma 4.2.7. Let B be a bounded set in Z. Then for every ε> 0 there is a sequence (xn)n≥1

in B such that

χ(B) ≤ 2χ{xn : n ≥ 1}+ε.

Lemma 4.2.8. Let χC (J ,H ) be the Hausdorff measure of noncompactness on C (J ,H ). If

W ⊆C (J ,H ) is bounded, then for every t ∈ J ,

χ(W (t )) ≤χC (J ,H )(W )

where W (t ) = {x(t ) : x ∈ W }. Furthermore, if W is equicontinuous on J, Then the map

t →χ{x(t ) : x ∈W } is continuous on J and

χC (J ,H )(W ) = sup
t∈J

χ{x(t ) : x ∈W }.

Lemma 4.2.9. Let { fn : n ∈N} ⊂ Lp (J ,H ), p ≥ 1 be an integrable bounded sequence such

that χ{ fn : n ≥ 1} ≤ γ(t ), a.e.t ∈ J , where γ ∈ L1(J ,R+). Then for each ε > 0 there exists

a compact Kε ⊆ E, a measurable set Jε ⊂ J , with measure less than ε, and a sequence of

functions {g εn} ⊆ Lp (J ,H ), t ∈ J and

∥ fn(t )− g εn(t ) ∥< 2γ(t )+ε, for every n ≥ 1 and every t ∈ J − Jε.

Next, we are ready to recall some facts of fractional Cauchy problem. Bajlekova [18]

studied the following linear fractional Cauchy problemDc
αx(t ) = Ax(t )

x(0) = x0 ∈H
(4.2)

where A is linear closed and D(A) is dense.

Definition 4.2.2. A family {Sα(t ) : t ≥ 0} ⊂ L (H ) is called a solution operator for (4.2)

if the following conditions are satisfied:

(a) Sα(t )is strongly continuous for t ≥ 0 and Sα(t ) = I .

(b) Sα(t )D(A) ⊂ D(A) and ASα(t )x = Sα(t )Ax for x ∈ D(a) and t ≥ 0.

(c) Sα(t )x is a solution of (4.2) for all x ∈ D(A) and t ≥ 0.

Definition 4.2.3. An operator A is said to be belong to eα(M ,ω) if the solution operator

Sα(.) of 4.2 satisfies

∥ Sα(t ) ∥L (H )≤ Meωt , t ≥ 0

for some constants M ≥ 1 and ω≥ 0.
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Definition 4.2.4. A solution operator Sα(t ) of 4.2 is called analytic if it admits an ana-

lytic extension to a sectorΣθ0 = {λ ∈C−{0} : ‖ar gλ‖ < θ0} for some θ0 ∈ (0, π2 ]. An analytic

solution operator is said to be of analyticity type (θ0,ω0) if for each θ < θ0 and ω > ω0

there is an M = M(θ,ω) such that

∥ Sα(t ) ∥L (H )≤ MeωRt , t ∈Σθ
Set

eα(ω) :=⋃
{eα(M ,ω) : M ≥ 1} and eα :=⋃

{eα(ω) :ω≥ 0},

Aα(θ0,ω0) = {A ∈ eα : A generates an analytic solution operator Sα of type (θ0,ω0)}

Lemma 4.2.10. If A ∈ Aα(θ0,ω0) then

∥ Sα(t ) ∥L (H )≤ Meωt and ∥ Tα(t ) ∥L (H )≤Ceωt (1+ tα−1)

for every t > 0, ω>ω0. So putting

Ms := sup
0≤t≤b

∥ Sα(t ) ∥L (H ), MT := sup
0≤t≤b

Ceωt (1+ t 1−α).

We get

∥ Sα(t ) ∥L (H )≤ Ms ,∥ Tα(t ) ∥L (H )≤ tα−1MT . (4.3)

Definition 4.2.5. Let A ∈ Aα(θ0,ω0) with θ0 ∈ (0, π2 ] and ω0 ∈ R. A function x is called a

mild solution of (4.1) if

x(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) f (s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN

(4.4)

where f ∈ SF (.,x(.)).

SF (.,x(.) is the set of the measurable selections of the multivalued map such that SF (.,x(.)) =
{ f ∈ L2(J ,H ) : f (t ) ∈ F (t , x(t ))}.

4.3 Existence of mild solution

Theorem 4.3.1. Let A ∈ Aα(θ0,ω0) with θ ∈ (0, π2 ] and w0 ∈ R, F : J ×H →Pcv,cp (H ) a

multifunction, g : J →L 0
Q (K ,H ) and Ii ∈C ([ti , si ]×B,H ).

We assume the following conditions:

(H1) For any x ∈ H , the multifunction t → F (t , x) is measurable and for all t ∈ J ,
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x → F (t , x) is upper semicontinuous.

(H2) There exists a function ϕ ∈ L
1
q (J ,R+), q ∈ (0,α) and a nondecreasing continuous

function Θ :R+ →R+ such that for any x ∈H

∥ F (t , x) ∥≤ϕ(t )Θ ∥ x ∥
(H3) i) There exist a function β ∈ L

1
q (J ,R+), q ∈ (0,α) satisfying

4ηMT ∥β ∥
L

1
q (J ,R+)

< 1, (4.5)

where η= bα−q

w1−q and w = α−q
1−q .

ii) For every bounded subset Z ⊆H

X (F (t , Z )) ≤ β(t )X (Z ), for a.e. t ∈ J , where X is the Hausdorff measure of noncom-

pactness in H .

(H4) For g : [0,b] → L 0
Q (K ,H ) we assume the following conditions: for the com-

plete orthonormal basis {en}n∈N in K, we have:

∞∑
n=1

∥ gQ
1
2 en ∥L2([0,b],H )<∞

∞∑
n=1

∥ g (t )Q
1
2 en ∥H converges uniformly for t ∈ [0,b].

(H5) The function g : J →L 0
Q (K ,H ) satisfies

∫ b

0
∥ g (s) ∥2

L 0
Q

d s =Λ<∞.

(H6) For any i = 1,2, ..., N , Ii is continuous and there exists a positive constant hi

such that

∥ Ii (t , x) ∥2≤ hi ∥ x ∥2, x ∈H

Then the problem (4.1) has a mild solution provided that there is r > 0 such that

3Ms
2
e2ωRbE ∥ x0 ∥2 + 3

α
MT

2
bα

∫ b

0
(b − s)

α−1
2 E ∥ f (s) ∥2 d s

+3cH b2H−1
∞∑

n=1

∫ t

0
∥ Tα(b − s)Q

1
2 en ∥2

H d s ≤ r
(4.6)

Proof. We transform the problem (4.1) into a fixed point problem, we define a multi-

function R : PC (J ,H ) → 2PC (J ,H ) as follows:
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For x ∈ PC (J ,H ), R(x) is the set of all functions y ∈ R(x) such that

y(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) f (s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN

(4.7)

where f ∈ S1
F (.,x(.)). By the hypothesis (H1) the values of R are nonempty. It is easy to

see that any fixed point for R is a mild solution for 4.1. so our aim is to show, by using

lemma 4.2.5, that R has a fixed point. The proof will be given in the following steps.

Step 1. We proof that the values of R are closed.

Let x ∈ PC (J ,H ) and {yn : n ≥ 1} be a sequence in R(x) which is convergent to y in

PC (J ,H ). Then according to the definition of R, there is a sequence { fn : n ≥ 1} in

S1
F (.,x(.)) such that for any t ∈ Ji , i = 0,1, ..., N , we have

yn(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) fn(s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) fn(s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s) fn(s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN

(4.8)

By the assumption (H2) for every n ≥ 1, and for a.e. t ∈ J

∥ fn(t ) ∥≤ϕ(t )Θ(∥ x ∥) ≤ϕ(t )Θ(∥ x ∥PC (J ,H ))

This show that the set { fn : n ≥ 1} is integrally bounded. Therefore for a.e. t ∈ J { fn :

n ≥ 1} ⊂ F (t , x(t )), the set { fn : n ≥ 1} is relatively compact in H for a.e.t ∈ J . Moreover,

the set { fn : n ≥ 1} is semicompact and then by lemma 4.2.2 it is weakly compact in

L1(J ,H ). So, without loss of generality we can assume that fn converges weakly to a

function f ∈ L1(J ,H ). From Mazur’s lemma, for any j ∈N there exist a natural number

k0( j ) > j and a sequence of nonnegative real numbers λ j ,k , k = j , ...,k0( j ) such that
k0( j )∑
k= j

λ j ,k = 1 and the sequence of convex combinations z j =
k0( j )∑
k= j

λ j ,k fk , j ≥ 1 converges
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strongly to f in L1(J ,H ) as j →∞. so we can suppose that z j (t ) → f (t ) for a.e. t ∈ J .

Since F takes convex and closed values, we obtain for a.e. t ∈ J

f (t ) ∈ ⋂
j≥1

{zk (t ) : k ≥ j } ⊆ ⋂
j≥1

conv{ fk : k Ê j } ⊂ F (t , x(t )).

Noting that, by (4.3) for every t , s ∈ J , s ∈ [0, t ] and n ≥ 1

∥ Tα(t − s)zn(s) ∥≤ (t − s)α−1MTϕ(s)Θ ∥ x ∥PC (J ,H ) .

Next taking ỹn(t ) =
k( j )∑
k= j

λ j k yk ,(4.8) implies

ỹn(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s)zn(s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s)zn(s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s)zn(s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN

(4.9)

But ỹn(t ) → y(t ) and z̃n(t ) → f (t ) for a.e. t ∈ J , therefore, by tending n to ∞ in (4.9), we

get from the Lebesgue dominated convergence theorem that for every i = 0,1, ..., N .

y(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) f (s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN

(4.10)

This proves that R(x) is closed.

Step 2. Set B0 = {x ∈ PC (J ,H ) :∥ x ∥PC≤ r }. Obviously, B0 is a bounded, closed and

convex subset of PC (J ,H ). We want to prove that R(B0) ⊆ B0. to show that, let x ∈ B0
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and y ∈ R(x). By using (4.3), (4.6), (4.9); (H2) and Holder’s inequality, we get for t ∈ J0.

E
∥∥y(t )

∥∥2 = E

∥∥∥∥Sα(t )x0 +
∫ t

0
Tα(t − s) f (s)d s +

∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥2

≤ 3E ‖Sα(t )x0‖2 +3E

∥∥∥∥∫ t

0
Tα(t − s) f (s)d s

∥∥∥∥2

+3E

∥∥∥∥∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥2

≤ 3M
2
s e2ωRt E ∥ x0 ∥2 +3M

2
T

tα

α

∫ t

0
(t − s)

α−1
2 E ∥ f (s) ∥2 d s

+3cH t 2H−1
∞∑

n=1

∫ t

0
∥ Tα(t − s)Q

1
2 en ∥2 d s.

We get for every t ∈ Ji , i = 1,2, ..., N

∥ y(t ) ∥2
PC≤ r <∞.

Therefore R(B0) ⊆ B0.

Step 3. Let Z = R(B0). In this step we will show that the set defined as follows

ZpJ i
= {y∗ ∈C (J i ,H ) : y∗(t ) = y(t ), t ∈ Ji , y∗(ti ) = y(t+i )y ∈ Z }

is equicontinuous for every i = 1,2, ..., N .

Let y ∈ Z . Then there is x ∈ B0 with y ∈ R(x). According to the definition of R, there is

f ∈ S1
F (.,x(.)) such that

y(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) f (s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
N∑

i=1
Sα(t − ti )Ii (x(t−i ))+∫ t

0 Tα(t − s) f (s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ JN .

(4.11)

We consider the following cases:
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Case1. When i = 0, we consider two points t and t +δ be two points in J 0, then:

∥∥y∗(t +δ)− y∗(t )
∥∥= ∥ Sα(t +δ)x0 +

∫ t+δ

0
Tα(t +δ− s) f (s)d s +

∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)

−Sα(t )x0 −
∫ t

0
Tα(t − s) f (s)d s −

∫ t

0
Tα(t − s)g (s)dSH

Q (s) ∥

= ∥ (Sα(t +δ)−Sα(t ))x0 +
∫ t+δ

0
Tα(t +δ− s) f (s)d s −

∫ t

0
Tα(t − s) f (s)d s

+
∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−
∫ t

0
Tα(t − s)g (s)dSH

Q (s) ∥

= ∥ (Sα(t +δ)−Sα(t ))x0 +
∫ t

0
(Tα(t +δ− s)−Tα(t − s)) f (s)d s

+
∫ t+δ

t
Tα(t +δ− s) f (s)d s +

∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s)

+
∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s) ∥

≤ ∥ (Sα(t +δ)−Sα(t ))x0 ∥ + ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s)) f (s)d s ∥

+ ∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥ + ∥

∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥

+ ∥
∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s) ∥,

E ∥ y∗(t +δ)− y∗(t ) ∥2≤3E ∥ (Sα(t +δ)−Sα(t ))x0 ∥2

+3E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s)) f (s)d s ∥2

+3E ∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2

+3E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2

+3E ∥
∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s) ∥2:= 3(G1 +G2 +G3 +G4 +G5).

(4.12)
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Where

G1 = E ∥ (Sα(t +δ)−Sα(t ))x0 ∥2,

G2 = E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s)) f (s)d s ∥2,

G3 = E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2,

G4 = E ∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2,

G5 = E ∥
∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s) ∥2 .

We only need to check Gi → 0 as δ→ 0 for every i = 1,2,3,4,5.

for G1 we have

G1 = E ∥ Sα(t +δ)−Sα(t ))x0 ∥2

≤∥ Sα(t +δ)−Sα(t ) ∥2 E ∥ x0 ∥2

≤∥ Sα(t +δ)−Sα(t ) ∥2 r
1
2 .

sup
0≤t≤b

E ∥ Sα(t +δ)−Sα(t ))x0 ∥2≤ sup
0≤t≤b

∥ Sα(t +δ)−Sα(t ) ∥ r
1
2

∥ (Sα(t +δ)−Sα(t ))x0 ∥2
PC≤ sup

0≤t≤b
∥ Sα(t +δ)−Sα(t ) ∥ r

1
2

lim
δ→0

∥ (Sα(t +δ)−Sα(t ))x0 ∥2
PC≤ lim

δ→0
sup

0≤t≤b
∥ Sα(t +δ)−Sα(t ) ∥ r

1
2 = 0.

uniformly for x ∈ B0.

For G2, we apply the Lebesgue dominated convergence theorem to get

G2 = E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s)) f (s)d s ∥2

≤ E

(∫ t

0
∥ (Tα(t +δ− s)−Tα(t − s)) ∥∥ f (s) ∥ d s

)2

sup
0≤t≤b

G2 ≤ sup
0≤t≤b

E

(∫ t

0
∥ (Tα(t +δ− s)−Tα(t − s)) ∥∥ f (s) ∥ d s

)2

lim
δ→0

sup
0≤t≤b

G2 ≤ lim
δ→0

sup
0≤t≤b

E

(∫ t

0
∥ (Tα(t +δ− s)−Tα(t − s)) ∥∥ f (s) ∥ d s

)2

= 0.
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For G3 we use holder’s inequality we obtain

∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥=∥
∫ t

0
Tα(t +δ− s)g (s)dSH

Q (s)

−
∫ t

0
Tα(t − s)g (s)dSH

Q (s) ∥

≤∥
∫ t

0
Tα(t +δ− s)g (s)dSH

Q (s) ∥ + ∥
∫ t

0
Tα(t − s)g (s)dSH

Q (s) ∥

≤ sup
0≤t≤b

Tα(t +δ− s) ∥
∫ t

0
g (s)dSH

Q (s) ∥ + sup
0≤t≤b

Tα(t − s) ∥
∫ t

0
g (s)dSH

Q (s) ∥

≤ (t +δ− s)α−1M T ∥
∫ t

0
g (s)dSH

Q (s) ∥ +M
T

(t − s)α−1 ∥
∫ t

0
g (s)dSH

Q (s) ∥

∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2 ≤ 2(t +δ− s)2(α−1)M
2
T ∥

∫ t

0
g (s)dSH

Q (s) ∥2

+2M
2
T (t − s)2(α−1) ∥

∫ t

0
g (s)dSH

Q (s) ∥2

E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2≤ 2(t +δ− s)2(α−1)M
2
T E ∥

∫ t

0
g (s)dSH

Q (s) ∥2

+2M
2
T (t − s)2(α−1)E ∥

∫ t

0
g (s)dSH

Q (s) ∥2

≤ 2(t +δ− s)2(α−1)M
2
T cH t 2H−1

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s

+2M
2
T (t − s)2(α−1)cH t 2H−1

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s

sup
0≤t≤b

E ∥
∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2≤ sup
0≤t≤b

[
2(t +δ− s)2(α−1)M

2
T cH t 2H−1

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s +2M
2
T (t − s)2(α−1)cH

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s
]

(
sup

0≤t≤b
E ∥

∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2
) 1

2 ≤
(

sup
0≤t≤b

[2(t +δ− s)2(α−1)M
2
T cH t 2H−1

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s +2M
2
T (t − s)2(α−1)cH t 2H−1

∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s]
) 1

2
.

lim
δ→0

(
sup

0≤t≤b
E ∥

∫ t

0
(Tα(t +δ− s)−Tα(t − s))g (s)dSH

Q (s) ∥2
) 1

2

≤ 2(t − s)α−1c
1
2
H t

2H−1
2

(∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s

) 1
2

.
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∥
∫ t

0
[Tα(t +δ− s)−Tα(t − s)]g (s)dSH

Q (s) ∥PC ≤ 2(t − s)α−1c
1
2
H t

2H−1
2

(∫ t

0
∥ g (s) ∥2

L 0
Q (K ,H )

d s

) 1
2

.

For G4, by the Holder’s inequality we have

∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥ ≤

∫ t+δ

t
∥ Tα(t +δ− s) ∥∥ f (s) ∥ d s

≤
∫ t+δ

t
(t +δ− s)α−1M T ∥ f (s) ∥ d s

≤ M T

∫ t+δ

t
(t +δ− s)α−1 ∥ f (s) ∥ d s

≤ M T

(∫ t+δ

t
(t +δ− s)(α−1)p d s

) 1
p
(∫ t+δ

t
∥ f (s) ∥q d s

) 1
q

≤ M T

(∫ t+δ

t
(t +δ− s)

(α−1)q
q−1 d s

) q−1
q

(∫ t+δ

t
∥ϕq (s) ∥Θp ∥ x ∥ d s

) 1
p

≤ M T

(∫ t+δ

t
(t +δ− s)

α−1
q−1 d s

)q−1

Θ ∥ x ∥
(∫ t+δ

t
∥ϕq (s) ∥ d s

) 1
q

≤ M T

(
δω

ω

)q−1

Θ ∥ x ∥∥ϕ ∥
L

1
q (J ,R+)

.

Where ω=
(
α−1
q−1

)
q +1

∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥ ≤ M T

(
δω

ω

)q−1

Θ ∥ x ∥∥ϕ ∥
L

1
q (J ,R+)

∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2 ≤ M

2
T

(
δω

ω

)2(q−1)

Θ2 ∥ x ∥∥ϕ ∥2

L
1
q (J ,R+)

E ∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2 ≤ M

2
T

(
δω

ω

)2(q−1)

E

(
Θ2 ∥ x ∥∥ϕ ∥2

L
1
q (J ,R+)

)
sup

0≤t≤b
E ∥

∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2 ≤ sup

0≤t≤b
M

2
T

(
δω

ω

)2(q−1)

E

(
Θ2 ∥ x ∥∥ϕ ∥2

L
1
q (J ,R+)

)
(

sup
0≤t≤b

E ∥
∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2

) 1
2

≤
(

sup
0≤t≤b

M
2
T

) 1
2
(
δω

ω

)q−1

E
1
2

(
Θ2 ∥ x ∥∥ϕ ∥2

L
1
q (J ,R+)

)

lim
δ→0

(
sup

0≤t≤b
E ∥

∫ t+δ

t
Tα(t +δ− s) f (s)d s ∥2

) 1
2

≤ 0.

For G5 we have
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∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)
∥∥∥≤ sup

0≤t≤b
Tα(t +δ− s)

∥∥∥∫ t+δ

t
g (s)dSH

Q (s)
∥∥∥∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥≤ sup
0≤t≤b

Tα(t +δ− s)

∥∥∥∥∫ t+δ

t
g (s)dSH

Q (s)

∥∥∥∥
∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥2

≤
(

sup
0≤t≤b

Tα(t +δ− s)

)2 ∥∥∥∥∫ t+δ

t
g (s)dSH

Q (s)

∥∥∥∥2

E

∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥2

≤
(

sup
0≤t≤b

Tα(t +δ− s)

)2

E

∥∥∥∥∫ t+δ

t
g (s)dSH

Q (s)

∥∥∥∥2

≤ M 22H(t +δ− s)2H−1
∫ t+δ

t
∥ g (s) ∥2

L0
Q (K ,H )

d s.

sup
0≤t≤b

E

∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥2

≤ M 22Hδ2H−1
∫ t+δ

t

∥∥g (s)
∥∥2

L0
Q (K ,H ) d s

(
sup

0≤t≤b
E

∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥2) 1
2

≤ M
p

2Hδ
2H−1

2

(∫ t+δ

t

∥∥g (s)
∥∥2

L0
Q (K ,H ) d s

) 1
2

.

lim
δ→0

(
sup

0≤t≤b
E

∥∥∥∥∫ t+δ

t
Tα(t +δ− s)g (s)dSH

Q (s)

∥∥∥∥2) 1
2

≤ 0.

Case2. For i ∈ {1,2, ..., N }, let t , t +δ be two points in Ji . According to the definition of

R, we have

∥ y∗(t +δ)− y∗(t ) ∥=∥ y(t +δ)− y(t ) ∥ .

∥ y(t +δ)− y(t ) ∥ =∥ Sα(t +δ)x0 +
N∑

i=1
Sα(t +δ− ti )Ii (x(t−i ))+

∫ t+δ

0
Tα(t +δ− s) f (s)d s

+
∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−Sα(t )x0 −
N∑

i=1
Sα(t − ti )Ii (x(t−i ))

−
∫ t

0
Tα(t − s) f (s)d s −

∫ t

0
Tα(t − s)g (s)dSH

Q (s) ∥ .
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∥ y(t +δ)− y(t ) ∥ ≤∥ (Sα(t +δ)−Sα(t )) x0 ∥ +
i∑

k=1

∥∥Sα(t +δ− tk )Ik (x(t−k ))−Sα(t − tk )Ik (x(t−k ))
∥∥

+
∥∥∥∥∫ t+δ

0
Tα(t +δ− s) f (s)d s −

∫ t

0
Tα(t − s) f (s)d s

∥∥∥∥
+

∥∥∥∥∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−
∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥

∥ y(t +δ)− y(t ) ∥2 ≤ 3 ∥ (Sα(t +δ)−Sα(t )) x0 ∥2 +3
i∑

k=1

∥∥Sα(t +δ− tk )Ik (x(t−k ))−Sα(t − tk )Ik (x(t−k ))
∥∥2

+3

∥∥∥∥∫ t+δ

0
Tα(t +δ− s) f (s)d s −

∫ t

0
Tα(t − s) f (s)d s

∥∥∥∥2

+3

∥∥∥∥∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−
∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥2

.

E ∥ y(t +δ)− y(t ) ∥2 ≤ 3E ∥ (Sα(t +δ)−Sα(t )) x0 ∥2

+3E
i∑

k=1

∥∥Sα(t +δ− tk )Jk (x(t−k ))−Sα(t − tk )Ik (x(t−k ))
∥∥2

+3E

∥∥∥∥∫ t+δ

0
Tα(t +δ− s) f (s)d s −

∫ t

0
Tα(t − s) f (s)d s

∥∥∥∥2

+3E

∥∥∥∥∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−
∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥2

.

sup
0≤t≤b

E ∥ y(t +δ)− y(t ) ∥2 ≤ 3 sup
0≤t≤b

E ∥ (Sα(t +δ)−Sα(t )) x0 ∥2

+3 sup
0≤t≤b

E
i∑

k=1

∥∥Sα(t +δ− tk )Jk (x(t−k ))−Sα(t − tk )Ik (x(t−k ))
∥∥2

+3 sup
0≤t≤b

E

∥∥∥∥∫ t+δ

0
Tα(t +δ− s) f (s)d s −

∫ t

0
Tα(t − s) f (s)d s

∥∥∥∥2

+3 sup
0≤t≤b

E

∥∥∥∥∫ t+δ

0
Tα(t +δ− s)g (s)dSH

Q (s)−
∫ t

0
Tα(t − s)g (s)dSH

Q (s)

∥∥∥∥2

.

As in the first case we get

lim
δ→0

∥ y(t +δ)− y(t ) ∥PC= 0.

Case3. When t = ti , i = 1,2, ..., N , let λ > 0 be such that ti +λ ∈ Ji and σ > 0 such that
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ti <σ< ti +δ≤ ti+1, then we have

∥ y∗(ti +δ)− y∗(ti ) ∥PC= lim
σ→t+i

∥ y(ti +δ)− y(σ) ∥PC .

According to the definition of R we get

∥ y(ti +δ)− y(σ) ∥ =∥ Sα(ti +δ)x0 +
N∑

k=1
Sα(ti +δ− tk )Ik (x(t−k ))+

∫ ti+δ

0
Tα(ti +δ− s) f (s)d s

+
∫ ti+δ

0
Tα(ti +δ− s)g (s)dSH

Q (s)−Sα(σ)x0 −
N∑

k=1
Sα(σ− tk )Ik (x(t−k ))

−
∫ σ

0
Tα(σ− s) f (s)d s −

∫ t

0
Tα(σ− s)g (s)dSH

Q (s) ∥ .

∥ y(ti +δ)− y(σ) ∥ ≤∥ (Sα(ti +δ)−Sα(σ)) x0 ∥ +
∥∥∥∥∥ N∑

k=1
(Sα(ti +δ− tk )−Sα(σ− tk )) Ik (x(t−k ))

∥∥∥∥∥
+

∥∥∥∥∫ ti+δ

0
Tα(ti +δ− s) f (s)d s −

∫ σ

0
Tα(σ− s) f (s)d s

∥∥∥∥
+

∥∥∥∥∫ ti+δ

0
Tα(ti +δ− s)g (s)dSH

Q (s)−
∫ σ

0
Tα(σ− s)g (s)dSH

Q (s)

∥∥∥∥ .

Arguing as in the first case we can see that

lim
δ→0,σ→t+i

∥ y(ti +δ)− y(σ) ∥= 0 (4.13)

From the inequalities (4.12)-(4.13) we conclude that ZpJ i
is equicontinuous for every

i = 1,2, ..,m.

Now for every n ≥ 1, the set Bn = convR(Bn−1). From step 1, Bn is a nonempty, closed

and convex subset of P C (J ,H ). Moreover B1 = convR(B0) ⊆ B0. Also B2 = convR(B1) ⊆
convR(B0) ⊆ B1 by induction the sequence (Bn), n ≥ 1 is decreasing sequence of nonempty,

closed and bounded subsets of P C (J ,H ).

We need only to show that the subset B =
∞⋂

n=1
Bn is nonempty and compact in P C (J ,H ).

by lemma4.2.3, it is enough to show that

lim
n→∞χPC (Bn) = 0. (4.14)

where χPC is the Hausdorff measure of noncompactness on PC (J ,H ) defined in sec-

tion 2. In the next step we prove the equation (4.14).

Step 4. Let n ≥ 1 be a fixed natural number and ε > 0. In view of lemma4.2.7, there
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4.3. EXISTENCE OF MILD SOLUTION

exists a sequence (yk )k≥1 in R(Bn−1) such that

χPC (Bn) =χPC R(Bn−1) ≤ 2χk
{

yk : k ≥ 1
}+ε.

From the definition of χPC , the above inequality becomes

χPC (Bn) ≤ 2 max
i=0,1,...,N

χi (SpJ i
)+ε (4.15)

Where S = {
yk : k ≥ 1

}
andχi is the Hausdorff measure of noncompactness on C (J i ,H ).

As we have done in the previous step, we can show that BnpJ i
, i = 0,1, ..., N is equicon-

tinuous. Then, by applying lemma4.2.9 we get:

χi (SpJ i
) = sup

t∈J i

χ(S(t )),

where χ is the Hausdorff measure of noncompactness on Z. Therefore, by using the

nonsingularity of χ, the inequality (4.15) becomes

χPC (Bn) ≤ 2 max
i=0,1,...,N

[
sup
t∈J i

χ(S(t ))

]
+ε= 2sup

t∈J
χ(S(t )) = 2sup

t∈J
χ

{
yk (t ) : k ≥ 1

}+ε (4.16)

Now, since yk ∈ R(Bn−1), k ≥ 1 there exists xk ∈ Bn−1 such that yk ∈ R(xk ), k ≥ 1. By

recalling the definition of R for every k ≥ 1 there is fk ∈ S1
F (.,xk (.)) such that for every t ∈ J

χ
{

yk (t ) : k ≥ 1
}≤



χ {Sα(t )x0}+χ{∫ t
0 Tα(t − s) fk (s)d s : k ≥ 1

}
+χ

{∫ t
0 Tα(t − s)gk (s)dSH

Q (s) : k ≥ 1
}

, t ∈ J0

.

.

.

χ {Sα(t )x0}+
N∑

p=1
χ

{
Sα(t − tp )Ip (x(t−p )) : k Ê 1

}
+χ{∫ t

0 Tα(t − s) fk (s)d s : k ≥ 1
}+χ{∫ t

0 Tα(t − s)gk (s)dSH
Q (s) : k ≥ 1

}
, t ∈ JN

(4.17)

Hence, for every t ∈ J we have

χ{Sα(t )x0 : k ≥ 1} = 0. (4.18)

Moreover for every p = 1,2, ..., N and every t ∈ J

χ{Sα(t − tp )(Ip (xk (t−p ))) : k ≥ 1} = 0. (4.19)
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4.3. EXISTENCE OF MILD SOLUTION

In order to be able to estimate

χ{
∫ t

0 Tα(t − s) fk (s)d s : k ≥ 1}

We can see that from (H3) it holds that for a.e. t ∈ J

χ{ fk (t ) : k ≥ 1} ≤χ{F (t , xk (t )) : k ≥ 1}

≤β(t )χ{xk (t ) : k ≥ 1}

≤β(t )χ(Bn−1(t ))

≤β(t )χPC (Bn−1(t )) = γ(t ).

Furthermore, for any k ≥ 1, by (H2), for almost t ∈ J , we have ∥ fk (t ) ∥≤ϕ(t )Θ(r ). Con-

sequently, fk ∈ L
1
q (J ,H ), k ≥ 1. Note that γ ∈ L

1
q (J ,R+). Then from lemma4.2.9, there

exists a compact set Kε ⊆ H and a measurable set Jε ⊂ J . With a measure less than ε,

and a sequence of functions {g εk } ⊂ L
1
q (J ,H ) such that for every s ∈ J , {g εk (s) : k ≥ 1} ⊆

Kε, and ∥ fk (s)− g εk (s) ∥≤ 2γ(s)+ε, for every k ≥ 1 and every s ∈ J
′
ε = J − Jε, then using

Minkowski’s inequality, we get

∥
∫

J
′
ε

Tα(t − s)( fk (s)− g εk (s))d s ∥ ≤ M Tη

[∫
J
′
ε

(2γ(s)+ε)
1
q d s

]q

≤ M Tη ∥ 2γ(s)+ε ∥
L

1
q (J ,R+)

≤ M Tη

[
∥ 2γ(s) ∥

L
1
q (J ,R+)

+ ∥ ε ∥
L

1
q (J ,R+)

]
≤ M Tη

[
∥ 2γ(s) ∥

L
1
q (J ,R+)

+2 ∥ ε ∥
L

1
q (J ,R+)

]
≤ 2M Tη

[
∥ γ(s) ∥

L
1
q (J ,R+)

+
(∫

J
ε

1
q d s

)q]
≤ 2M Tη

[
∥ γ(s) ∥

L
1
q (J ,R+)

+εbq
]

≤ 2M Tη

[
∥βχPC (Bn−1) ∥

L
1
q (J ,R+)

+εbq
]

≤ 2M Tη

[
χPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

+εbq
]

.

Finally we get:

∥∥∥∫
J
′
ε

Tα(t − s)( fk (s)− g εk (s))d s
∥∥∥≤ 2M Tη

[
χPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

+εbq
]

(4.20)
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4.3. EXISTENCE OF MILD SOLUTION

By Holder’s inequality, we have:

∥
∫

Jε
Tα(t − s) fk (s)d s ∥ ≤

∫
Jε
∥ Tα(t − s) ∥∥ fk (s) ∥ d s

≤
(∫

Jε
∥ Tα(t − s) ∥ 1

p d s

)p (∫
Jε
∥ fk (s) ∥ 1

q d s

)q

≤
(
(t − s)

α
p

)p
(

M
1
p

T

)p (∫
Jε

d s

)p (∫
Jε
∥ fk (s) ∥ 1

q d s

)q

≤ ηM T

(∫
Jε

(
Θ(r )ϕ(s)

) 1
q d s

)q

≤ ηM TΘ(r )

(∫
Jε
ϕ

1
q (s)d s

)q

.

Consequently we get

∥
∫

Jε
Tα(t − s) fk (s)d s ∥≤ ηM TΘ(r )

(∫
Jε
ϕ

1
q (s)d s

)q

(4.21)

So by (4.20) (4.21), we derive

χ

{∫ t

0
Tα(t − s) fk (s)d s : k ≥ 1

}
≤χ

{∫
J
′
ε

Tα(t − s) fk (s)d s : k ≥ 1

}
+χ

{∫
Jε

Tα(t − s) fk (s)d s : k ≥ 1

}
≤χ

{∫
J
′
ε

Tα(t − s)
(

fk (s)− g εk (s)
)

d s : k ≥ 1

}
+χ

{∫
J
′
ε

Tα(t − s)g εk (s)d s : k ≥ 1

}
+χ

{∫
Jε

Tα(t − s) fk (s)d s : k ≥ 1

}
≤ 2M Tη

[
χPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

+εbq
]
+

ηM TΘ(r )

(∫
Jε
ϕ

1
q (s)d s

)q

.

By taking into account that ε is arbitrary, we get for all t ∈ J

χ

{∫ t

0
Tα(t − s) fk (s)d s : k ≥ 1

}
≤ 2M TηχPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

.

In order to estimate

χ

{∫ t

0
Tα(t − s)gk (s)dSH

Q : k ≥ 1

}
.
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We use lemma 1.5.7 in order to calculate the following majoration:

E ∥
∫ t

0
Tα(t − s)gk (s)dSH

Q (s) ∥2
H≤ cH t 2H−1

∞∑
n=1

∫ t

0
∥ Tα(t − s)gk (s)Q

1
2 en ∥2

H d s

sup
0≤t≤b

E ∥
∫ t

0
Tα(t − s)gk (s)dSH

Q (s) ∥2
H≤ cH t 2H−1

∞∑
n=1

∫ b

0
∥ Tα(t − s)gk (s)Q

1
2 en ∥2

H d s

∥
∫ t

0
Tα(t − s)gk (s)dSH

Q (s) ∥2
PC≤ cH t 2H−1

∞∑
n=1

∫ b

0
∥ Tα(t − s)gk (s)Q

1
2 en ∥2

H d s.

In an other hand we have:

∞∑
n=1

∫ b

0
∥ Tα(t − s)gk (s)Q

1
2 en ∥2

H d s ≤
∞∑

n=1

∫ b

0
∥ Tα(t − s) ∥2∥ gk (s)Q

1
2 en ∥2

H d s

≤
∞∑

n=1
∥ gk (s)Q

1
2 en ∥2

H

∫ b

0
∥ Tα(t − s) ∥2 d s

≤ M
2
T

b2α−1

2α−1

∞∑
n=1

∥ gk (s)Q
1
2 en ∥2

H ,

and we know that ∞∑
n=1

∥ gk (s)Q
1
2 en ∥2

H<∞

So we have

∥
∫ t

0
Tα(t − s)gk (s)dSH

Q (s) ∥PC≤ cH
b2H+2α−2

2α−1
M

2
T K .

where

K =
∞∑

n=1
∥ gk (s)Q

1
2 en ∥2

H<∞

Then for every t ∈ J

χ

{∫ b

0
Tα(t − s)g (s)dSH

Q (s) : k ≥ 1

}
≤ 0,

χ
{

yk (t ) : k ≥ 1
}≤ 2M TηχPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

.

The inequality (4.16) and the fact that ε is arbitrary, imply

χPC (Bn) ≤ 2

[
2M TηχPC (Bn−1) ∥β ∥

L
1
q (J ,R+)

]
.
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By the previous steps (1,2,3,4) we find that:

0 ≤χPC (Bn) ≤
(
4M Tη ∥β ∥

L
1
q (J ,R+)

)n−1

χPC (B1)

Since this inequality is true for every n ∈N, by (4.5) and by tending n →∞, we obtain

lim
n→∞χPC (Bn) = 0.

Step 5. In this step, we will apply lemma4.2.3. The goal is to prove that the set B =
∞⋂

n=1
Bn is a nonempty and compact subset of PC (J ,H ). Moreover for every Bn being

bounded, closed and convex, B is also bounded closed and convex. Let us check that

R(B) ⊆ B . Indeed, R(B) ⊆ R(Bn) ⊆ convR(Bn) = Bn+1.

For every n ≥ 1, therefore R(B) ⊂
∞⋂

n=2
Bn . On the other hand Bn ⊂ B1 for every n ≥ 1. So,

R(B) ⊂
∞⋂

n=2
Bn =

∞⋂
n=1

Bn = B

Step 6. In this step we show that the graph of the multi-valued function RpB : B → 2B is

closed. We consider a sequence {xn}n≥1 inH with xn → x in H and let yn ∈ R(xn) with

yn → y in PC (J ,H ). we will show that y ∈ R(x). By recalling the definition of R, there is

fn ∈ S1
F (.,xn (.)) for any n ≥ 1, such that

yn(t ) =



Sα(t )x0 +
∫ t

0 Tα(t − s) fn(s)d s +∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ J0

Sα(t )x0 +Sα(t − t1)I1(t−1 )+∫ t
0 Tα(t − s) f (s)d s +∫ t

0 Tα(t − s)g (s)dSH
Q (s), t ∈ J1

.

.

.

Sα(t )x0 +
i∑

k=0
Sα(t − tk )Ik (x(t−k ))+∫ t

0 Tα(t − s) fn(s)d s

+∫ t
0 Tα(t − s)g (s)dSH

Q (s), t ∈ Ji ,1 ≤ i ≤ N
(4.22)

Observe that for every n ≥ 1 and for a.e. t ∈ J

∥ fn(t ) ∥≤ϕ(t )Θ(∥ xn(t ) ∥) ≤ϕ(t )Θ(r )

This show that the set {{ fn : n ≥ 1} is integrably bounded. In addition, the set {{ fn(t ) :

n ≥ 1} is relatively compact for a.e. t ∈ J by the assumption (H3) and the convergence
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of {xn}n≥1, imply that

χ{ fn(t ) : n ≥ 1} ≤χ{F (t , xn) : n ≥ 1} ≤β(t )χ{xn(t ) : n ≥ 1},

then χ{ fn(t ) : n ≥ 1} = 0.

So the sequence { fn}n≥1} is semi-compact, hence by lemma4.2.2 it is weakly compact

in L1(J ,H ). So without loss of generality we can assume that fn converges weakly to

a function L1(J ,H ). From Mazur’s lemma, for every j ∈ N there exist a natural num-

ber k0( j ) > j and a sequence of nonnegative real numbers λ j ,k ,k = j , ...,k0( j ) such that
k0( j )∑
k= j

λ j ,k = 1 and the sequence of convex combinations z j =
k0( j )∑
k= j

λ j ,k fk , j ≥ 1 converges

strongly to f in L1(J ,H ) as j →∞. So we may suppose that z j (t ) → f (t ) for a.e.t ∈ J .

Let t be such that F (t , .) is upper semicontinuous. Then, for any neighborhood U of

F (t , .), there is a natural number n0 ∈N so that for any n ≥ n0 we have F (t , xn(t )) ⊆U .

Because the values of F are convex and compact, definition4.2.1 tells us that⋂
j≥1

conv

( ⋃
n≥ j

F (t , xn(t ))

)
⊆ F (t , x(t )).

As in step 1, from Mazur’s theorem, there is a sequence {zn : n ≥ 1} of convex combina-

tions of fn such that for a.e.t ∈ J

f (t ) ∈ ⋂
j≥1

{zn(t ) : n ≥ j } ⊆ ⋂
j≥1

conv{{ fn(t ) : n ≥ j }

and zn converges strongly to f ∈ L1(J ,H ). then, for a.e. t ∈ J

f (t ) ∈ ⋂
j≥1

{zn(t ) : n ≥ j } ⊆ ⋂
j≥1

conv{{ fn(t ) : n ≥ j } ⊆ ⋂
j≥1

conv

( ⋃
n≥ j

F (t , xn(t ))

)
⊆ F (t , x(t )).

Then, by the continuity of g, Sα,Tα, Ik (k = 1,2, ..., N ) and by the same arguments used

in step 1, we get from relation 4.22 that

y(t ) =



Sα(t )x0 +
∫ t

0 (t − s)α−1Tα(t − s) f (s)d s +∫ t
0 (t − s)α−1Tα(t − s)g (s)dSH

Q (s), t ∈ J0

.

.

.

Sα(t )x0 +
i∑

k=0
Sα(t − tk )Ik (x(t−k ))+∫ t

0 (t − s)α−1Tα(t − s) f (s)d s

+∫ t
0 (t − s)α−1Tα(t − s)g (s)dSH

Q (s), t ∈ Ji ,1 ≤ i ≤ N
(4.23)

Therefore, y ∈ R(x). This show that the graph of R is closed.

As a result of the step 1-5 the multivalued RpB : B → 2B is closed and χPC -condensing,

with nonempty convex compact values. By applying the fixed point theorem and lemma4.2.4

there exist x ∈ B such that x ∈ R(x). Then x is a PC-mild solution for the problem

4.1.
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4.4 Example

We consider the differential stochastic inclusion of the form
c D

1
2
t y(t , z) ∈∆y(t , z)+F (t , yt )+ g (t )

dSH
Q

d t t ∈ [0,1], z ∈ [0,π]

y(t ,0) = y(t ,π) = 0

y(τ, z) =ϕ(τ, z)(τ, z) ∈ [0,1]× [0,π]

y(t , z) = ∫ t
0 ηi (t − s)y(s, z)d s

Where ηi :R−→R is continuous.

We take H = L2[0,1] Hilbert spaces endowed with the norm ∥ . ∥ and

g : J −→L 0
Q (H ,H ), where L 0

Q (H ,H ) be the space of all operators Q Hilbert Schmidt.

Now we define the operator A =∆.

D(A) = {u ∈C 2+λ[0,π] : u(0) =π and u(π) = 0},

it is easy to see that the operator A is sectorial.

Now we suppose that fi : [0,1]×H −→H

i f1, f2 are measurable and upper semi continuous.

ii f1, f2 are increasing functions.

iii fi (t ) <ϕ(t )Θ ∥ x ∥, i = 1,2.

Then we can transform the problem as follows
c Dα

t x(t ) ∈ Ax(t )+F (t , xt )+ g (t )
dSH

Q

d t , t ∈ (si , ti+1], i = 0,1, ..., N

x(0) =ϕ ∈B,

x(t ) = Ii (t , xt ), t ∈ (ti , si ], i = 1, ..., N

From our assumptions on (i)-(ii) it follows that the multivalued function satisfy the

conditions (H1)− (H2).

All the assumptions in theorem (3.1) are satisfied so our inclusion has a mild solution.
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Conclusion

The main goal of this thesis is to investigate the subject of fractional stochastic differ-

ential equations and inclusions in Hilbert spaces. We study some classes of stochastic

differential equations and inclusions with caputo and Hilfer fractional derivative with

an impulsive condition, Sufficient conditions for the existence of P C -mild solution

are established by using the theory of fixed point and the principle of fractional calcu-

lus. We studied the convex case and non convex case.

The main results are obtained by means of the theory of sectorial operators, semigroup

analysis, fractional calculus, fixed point, and stochastic analysis theory and methods

adopted directly from deterministic fractional inclusion.

Our future work will try to make some the above results and study the approximate

controllability for impulsive fractional neutral stochastic inclusions with Hilfer deriva-

tive driven by sub-Fractional Brownian motion with infinite delay and sectorial opera-

tors.
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Titre de la thèse : Une Contribution à l'étude de certaines classes d'inclusions différentielles 

stochastiques non-linéaires. 

 Résumé: Dans cette thèse, nous avons étudié le problème des inclusions 

différentielles stochastique fractionnaire dirigé par le mouvement Brownien 

sous-fractionnaire dans l'espace de Hilbert. Nous avons étudié l'existence de la 

solution PC-mild en utilisant la théorie du point fixe. Un exemple est donné 

pour illustrer la théorie retenue. 

Mots clé :  Solution mild, Inclusions différentielle stochastique fractionnaire impulsive, 

Mouvement Brownien fractionnaire, Operateur sectoriel. 

Thesis title : A contribution to the study of certain classes of nonlinear stochastic differential 

inclusions. 

Abstract: The research reported in this thesis deals with the problem of 

fractional stochastic differential inclusion driven by Sub-fractional Brownian 

motion in Hilbert space. We have study the existence of PC-mild solution by 

using the fixed point theory. An example is given to illustrate the obtained 

theory. 

Keywords:  Mild solution, Impulsive fractional stochastic differential inclusions, Fractional 

Brownian motion, Fractional sectorial operators, Infinite delay. 

 
عنوان الاطروحة مساهمة فى دراسة فئات معينة من الاحتواءات 

غير خطية العشوائيةالتفاضلية   

الملخلص في هذه الأطروحة درسنا مشكلة الاحتواءات التفاضلية 

العشوائية الجزئية التي تحركها الحركة البراونية الجزئية في فضاء 

 النقطة الثابتة معتدل باستخدام نظرية لقد درسنا وجود الحل .هلبرت

.                       يتم إعطاء مثال لتوضيح النظرية المعتمدة  

الكلمات المفتاحية الاحتواءات التفاضلية العشوائية جزئية اندفاعية 

   . تاخير لانهائى-قطاعية جزئيةعوامل تشغيل -حركة براونية جزئية 

  


	Stochastic Calculus In Hilbert Space
	Cylindrical Gaussian Random Variables
	Cylindrical and Q-Wiener Process
	Cylindrical Wiener Process
	Q-Wiener Process

	Cylindrical and Q-Fractional Brownian Motion
	Cylindrical Fractional Brownian Motion
	Q-Fractional Brownian Motion

	Cylindrical and Q-Sub-Fractional Brownian motion
	Cylindrical Sub Fractional Brownian Motion
	Q-Sub Fractional Brownian Motion

	Stochastic Integral
	Stochastic integral with respect to cylindrical Wiener process
	Stochastic integral with respect to cylindrical Fractional Brownian Motion
	Stochastic integral with respect to Q-cylindrical fractional Brownian motion
	Stochastic integral with respect to Q-Sub Fractional Brownian Motion

	Theory of Semigroup
	Uniformly continuous semigroups of bounded linear operators
	Strongly continuous semigroups of bounded linear operator
	Sectorial operator


	Fractional Calculus
	Birth of Fractional Calculus
	Special Functions of fractional calculus
	Gamma function
	Beta function

	Fractional Integrals and Derivatives
	Riemann-Liouville fractional integrals and Derivatives
	Caputo Fractional Derivatives
	Hifler fractional derivative


	Stochastic Differential Inclusions
	Phase Space
	Multi-valued mapps
	Semilinear stochastic inclusions in a Hilbert space 
	Stochastic differential inclusion with Hilfer fractional derivative
	Existence of Mild Solution
	An example


	Impulsive fractional stochastic differential inclusions 
	Introduction
	Preliminaries
	Existence of mild solution
	Example


