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General Introduction

Differential equations and inclusions with fractional order arise in many engineer-
ing and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, mechanic, biology, ecology, aerodynamic, polymer rheology
and many others. Fractional differential equations or inclusions also serve as an excel-
lent tool for describing the memory and genetic properties of different materials and
processes. As a consequence there was an intensive development of the theory of dif-
ferential equations and inclusions of fractional order. One can see the monographs
of Abbas et al. [52], Kilbas et al. [6], Miller and Ross [33], Podlubny [7], Zhou [64], the
survey of Agarwal et al [49] [51] and the references therein. Many articles have been de-
voted to the existence of solutions for fractional differential equations and inclusions,
for example, [12][39][44][53][70]. As for the study of the existence of mild solutions for
fractional differential inclusions, please see [26] [9] [27].

The theory of impulsive differential equations or inclusions has also attracted in-
creasing attention because of its wide applicability in science and engineering. Im-
pulsive differential inclusions arising from the real world problems to describe the dy-
namics of processes in which sudden, discontinuous jumps occurs. Such processes are
naturally seen in biology, physics, medical fields, etc. Due to their significance, many
authors have been established the solvability of impulsive differential inclusions. For
the general theory and applications of such equations we refer the interested reader to
Benchohra et al. [40], Graef et al. [30].

The deterministic systems often fluctuate due to noise, which is random or at least
appears to be so. Therefor, we must move from deterministic problems to stochas-
tic ones. As the generalization of classic impulsive differential and partial differential
inclusions, impulsive stochastic differential and partial differential inclusions have at-
tracted the researchers great interest, and some works have done on the existence re-
sults of mild solutions for these equation (see [8] [28] and references therein). Recently,
attempts were made to combine fractional derivatives and stochastic differential inclu-
sions. One can see [59][60] [61][71] and references therein.

On the other hand, fractional Brownian motion has become an object of intense
study, due to its interesting properties and applications in various scientific areas in-

6



CONTENTS

cluding telecommunication, turbulence and finance. The fractional Brownian motion
with Hurst parameter H € (0, 1) is a suitable generalization of the classical Brownian
motion, but exhibits lon-rang dependence, self similarity and which has stationary in-
crements. When H = % the fBm coincide with the classical Brownian motion. When
H # %, the fBm is neither a semimartingale nor a Markov process. For additional details
on the fractional Brownian motion, we refer the reader to [14]. A general theory for the
infinite dimensional stochastic differential equations driven by a fractional Brownian
motion has begun to receive attention by various researchers see e.g. [13] [66]. The exis-
tence, uniqueness, stability and qualitative analysis of the mild solutions of stochastic
differential equations driven by fractional Brownian motion with infinite delay have
been studied by many authors (see [57] and references therein). Recently, Ren et al.
[67]proved the existence and uniqueness of mild solution for a class of impulsive neu-
tral stochastic functional integro-differential equations with infinite delay driven by
standard cylindrical Wiener process and an independent cylindrical fractional Brow-
nian motion with Hurst parameter H € (%, 1) in the Hilbert space. Boudaoui et al. [2]
proved the existence of mild solutions to stochastic impulsive evolution equations with
time delay, driven by fractional Brownian motion and Krasnoselski Schaefer type fixed
point theorem. Ren et al. [69] proved the existence and uniqueness of the integral so-
lution for a class of non-densely defined impulsive neutral stochastic functional differ-
ential equation driven by an independent cylindrical fractional Brownian motion with
Hurst parameter H € (%, 1) in the Hilbert space. However, there are very few contribu-
tions regarding the existence of solutions to stochastic differential inclusions driven by
fractional Brownian motion [5] [7]. An existence result of mild solutions for a first-order
impulsive semilinear stochastic functional differential inclusions driven by a fractional

Brownian motion with infinite delay has been proved by Boudaoui et al. [5].

This thesis is divide into four chapter. In the first one we recal some basic def-
initions and properties of different processes in Hilbert space, and we study the in-
tegration with respect to this processes at the end of this chapter we will present the
definitions and some properties of semigroup and sectorial operator. Secondly we will
generalize derivatives and integrals that have been studied in calculus to a more gen-
eral setting, we start with some history of fractional calculus, we recall some defini-
tions of how to define derivatives and integrals of arbitrary order. The third chapter is
devoted to study the stochastic differential inclusion. The principal aim of this chapter
is to proof the existence of mild solution for stochastic differential inclusion driven by
cylindrical sub fractional Brownian motion. In the first section we give the definition
of phases space, next in the second section we introduce some basic definitions and
results of multivalued maps in the third section, we give the solution of the stochastic
differential inclusion driven by cylindrical Wiener process at the end of this chapter
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we study the existence of mild solution for stochastic differential inclusion with Hilfer
fractional derivative The last chapter is the heart of our present study, First we start
with an introduction next in section two we give some basic definitions to establish
our main results and in section three we proof the existence of mild solution of our

problem at the end an example is given to illustrate our results.



Chapter 1

Stochastic Calculus In Hilbert Space

Stochastic calculus is the branch of mathematics that operates on stochastic pro-
cesses. It follows a consistent theory of integration to be defined for integrals of stochas-
tic process with respect to stochastic processes. It is used to model systems that behave
randomly.

Many stochastic processes are based on functions which are continuous, but nowhere
differentiable.

Let (O, %,P) be a probability space, and £ be a real separable Hilbert space with
the norm and scalar product denoted by | . || # and (.,.) ». We will alway assume that
(Q,&,P) is complete, i.e., that & contains all subsets A of ) with P-outer measure zero,

P*(A) =inf{P(F): AcFc %} =0.

1.1 Cylindrical Gaussian Random Variables

We introduce cylindrical standard Gaussian random variables and Hilbert-space-

valued Gaussian random variables.

Definition 1.1.1. [36] We say that X isa cylindrical standard Gaussian random variable
on A iff( K — [2(Q,Z,P) satisfies the following conditions.

1. The mapping X is linear.

2. For an arbitrary k € %, X(k) is a Gaussian random variable with mean zero and

variance | k ||%,.

3. Ifk, k' € & are orthogonal, i.e., {k, k') » = 0, then the random variables X (k) and
X (k') are independent.



1.1. CYLINDRICAL GAUSSIAN RANDOM VARIABLES

Note that if {f; ‘;‘;1 is an orthonormal basis (ONB) in %/, then {X( fj)}‘]’.‘;1 is a se-
quence of independent Gaussian random variables with mean zero and variance one.
By linearity of the mapping X: X — [2(Q,Z,P), we can represent X as

~ o0 ~
X(k) =) <k [y X(f),
j=1

with the series convergent P-a.s by Kolmogorov'’s three-series theorem ([45], theorem
22.3). In order to produce a £ -valued Gaussian random variable, we proceed as fol-
lows.

Let £ (%) the space of linear and bounded operator. We denote by £ (%) the space
of trace- class operators on %/,

L(KA)={Le L(X):T(L):= tr((LL*)%) < oo},

where the trace of the operator [L] = (LL*)? is defined by
er((L) = Y _ (LI fi fdoxs
j=1

for an ONB { fj}?il c X . Itis well known [48] that ¢r([L]) is independent of the choice
of the ONB and that £, (%) equipped with the trace norm 7 is a Banach space.

Let Q: # — % be a symmetric nonnegative definite trace-class operator.
Assume that X : # — L2(Q, %, P) satisfies the following conditions:

1. The mapping X is linear.

2. For an arbitrary k € £, X(k) is a Gaussian random variable with mean zero.

3. For arbitrary k, k' € &, E(X (k)X (k")) =(Qk, k") » .

Let { fj}‘]’.o=1 be an ONB in £ diagonalizing Q, and let the eigenvalues corresponding

to the eigenvectors f; be denote A, so that Qf; = A; f;. We define

X)) =) X(fjfj.
j=1

[e,@]
Since ). A; <oo, the series converges in I2((Q, %, P), #) and hence P-a.s.
j=1

Definition 1.1.2. [36] We call X : Q — & defined above a % -valued Gaussian random
variable with covariance Q.
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1.2. CYLINDRICAL AND Q-WIENER PROCESS

Definition 1.1.3. [36] Let % be a separable Hilbert space. The measurePo X! induced
by a X -valued Gaussian random variable X with the covariance Q on the measurable

Hilbert space (X , (X)) is called a Gaussian measure with covariance Q on £ , where
B(KX)) denote the Borel o -field on A .

1.2 Cylindrical and Q-Wiener Process

1.2.1 Cylindrical Wiener Process

Let (2, &, {Z} =0, P) be afiltered probability space, C([0, T'],.#) be the Banach space
of A-valued continuous functions on [0, T] and £ be a real separable Hilbert space.

We will always assume that the filtration &; satisfies the usual conditions
1. %, contains all A€ & such that[P(A) =0.

2. Fr= Fs.

s>t

Definition 1.2.1. [36] A £ -valued stochastic process {X;} ;> defined on probability space
(Q,%,P) is called Gaussian if for any positive integer n and ty,...,t, 20, Xy,.., Xy, isa
A " -valued Gaussian random variable.

A standard cylindrical Wiener process can now be introduced by using the concept

of a cylindrical random variable.

Definition 1.2.2. [36] We call a family {W;},so defined on a filtered probability space
(Q,Z ,{Z}=0,P) a cylindrical Wiener process in a Hilbert space X if:

1. For an arbitrary t = 0, the mapping W, : X — L?(Q, %, P) is linear.
2. For an arbitrary k € %, W,(k) is an %,-Brownian motion.
3. Forarbitraryk,k' € # and t =0, EW,(k)W,(k")) = t{k, k") % .

For every ¢ >0, W,/ is a standard cylindrical Gaussian random variable, so that
for any k € %, W, (k) can be represented as [P-a.s. convergent series
~ m ~
j=1

where {fj}‘]?‘;l isan ONBin £ .

11



1.2. CYLINDRICAL AND Q-WIENER PROCESS

1.2.2 Q-Wiener Process

Let Q be a nonnegative definite symmetric trace-class operator on ., then a % -

valued Q-Wiener process can be defined.

Definition 1.2.3. [36] Let Q be a nonnegative definite symmetric trace-class operator on
a separable Hilbert space X , {f ]-}°.° be an OBN in £ diagonalizing Q, and let the corre-
sponding eigenvalues be {A ]}°° Let{w;(} >0, j = 1,2, ..., be a sequence of independent
Brownian motion defined on (Q, % ,{%}>0,P). The process

o 1
W= Aw;fj, (1.1
]:
is called a Q-Wiener process in X .
We can assume that the Brownian motion w;(#) are continuous. Then the series

converges in L2(Q, C([0, T], %)) for every interval [0, T]. Therefore, the £ -valued
Q-Wiener process can be assumed to be continuous. We denote

o0

Wilk) =} AFw;(fj. k) .z,

for any k € %, with the series converging in L?(Q, C([0, T],.%)) on every interval [0, T].

Remark 1.2.1. A stronger convergence result can be obtained for the series[1.1] Since

n

1 1 noo
su A2w;(t H >e€ S—EH A2w;(T H
(0<£T Z I ()f]J( ) €? j;nf J()fjjf
T n
6_22/1]_’0’
j=m

with m < n and m,n — oo, the series|1.1| converges in probability on [0, T] and hence,
by the Lévy- 1t6-Nisio theorem ([43], Theorem 2.4), it also converges P-a.s. uniformly on
[0, T1].

Some basic properties of a Q-Wiener process are summarized in the next theorem.
Theorem 1.2.1. [36] A % -valued Q-Wiener process {W;}:>o has the following properties:

1. Wy=0

2. Wy has continuous trajectories in X .

3. W; has independent increments.

12



1.3. CYLINDRICAL AND Q-FRACTIONAL BROWNIAN MOTION

4. Wy is a Gaussian process with the covariance operator Q, i.e., forany k, k' € # and
s,t=0,
E(W; (k) Ws(k") = (£ A )(Qk, k') 2.

5. For an arbitrary k € X, the law £ (W; — W;)(k)) ~ A (0, (£ — $)(Qk, k) #).

1.3 Cylindrical and Q-Fractional Brownian Motion

Fractional Brownian motion is a family of Gaussian processes that are indexed by
the Hurst parameter H € (0,1). In a finite dimensional Euclidean space these pro-
cesses were introduced by Kolomogorov [I] and some properties of these processes
were given by Mandelbrot and Van Ness [14].

The fractional Brownian motion, for H # % is not a semi martingale it is necessary
to define a stochastic calculus, these processes have a self similarity in probability law
and for H € (%, 1), along range dependence property described by the covariance func-
tion.

Let (2, #,P) be a complete probability space and £ be a real separable Hilbert
space with the norm and scalar product denoted by || . || # .

1.3.1 Cylindrical Fractional Brownian Motion

Definition 1.3.1. [54] A % -valued Gaussian process (B (k),t = 0,k € %) on (Q, F,P)

is said to be cylindrical fractional Brownian motion with Hurst parameter H € (%, 1) if:
1. ECk,BH(t)) ) =0 forallte R andke X .

2. E¢k, B (s)) (K, BT (0) 0 = 3, k) g (P + $2H — ¢ — s*H) forall s, t e R
andk,k € X

Remark 1.3.1. For H = % this definition is the usual one for a standard cylindrical
Wiener process.

Definition 1.3.2. [54] Let Q be a nonnegative, self adjoint bounded linear operator that
is not nuclear, then a cylindrical fractional Brownian motion is defined by the formal

series,
BT =Y e.Bl ()= enlen, BT (1)),
n=1 n=1

where{ey}? | is a complete orthonormal basis in the Hilbert space Q% K and{BI( 0o,
for all t € R* is a sequence of independent, real-valued standard fractional Brownian
motion with Hurst parameter H € (%, 1).

13



1.4. CYLINDRICAL AND Q-SUB-FRACTIONAL BROWNIAN MOTION

1.3.2 Q-Fractional Brownian Motion

If Q is a non negative, definite symmetric trace class operator on .£’, then a % -

valued Q-fractional Brownian motion can be defined

Definition 1.3.3. [54] Let.# be a separable Hilbert space and Q be a non negative, nu-
clear, self adjoint operator on % . A continuous, zero mean, % -valued Gaussian pro-
cess (Bg (1), t € R") is said to be Q-fractional Brownian motion with Hurst parameter
H € (0,1) and associated with the covariance operator Q if:

1. B¢k, By (0).x =0, forallke & and t e R*.

2. ECk, B (8)).xk , B (0.1 = 54Qk, k) (P +52H — 1= s*!) for any s, t € R* and
kk'eX.

3. (Bg(t), t =2 0) has A -valued continuous sample path P.a.s.

Definition 1.3.4. [54] Let Q be a non negative definite symetric-class operator on a sepa-
rable Hilbert space X', {e,}., be an ONB in % diagonalizing Q and the corresponding
eigenvalues {1,}5,. Let B (1) be a sequence of real, independent standard fractional
Brownian motion on (Q, #,P) forn =1,2,... and t € R. The process

W= Z \/A_nﬁn(t)en;
n=1

is called a Q-fractional Brownian motion in % .

Remark 1.3.2. Proposition2.2 [54] ensures the existence of fractional Brownian motion
and the existence of cylindrical (i.e. Q = 1d) fractional Brownian motion for H > 3, but
the arguments are valid for arbitrary Q.

However Bg takes values in the large Hilbert space %, where # — &1 and the embed-
ding is the Hilbert-Schmidt operator.

Remark 1.3.3. If Q is a nuclear operator, then a cylindrical fractional Brownian motion
is a Q-fractional Brownian motion.

1.4 Cylindrical and Q-Sub-Fractional Brownian motion

As an extension of Brownian motion, recently, Bojdecki et al [55] introduced and
studied a rather special class of self-similar Gaussian process. This process arises from
occupation time fluctuations of branching particle systems with Poisson initial condi-
tion. This process is called Sub-fractional Brownian motion.

14



1.4. CYLINDRICAL AND Q-SUB-FRACTIONAL BROWNIAN MOTION

1.4.1 Cylindrical Sub Fractional Brownian Motion

Definition 1.4.1. Let £ be a separable Hilbert space. A continuous, zero mean, % -
valued Gaussian process (S? (1), t = 0) is said to be cylindrical sub-fractional Brownian
motion with Hurst parameter H € (0, 1) if his covariance is given by

1 1 /
E(k,S?(s)}(k',S?(t))z<k,k> 52H+t2H—E[(s+ 02H + 1t~ s1*7]| forall s,teR*and k,k € .

Definition 1.4.2. Let Q be a non negative, self adjoint bounded linear operator that is
not nuclear, then a cylindrical sub fractional Brownian motion is defined by the formal
series
(e,0)
st =Y stwe, t=0;

n=1
where {SH( 019, isasequence of independent, real valued standard sub fractional Brow-

nian motion with Hurst parameter H € (0,1) and {e}} ., be a complete orthonormal
basis in the Hilbert space X .

1.4.2 Q-Sub Fractional Brownian Motion

Let (U, |I.lly, {>y) and (£ K, |I.ll#,{.) ) be two separable Hilbert space. Let £ (£, U)
denote the space of all bounded linear operator from £ to U and Q € £(%,U) be a
non negative self adjoint operator.

Definition 1.4.3. Let £ be a separable Hilbert space and Q be a non negative self adjoint
operator on % . A continuous, zero mean X -valued Gaussian process (Sg (1), t= 0) is
said to be Q-sub fractional Brownian motion with Hurst parameter H € (0, 1) associated
with the covariance operator Q if:

forall s,teR™.

E(k,sH©) (K, sH®0) = (Qk, k') |+ 27 - % [(s+02H 42— 521

Definition 1.4.4. Let Q € £ (%, U) be a non negative, self adjoint trace class operator
on a separable Hilbert space X , {ey},., be a complete orthonormal basis in the Hilbert

space X diagonalizing Q and the corresponding eigenvalues {A,}},. Let {SH (OIS, be

a sequence of real independent standard sub fractional Brownian motion, the process
H o oH 3 o oH
So =) S, (Q%Zep =) S, (DY Aney;
n=1 n=1

is called a X -valued Q sub fractional Brownian motion.

15



1.5. STOCHASTIC INTEGRAL

1.5 Stochastic Integral

1.5.1 Stochastic integral with respect to cylindrical Wiener process

We will introduce the concept of [td’s stochastic integral with respect to a Q-Wiener
process and with respect to a cylindrical Wiener process simultaneously.

Let £ and .# be a separable Hilbert space, and Q be either a symetric nonnegative
definite trace-class operator on £ or Q = I, the identity operator on £ .
In case Q is trace-class operator, we will always assume that its all eigenvalues A}, j =
1,...; otherwise we can start with the Hilbert space ker(Q)* instead of % .
The associated eigenvalues forming an ONB in £ will be denoted by f;. Then the
space £ = Q%J,’ equipped with the scalar product.

o0

1
<uy U><Z,/Q = Z /1_<u)f]>ﬂ,/<v)f]><l
J

1
is a separable Hilbert space with an ONB {/l]? fi ‘]?11.
If 761, A, are two real separable Hilbert spaces with {e;}?2, an ONB in ./, then the
space of Hilbert-Schmidt operators from . to #> defined as

Lo(FO, H6y) = (L€ L(F6,.76): Y || Lej |, < oo}.
i=1

It is well known (see [62]) that £, (4, #») equipped with the norm

D=

(o]
2
I Lhomien= (L N Leille, )
1=

is a Hilbert space . Since the Hilbert spaces /] and ., are separable, the space
Lo (A6, H6,) is also separable, as Hilbert-Schmidt operators are limits of sequences of
finite-dimensional linear operators.

Consider £, (A, #) the space of Hilbert Schmidt operators from £ to . If
{e j}‘]’.‘;l is an ONB in #, then the Hilbert-Schmidt norm of an operator L € £» (£, #)

16



1.5. STOCHASTIC INTEGRAL

is given by
x 1
I L1, a0 = -Zl<mf2' e
i,j=
& 1
= Y (LQzf), e’
i,j=1

=1 Q% 1%,z
= tr((LQ?)(LQ?)").

The scalar product between two operators L, M € £, (4, #€) is defined by
(L, M) o, g0 = 17 (LQZ)(MQ?)*). (1.2)

Since the Hilbert space £ and # are separable, the space £, (%, #) is also separa-
ble.
Let Le ZL(X,A),if k € £, then

o 1 1
k= Zl(k,AJZ.fﬂZQAJZ. fis
]:
and L considered as an operator from £ to ./ defined as
oy 1 1
Lk= Zl<k,/1]%fjm]2. Lfj,
]:
has a finite Hilbert-Schmidt norm, since
| L1, 000 = Z I L(/lzf,) 1%

=Y A L) 1%,
]:

IA

| L ”g(](]g) tr(Q).

Thus, L (X, H) € La2( Ko, #). f L, M € £ (X, ), formula[l.2|reduce to

| L ”fg’z(lQ,Jf): IT(LQL*)

and
(L, M) (70,76 = tr(LQM"),

17



1.5. STOCHASTIC INTEGRAL

allowing for separation of Q% and L*. This is usually exploited in calculations where
Le &, (KXq, #) is approximated with a sequence L, € £(A, ).

The space £» (X, #€) consists of linear operators L : £ — ./ not necessarily bounded,
with domain @ (L) > Q2.%, and such that ¢r(LQ2)(LQ?)*) is finite.

If Q = 1% then £, = &, we denote that the space £»(#q,#) contains genuinely
bounded linear operators from £ to .

Stochastic It6 Integral for Elementary Processes

Lete(Z (X, #)) denote the class of Z (A, #)-valued elementary processes adapted
to the filtration {%,} ;<7 that are of the form

n-1

(1, 0) = Pl (1) + Y (@), 17,11 (1),
j=0

where0<t <..<t, =T, and ¢,¢;, j =0,1,..,n—1 are respectively F,-measurable
and %, i -measurable &£ (A, #)-valued random variable such that ¢ (w), ¢ ;(w) € L(X ', H),
j=0,1,..,n—1 (recall that Z (X, A) € £L>(Xq, H)).
Note that if Q =0, then the random variables ¢; are in fact £ (%, #)-valued.

We shall say that an elementary process ® € e(£ (A4, .#)) is bounded if it is bounded
in £ (Xq, ).

We define the It6 stochastic integral with respect to a Q-Wiener process W; by

n—-1

t
fo DW= Y ;Wi int— Wi n0),
=0

for £ € [0, T]. The term ¢wy is neglected since P(W, = 0) = 1. This stochastic integral is
an /-valued stochastic process.

We define the It0 cylindrical stochastic integral of an elementary process ® € £ (Z (A, A))
with respect to a cylindrical Winer process W by

n—-1

t
( fo OEOAW,) (1) = Y (Wi, ne( (1) = Wisns( (1)),
j=0

for t € [0, T] and h € #. The following proposition states Itd’s isometry, which is essen-

tial in furthering the construction of the stochastic integral.
Property 1.5.1. [36] For a bounded elementary process ® € (L (X, H))

t t
BN [ 00aws 2= [ 106 Lzymgum<oo (1.3)
0 0
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1.5. STOCHASTIC INTEGRAL

fortel0,T].
We have the following counterpart of{1.3 for the It6 cylindrical stochastic integral of a
bounded elementary process ® € e(L (KX, H)):

E((fot(,b(S)dWs)(h))z = fOtE | @ (5)(h) 1% ds < oo,

Let Az (XZq, #) be a class of £» (X, #)-valued processes measurable mapping
from ([0, T1xQ, B0, TR 5«") to (fé’z (Kq, ), B(Lr( K, Jﬁ))) adapted to the filtration
{Z:} <7 (thus can be replaced with %) and satisfying the condition

T
Efo | D(0) 1%, 17, 7) At < 00
We note that Ay (A, #) equipped with the norm

1
2

t
1@ Inucign= (B [ 19012, )

is a Hilbert space.

Property 1.5.2. [36] If ® € Ao (K, A), then there exists a sequence of bounded elemen-
tary processes ©,, € e(L (X, A)) approximating ® in Ap(Kq, A), i.e

t
100 =@ 13,00, 0= E [ 1900 =0(0) 150,y 2 — 0.

Stochastic It6 Integral with respect to a Q-Wiener process

We are ready to extend the definition of the It stochastic integral with respect to a

Q-Wiener process to adapted stochastic processes @ (s) satisfying the condition

T
E [ 100 I g ds <0

which will be further relaxed to the condition

T
2 —
I]:D(/(; ”q)(s) ”ﬁfz(l/o,d"ﬁ) dS<OO)—1.

Definition 1.5.1. [36] The stochastic integral of a process ® € Ao (K, /€) with respect to

a A -valued Q-Wiener process W; is the unique isometric linear extension of the map-
ping
T
D) — f d(s)dW;,
0
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1.5. STOCHASTIC INTEGRAL

from the class of bounded elementary processes to L*(Q, #€), to a mapping from Ay (K, 7€)
n-1

to L2(Q, 7€) such that the image of ®(t) = Pplypy + Y. ;15,01 (1) the stochastic integral
j=0

process fotq)(s)dWS, 0=<t=<T, for ® € Ay (Kq, ) and given by

t T
L@(S)dWSZL q)(S)ﬂ[o,t](S)dWs.

Theorem 1.5.1. [36] The stochastic integral ® — [;®(s)dW; with respect to a -
valued Q-Wiener process W, is an isometry between Ny (Xq, 7€) and the space of con-

tinuous square-integrable martingales 4 % (S).

t t
E| fo O(5)dW; |12,= E fo 1905) 12,41, 1 5 < o0,

fortel0,T].

The quadratic variation process of the stochastic integral process fOtCD(s)d W, and
the increasing process related to || fot D(s)dWs ||2Jf are given by

<<fq>(8)dws>>t:fot(q)(s)Q%)(q)(s)Q%)*ds

0

and

. t

<f®(8)dWs>t=ftr((QD(S)Q%)(CD(S)Q%)*)ds

0 0

t
= | 10 1,y

Remark 1.5.1. For ® € Ay(X£, /) such that ®(s) € £ (X, FE), the quadratic variation
t

process of the stochastic integral process [ ®(s)dW;s and the increasing process related to
0

I [y @(s)dW |12, simplify to

<<fq)(s)dWS>>t:j:q)(s)Qq)(s)*ds

0

and
. t

<f®(s)dWs>t - f tr((CD(s)Qq)(s)*)ds.
0 0
Let (X, #€) denote the class of £» (X, #)-valued stochastic processes adapted

to the filtration {%,};<1, measurable as mapping from ([0, T xQ,98[0, T ® 97,) to
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(.592 (Kq, H), B(Lr (K, Jf))), and satisfying the condition

T
2 —
[P{fo | () 1%, gy 0 At <00} = 1.

Obviously, A (K, #) € P (K, HE).
The processes from & (%, /) can be approximated in a suitable way by processes

from Ay (A, #) and, in fact, by bounded elementary processes from (£ (A, ).
Lemma 1.5.1. [36] Let® € (K, A), then there exists a sequence of bounded processes
D, € (L (X, H)) c Ao (K, ) such that

T
| @1, 0) = @ (t,0) I, 470,769 At — 0 as n— oo, (1.4)
0 2 (HQ,H)

in probability and P-a.s.

We can define a class of #-valued elementary processes €(.#°) adapted to the fil-
tration {&#;} ;<7 as all processes of the form
n-1
Y (t,w) = v ()l (1) + Z (@), 5,1 (0),

j=0

where 0= < t; <.. <1, = T, ¥ is Fp-measurable and v ;(j = 0,1,...,n—1) are gtj_

measurable #-valued random variables.

Lemma 1.5.2. [36] Let VY (?), t < T, be an /€ -valued, % ;-adapted stochastic process sat-
isfying the condition

P{fOanm e dt <oof =1,

then there exists a sequence of bounded elementary processes ¥V, € €(F) such that
T
f | ¥(t,w) -V, (t,w) ||lzdt — 0 as n — oo,
0

in probability and almost surely.
We will need the following estimate useful estimate.

Lemma 1.5.3. [36] Let ® c Ay (K, ). Then for arbitraryé >0 and n >0

t

P(sup |

T
n
up 0q>(s)dWs||;f>5)s§+uﬂ>(f0 1 ) 13, (0 45> 1)-

We are ready to conclude the construction of the stochastic integral now
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Lemma 1.5.4. Let®, beasequence in Ay (X, 7€) approximating a process® € 2P (K, /)
in the sens of[1.4} i.e.,

T
2

Then, there exist an A -valued Fr-measurable random, denote by fOTq)(t)d W;, such
that

T T
f CI)n(t)th—>f O dWy,
0 0

in probability. The random variable fOT ®(1)dW; does not depend (up to stochastic equiv-
alence) on the choice of the approximating sequence.

Definition 1.5.2. The #-valued random variable fOT D (1)dW; defined in is called
the stochastic integral of a process in 22 (X, #€) with respect to a Q-Wiener process. For
0<t =T, wedefine an /€ -valued stochastic integral process fot ®(s)dWs by

t T
f (I)(S)dWs:f @(s)ﬂ[o,T](s)dWs.
0 0

The stochastic integral process for ® € 22(%(, 7€) may not be a martingale, but it

is a local martingale.

Definition 1.5.3. A stochastic process {M;} <, adapted to a filtration &;, with values
in a separable Hilbert space F€ is called a local martingale if there exists a sequence of
increasing stopping time T ,, with IP(nleOOTn =T) =1, such that for every n, Mp;, is a
uniformly integrable martingale.

1.5.2 Stochastic integral with respect to cylindrical Fractional Brow-

nian Motion

A Hilbert- valued stochastic integration is defined for an integrator that is a cylin-
drical fractional Brownian motion in a Hilbert space. Since the integrator is not semi
martingale for the fractional Brownian motion considered, a different definition of in-
tegration is required. The approach to integration has an analogue with Skorokhod
integrals for fractional Brownian motion by the basic use of derivative of some func-
tionals of Brownian motion.

Let Ky(t, s) be the kernel function, forO<s<t<T

t
Ki(t,9) = cr(t=9)"2 +cH(%—H)f (u—9"3(1- (2)%-’4);
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2HT(H+3)I'(3-H) 1
R ]2 and He (0,1).

IfHe (%, 1), then Ky has a simpler form as

where ¢y = |

t
1

N

A definition of stochastic integral of deterministic £ -valued function with respect
to a scalar fractional Brownian motion (B(t), ¢ = 0) is described.
LetK ;I :e — L[2([0, T], . %) be the linear operator given by

. r 0Kpy(s, 1)
Kyo(t) =@(0)Kuy(T, 1) +/ (¢(s) —(p(t))lé—st; (1.5)
t
for ¢ € €, where ¢ is the linear space of £ -valued step function on [0, T].
Forpee,
n—1
e =Y xi sy 1,00,
i=1
where x; € K,i€{l,..,n—1}andO0=t1 < <..<t,=T.
We define
T n—-1
fo @dB= ) xi(By,, —By,). (1.6)
i=1
It follows directly that
T , )
E||f0 QdB|” = Ky 720 11,2 (1.7)

Let (A, | . ll#,(.,.»7) be the Hilbert space obtained by the completion of the pre
Hilbert space € with the inner product (@, ¥) 7 := (K;;¢, K;¥) 120,11, for @,y € €.
The stochastic integral[1.6]is extended to ¢ € # by the isometry[1.7]

Thus # is the space of integrable functions. If H € (%, 1) then it is easily verified that
= J€, where 7 is the Banach space of Borel measurable functions with the norm

I I 7z given by

T T
||<p||i:,;=f0 fo lpw)lp(W)|pu—v)dudv;

where ¢(u) = H2H — 1)|u|*"-2 and it is elementary to verify that L” ([0, t], %) c .# for
p >+ then

T T pT
EII[O (PdB||2=f0 fo (@), p())p(u—v)dudv.

If He (0, %), then the space of integral functions is smaller than for H € (%, 1).
Associated with (B(t), t = 0) is a standard cylindrical Wiener process (W (f), t = 0) in &
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such that formally B(#) = Kg (W (1)).
For x € K ~{0}, let By(t) = (B(1), x}, it is elementary to verify from [1.6] that there is a

scalar Wiener process (wy(f), t = 0) such that
t
By (1) =(B(1),x) =f Ky (t,s)dwx(s);
0

for t e R*. Furthermore, w,(t) = By ((KI"_‘I)‘IH[OJ]) , where K7, is given by
Now we define the stochastic integral fOT GdB for an operator-valued function
G:[0,T] — £L(X) is a £ -valued random variable.

Definition 1.5.4. [1I] Let G: [0, T] — ZL(X), (en, n € N) be a complete orthonormal
basisin K, Ge, (t) = G(t)en, Ge, € A for n € N and B is a standard cylindrical fractional
Brownian motion. Define

T T
deB:: Y | GendBy; (1.8)
0 n=1

provided the infinite series converges in L*(Q).

Property 1.5.3. [11] Let G: [0,T] — L (X&) and G(.)x € S foreach x € V. LetT'r:
K — L2([0, T, %) be given as

(T7(0))(1) = (K Gx)(1);

forte[0, T and xe £. If 't € Lo (K, L2([0, T1, %)) is a Hilbert Schmidt operator
then the stochastic integral (1.8) is a well-defined centered Gaussian % -valued random

variable with covariance operator Qt given by

T
QTx=fZ ((Tren)(s),x) Trey)(s)ds. (1.9)
0 n=1

This integral does not depend on the choice of the complete orthonormal basis
(en,neN).

Remark 1.5.2. Since 't € L, (%, L%([0,T], %)), it follows that the map x — (I'rx)(t)
is the Hilbert -Schmidt on % for almost all t € [0, T]. Letl“} be the adjoint of I'r. Then

r*

7 1s also Hilbert-Schmidt and Qr can be expressed as

T
Qszf(FT(F”}x))(t)dt; (1.10)
0

forxe % .
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If H € (3,1) and G satisfies

T T
161%= [ [160012,001GW) 2,000t~ )dudv < oo
00

then

T T
C)TfoG(u)G*(v)(p(u—v)dudv;
00

where ¢p(u—v) = H2H-1) | u—v 172,

Property 1.5.4. [11] If A: Dom(A) — X is closed linear operator, G : [0, T] — &
satisfies G([0, T]) € Dom(A) and both G and AG satisfy the conditions for G in property
then

T
deBcDom(]l) P.a.s;
0

and

T T
AdeB:fAGdB P.a.s.
0 0

1.5.3 Stochasticintegral with respect to Q-cylindrical fractional Brow-
nian motion
Let £, U be two separable real Hilbert space. We recall that the process Bg (1) is

given the following series:

BH)=Y BI1QZe, 120

n=1

is said to be £ -valued Q-cylindrical fractional Brownian motion with covariance Q.
Let .28 (A ,U) be the space of all { € Z (A%, U) such that ¢ Q% is Hilbert Schmidt op-

erator the norm is given by

1€ W =1 €Q7 5= £7EQET).

Let ¢: [0, T] — £{(#,U) such that:

s 1
Y K (@QZen) 120, 11,00 < 0©- (1.11)

n=1
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Definition 1.5.5. [54] Let ¢ [0, T] — £{(K, U) satisfy|1.11} then its stochastic integral

with respect to fractional Brownian motion Bg is defined for t = 0, as follows

t t
fq)(s)ng(s) =Y @()Q2e,dBH ()= Y fK,’;(ch%en)(s)dW(s).
n=1
0

0 n=1

Notice that if
o0
Y lpQze,ll 1 < o0, (1.12)

then the particular|1.11| holds.

Lemma 1.5.5. Forany¢ :(0,T] — $8 (A& ,U) such that holds, and for any a, p €
[0, T] witha > 3,

B a
El f p($)dABH I3 < cHRH-a— 2y f lp(8)Q* el ds;
n=1
a i

where c = c¢(H). If in addition
Y Ip(0Q2 enlly; (1.13)
n=1

is uniformly convergent for t € [0, T, then

B
a
Bl [ ptoasfo < crer -1 fﬁ 10y, s
a

Remark 1.5.3. If{0,},en is a bounded sequence of nonnegative real numbers such that
the nuclear operator Q satisfies Qe, = 0 ,e,, assuming that there exists a positive con-
stant K, such that

I (1) ||$5(J,U)< K, uniformelyin [0, T);

then[1.13 holds automatically.

1.5.4 Stochastic integral with respect to Q-Sub Fractional Brownian

Motion

Let ¢ the linear space of R-valued step functions on [0, T]. For ¢ € ¢, we define

its wiener integral with respect to one dimensional sub fractional Brownian motion
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{SH (1)} ;50 as follows

f @(s)dS™(s) = le(st+1 .

n=1

Let #su be the canonical Hilbert space associated to the sub-fBm S*. That is #gu

is the cloture of the linear span € with respect to the scalar product,
<1[0,[], 1[0,3] >]sz =Cov (SH(t), SH(S)) .
We know that the covariance of sub-fBm can be written as
t prs
E[s7(0S"(s)] = f f du(u, v)dudv = Cy(t,s),
0 Jo

where ¢ (1, v) = H2H-1) (| u— v [PH72 —(u+ v)?172),
Equation (1.14) implies that

(@, W>Jg f f QuyP(u, v)duduv.

Now we consider the kernel

I'(H-

1 H
Ky (t,s) = f 3% ( f (x* - s?HH~ 3’2dx)ﬂm 1(9).

By Dzhaparidze and Van Zanten [31], we have

tAS

CH(t;S):CIquKH(t, WKy (s, u)du;

where )
,» T'(1+2H)sin(mH)
Cy = - .

Let K}, be the linear operator from ¢ to L2[0, T] defined by

(Kf) () = CHf Pr—o (r, s)dr.
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By using the equalities (1.15) (1.17), we obtain

T T
0 0Ky
(f(pr—ar T, s)dr\) ([wu—au (i, s)du) ds,
S S

T r/\ua
f( P (r s) (u s)ds) Qryydrdu,
0

<KH<P»KH>L2([0 = = ¢y

(ll

‘ (1.18)
f@rau(u e yudrdu,
0

T T
:H(2H—1)ff(| u—rIZH_Z—(u+r)2H_2)(pr1//udrdu,
00

= <(PrW>J£SH-

As a consequence, the operator K;; provides an isometry between the Hilbert space
g and L*([0, T)).
Hence, the process W defined by W(¢) := =SH((K (( ) 11][0 1 ) is a Wiener process, and SH
has the following Wiener integral representation:

st = chKH(t, $)AW (s),

because (K;;)(1(0,1)(s) = cyKg(L, ).
By Dzhapridze and Van Zanten [31], we have

W) = f wr(t,s)dST(s),

where
H-1/2

Vi) = rar-m

t
H=312(12 _ 2yV2=H _ (py_ 3/2)f (12 — V2 H (H=312 g 10,11 (5)-
N

In addition, for any ¢ € #n,

t t
f @(s)dSH(s) = f (K50) () dW (1);
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if and only if K},¢ € L*([0, T]).
Also, denoting L2 7,10, T1) = {p € #su, K}, € L*([0, T}
Since H > 1, we have by and lemma 2.1 of [24],

L2(10, T]) < L7 ([0, T)) < Ly, (10, T)). (1.19)
Lemma 1.5.6. (Nualart[17]) For ¢ € L% (10, TD,

H(2H - Df f Lol @ull u— |2H2drdu<CH”(p”LH([OT])

1/2
where Cpy = (%) , with B denoting the beta function.
’ 2

To define the stochastic integral with respect to Q-sub-fractional Brownian motion
we proceed as follows: Let $8 (A, U) be the space of all { € £ (A, U) such that ¢ Q% is
a Hilbert-Schmidt operator. The norm is given by

€0 i = 16Q2 s = 1r(€QED.

Then ¢ is called a Q-Hilbert Schmidt operator from £ to U.
Let ¢: [0, T] — L,(A, U) such that

s 1
Z ||K1§((PQ§en)||L2([o,T],U) < oo. (1.20)
n=1

Theorem 1.5.2. Let¢:[0,T] — L%(,]{ ,U) satisjj/ Then its stochastic integral with

respect to the sub-fBm Sg is defined, for t = 0, as follows

n=1

t t
f (8)dSH(s):=) f 0()Q7 e, dSH (s),
0 0

M8

t
fK* QZe,)dW(s).
0

I
—_

n

Notice that if

Z ||<p(s)Qzen|| oy <% (1.21)
then in particular holds, which follows immediately form (1.19).

The following lemma is obtained as a simple application of lemmal1.5.6]
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Lemma 1.5.7. ([I7)) For any ¢ : [0, T} — L,(#,U) such that|1.21| holds, and for any
u,vel0,T] withu>v,

u o0 u
E| f P(5)dSH ()| = Cuu- vy f lp($)Q2 enll? ds.
v n=1Jv
If, in addition,

Z ||(p(s)Q%en||%, is uniformly convergent for t € [0, T], (1.22)

n=1

then u u
H 2 H-
[E”fu @()dS,(9)|y; < Culu—1v)? 1fv ”‘P(S)"igmmds'

Proof. Let {e,}} | be the complete orthonormal basis of £ introduced above. Apply-
ing lemmal|l.5.6} we obtain

u

B[ pwdshon=a1Y, [ pwQte.as @i,

n=1J0v

E| f P()Q2dSs (s)I13.

n=1
00 ~ u ru 1 1 _ 2H-2

Y HRH-1) le(Q2e,llyllp(s)Q2e,llylt— s~ “drds.
n=1 v v

00 u 1 1 2H
scHZU ||<p(S)Q7€nII5) :
n=1 v

u

<cuu-0 Y | lp©Q?enl’ds.

n=1J0v

O

Remark 1.5.4. If {1}, is bounded sequence of non-negative real numbers such that
the nuclear operator Q satisfies Qe,, = A, e,, assuming that there exists a positive con-
stant K, such that

ol 22 k,0) = Ko uniformly in [0, TJ;

then[1.22 holds automatically.
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1.6 Theory of Semigroup

1.6.1 Uniformly continuous semigroups of bounded linear operators

Definition 1.6.1. [4] Let X be a Banach space. A one parameter family {T(t)};>o of
bounded linear operators from X into X is a semigroup of bounded linear operators on X

if
1. T(0)=1 (istheidentity operator on X).

2. T(t+s)=T(t).T(s) foreveryt,s=0 (thesemigroup property).

A semigroup of bounded linear operators , T'(¢) is uniformly continuous if
lim || T(r)-1|=0.
t—0

Definition 1.6.2. [4] Let T(t) be a semigroup of bounded linear operator A with domain

T(t)x—
D(A) = {x € X: lim M exists},
t—0* t
defined by o
Ax = lim ﬁ,
t—0* t

is called the infinitesimal generators of the semigroup T(t).

Theorem 1.6.1. [4] A linear operator A is the infinitesimal generator of a uniformly con-

tinuous semigroup if and only if A is a bounded linear operator. We have

(tA"
n -’

T(t) =e' = ZO

the series converging in norm for every t = 0.

From the definition[1.6.1]it is clear that a semigroup T'(¢) has a unique infinitesimal
generator. If T(¢) is uniformly continuous its infinitesimal generator is a bounded lin-
ear operator. On the other hand, every bounded linear operator A is the infinitesimal
generator of a uniformly continuous semigroup 7'(¥).

Is this semigroup is unique? the affirmative answer to this question is given next.

Theorem 1.6.2. [4] Let T(t) and S(t) be uniformly continuous semigroups of bounded

linear operators. If
T-1 S(—-1
lim () =A=lim () ,
t—0 t t—0 r

then T(t) = S(t) fort = 0.
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Corollaire 1.6.1. [4] Let T(t) be a uniformly continuous semigroup of bounded linear
operators. Then

~

There exists a constant w = 0 such that || T(t) ||< e%!.

2. There exists a unique bounded linear operator A such that T(t) = e'*.

3. The operator A in part (2) is the infinitesimal generator of T (t).
4. t — T(t) is differentiable in norm and
aT(t)
= AT (1) = T(p)A.
dt

1.6.2 Strongly continuous semigroups of bounded linear operator
Definition 1.6.3. [4] A semigroup T(t), 0 < t < oo of bounded linear operators on X is a
strongly continuous semigroup of bounded linear operators if

tlimo T(t)x=x, forevery xe X.

A strongly continuous semigroup of bounded linear operators on X will be called a semi-
group of class Cy or simply a Cy- semigroup.

Theorem 1.6.3. [4] Let T(t) be a Cy-semigroup there exist constants w =0 and M = 1
such that
| T(2) ||< Me™" for 0<t<oo.

Corollaire 1.6.2. If T(t) is a Cy-semigroup, then for every x € X, t — T (t)x is a contin-
uous function fromR* into X.

Theorem 1.6.4. [4] Let T(t) be a Cy-semigroup and let A be its infinitesimal generator.
Then

1. Forxe X,
t+h

1
lim — f T(t)xds=T(t)x.
h—o0 h
t

t
2. Forxe X, [T(s)xdse D (A), and
0

t

A(f T(s)xds) =T()x—x.

0
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3. Forxe2(A), T(t)xeD(A) and

iT(t)x =AT()x=T(t)Ax.
dt

4. Forxe 9(A),

t t
T(t)x—T(s)x:fT(T)AxdT:fAT(T)xdT.

Proof. Please see [4]. O

Corollaire 1.6.3. If A is the infinitesimal generator of a Cy-semigroup T (t) then 2(A),

the domain of A is dense in X and A is a closed linear operator.

Theorem 1.6.5. Let T(t) and S(t) be Cy-semigroups of bounded linear operators with
infinitesimal generators A and B respectively. If A= B then T (t)=S(t) for t = 0.

If A is the infinitesimal generator of a Cy-semigroup then by corollary , P(A) =
X. Actually, a much stronger result is true. Indeed we have,

Theorem 1.6.6. Let A be the infinitesimal generator of Cy-semigroup T(t). If2(A") is
the domain of A", then or(])l@(A") isdensein X.
n=
The Hille Yosida Theorem

Let T(t) be a Cy-semigroup. From theorem [I.6.3]it follows that there are constant
w=0and M =1 such that || T(#) |< Mexp(wt) for t = 0.

If w =0, T(t) is called uniformly bounded if M =1, it is called a Cy-semigroup of con-
tractions.

This section is devoted to the characterization of the infinitesimal generators of Cy-
semigroup of contraction. Conditions of the behavior of the resolvent of an operator
A, which are necessary and sufficient for A to be the infinitesimal generator of a Cy-
semigroup of contractions are given.

Recall that if A is a linear, not necessary bounded operator in X, the resolvent set
p(A) of Ais the set of all complex numbers A for which AI— A is invertible, i.e. (11— A)~!
is abounded linear operator on X. The family R(A; A) = (A1 - AL e p(A) of bounded
linear operators is called the resolvent of A.

Theorem 1.6.7. (Hille Yosida) A linear (unbounded) operator A is the infinitesimal gen-
erator of Cy-semigroup of contraction T(t), t = 0 if and only if

(i) Aisclosed and2(A) = X.
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1.6. THEORY OF SEMIGROUP

(ii) The resolvent set p(A) of A contains R* and for every A > 0,

1

RAN = —.
I R(A ) 1= 5

Lemma 1.6.1. [4] Let A satisfy the condition (i) and (ii) of theorem[1.6.7 and let
R\, A)=(AI-A)7L. Then Alim AR(A, A)x = x forx e X.

Now we define, for every A > 0, the Yosida approximation of A by
Ay =AAR; A) = A2R(A; A) — AL
A, is an approximation of A in the following sense:

Lemma 1.6.2. Let A satisfy the condition (i) and (ii) of theorem[1.6.7 If A, is the Yosida
approximation of A, then Alim Apx = Ax, forx e 2(A).
—>00

Lemma 1.6.3. Let A satisfy the condition (i) and (ii) of theorem{1.6.7 If A, is the Yosida

approximation of A, then A, is the infinitesimal generator of uniformly continuous semi-

group of contractions ',

Furthermore, for every x € X, A, u > 0 we have
lex—eux|<t| Ayx—Ayx| .

Corollaire 1.6.4. Let A be the infinitesimal generator of a Cy-semigroup of contractions
T(t). If Ay is the Yosida approximation of A, then

T(t)x= lim etAAx, for xe X.
A—00

Corollaire 1.6.5. Let A be the infinitesimal generator of a Cy-semigroup of contractions
T(t). The resolvent set of A contains the open right half-plane, i.e., {1 : Re(1) > 0} c p(A)

and for such A,
| ROGA) <
T Re(M)

1.6.3 Sectorial operator

Let X be a Banach space and A a (single-valued linear) operator. For 0 < w < 7, let
S? = {zeC~1{0}:|argzl < v},

denote the open sector symmetric about the positive real axis with opening angle w.
Let S, be its closure, that is,

Sy =1{z€C~{0}:|argz| < w}u{0}.
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1.6. THEORY OF SEMIGROUP

Definition 1.6.4. [3] Let—1<p<0and0<w< 7. By OF (X) we denote the family of all
linear closed operators A: 2 (A) c X — X which satisfy

i) 0(A)cS,,.

ii) foreveryw < u <, there exist a constant c, such that

| R(z, A) ||< culzlP, forall ze C\Eu.
Where the family R(z, A) = (zI — A)™!, z € p(A) of bounded linear operators is the resol-
vent of A.
A linear operator A will be called an almost sectorial operator on X if A € ©F (X).
Remark 1.6.1. Let A€ OF (X). Then the definition implies that0 € p(A).

We denote the semigroup associated with A by {Q(#)} =0,
1
Q(t) = e #(A) = —_fe_tZR(z; Adz, teS ;
271 2w

Ty

where the integral contour I'y = {R* e'%1 U {R* e 1%} is oriented counter clockwise and

w <0 < u <3 —|argt| forms and analytic semigroup of growth order 1+p.

Property 1.6.1. [I9] Let A€ OF(X) with-1<p<0and0<w < 5, then the following
properties remain true:

. . . . 0 ar _ 0
i) Q(t) is analyticin S%_w and 75 Q(t) = (-A)"Q(1), t€ S%_w.
ii) The functional equation Q(s+t) = Q(s)Q(t) foralls, t € S%_w holds.
2

iii) There is a constant cy = co(p) > 0 such that

1 Q) I< cot P fort > 0.
iv) if>1+p, then?(AP)cTo={xeX: lim Q(1)x = x}.
t— +

v) R(A;A) = [eMQ(1)dt for every A € C with Re(A) > 0.
0
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1.6. THEORY OF SEMIGROUP

Definition 1.6.5. [26] A closed densely defined operator A on a Banach space X is called
sectorial of angle w < m (in short: A€ sect(w) if

i) 0(A)c S, and
i) M(A,a)') :=sup{| ARA, A) | A egw/} < oo, forall w < w <.

Definition 1.6.6. An operator A is simply called sectorial if it is sectorial of angle w for
somew € (0,7). In this case, is called the sectoriality angle of A. Analogously to the half-
plane case, we say that a set A of operators is uniformly sectorial of angle w <  if

sup M (A, a) < oo,
Aed

foralla € (w, ).

Remark 1.6.2. The definition of sectorial operators is not universal in the literature.
Some authors require a sectorial operator to be injective and to have dense range as well.
We will omit these condition from our definition and add explicitly one or both to our
assumptions when necessary. Notice that for a sectorial operator A on a Banach space

one always has N(A) N R(A) = 0. In particular, if A has dense range, A is injective as well.

Remark 1.6.3. Let A be a densely defined operator on some Banach space X. Then it is
well known that — A generates an analytic Cy-semigroup if and only if A is with

w(A) < 5. Moreover, if — A is the generator of a Cy-semigroup, then A is sectorial with
w(A) < %. However, there exist sectorial operators with sectorial angle equal to 5 that do
not generate Cy-semigroups.

Theorem 1.6.8. An operator A on a Banach space X is sectorial if and only if (—o00,0) <

p(A) and M := sup || t(t+ A)~! ||.Moreover, if A is sectorial, the following assertions hold:
>0

i) xedom(A) ifand only if lim 1+ A lx=x,
—00
x € ran(A)if and only if lim (¢ + A lx=0,

ii) ran(A)u ker(A) = {0}.

Remark 1.6.4. IfA is sectorial, then A generates an analytic semigroup {T (1)} ;=o.
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Chapter 2

Fractional Calculus

2.1 Birth of Fractional Calculus

In a letter dated 30th September 1695, LHopital wrote to Leibniz asking him partic-
ular notation he has used in his publication for the n-th derivative of a function

D" f(x)
Dx"

i.e. what would the result be if n = % Leibniz’s response “an apparent paradox from
which one day useful consequences will be drawn.” In these words fractional calculus
was born. Studies over the intervening three hundred years have proven at least half
right. It is clear, that with in the XX century, especially numerous applications have
been found. However, these applications and mathematical background surrounding
fractional calculus are far from paradoxical. While the physical meaning is difficult
to grasp, the definitions are no more rigorous than integer order counterpart. Later
the question became: Can n, be any number: fractional, irrational, or complex? Be-
cause the latter question was answered affirmatively, the name ‘fractional calculus’ has
become a misnomer and might better be called ‘integration and differentiation of ar-
bitrary order’ or ‘arbitrary ordered differ-integrations’ In 1812, PS. Laplace defined a
fractional derivative of arbitrary order appeared in Lacroix’s (1819) writings. He devel-
oped a mere mathematical exercise generalizing from a case of integer order. Starting

with y = x™, where m a positive integer, Lacroix easily develops n th derivative:

dy  m!
dx"  (m-n)!
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2.2. SPECIAL FUNCTIONS OF FRACTIONAL CALCULUS

Using Legengdre’s symbol for the generalized factorial (the complete Gamma func-
tion), Lacroix gets:

m-n

a'y I'm+1)
= X
dx® T'(m-n+1)

He then gives example for y=xand n = %, and obtains:

d%y _2yx
dx% \/ﬁ

It is interesting to note that the result of Lacroix in the manner typical of the classi-
cal formalists of the periods is same as that yielded by the formalists Riemann Liou-
velli definition of fractional derivative. This expression of Lacroix is also referred to
as Euler’s formula (1730). Let us try and use this to evaluate fractional derivative of
f(x) = exp(t). The exponential function is represented as series

00 l’k
) = ! = E —,
fin=e o k!

applying this term to the Euler expression (as above) we get,

d’et tk—v

dr’ :,;)r(k—wr 1’

where v is a positif real number.

2.2 Special Functions of fractional calculus

We will recall in this section some results of the special functions of Fractional Cal-
culus which are important for other parts of this work.

2.2.1 Gamma function
Definition 2.2.1. [51] The gamma function T (z) is defined by the integral:
['(z)= f e 't ldr.
0
Property 2.2.1. The gamma function satisfies the following functional equation:
I'(z+1)=2zI(z). (2.1)
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Another important property can be represented also by the following limit:

n'n?

I'(z) = lim ,
n—-ooz(z+1)...(z+n)

where we initially suppose that Re (z) > 0.

2.2.2 Betafunction

Definition 2.2.2. The beta function is defined by the following integral:

1
B(z, w):f 7 ta-n%dr, (Re(z) >0,Re(w)>0).
0

Property 2.2.2. The principal property of the function Beta is:

Tl W)

B(Z,w)—m,

from which it follows that:
B(z,w)=B(w,z).

2.3 Fractional Integrals and Derivatives

In this section we give some definitions and properties of fractional calculus.

2.3.1 Riemann-Liouville fractional integrals and Derivatives

(2.2)

(2.3)

(2.4)

In this part we give the definitions of the Riemann Liouville fractional integrals and

fractional derivatives on a finite interval, real line and present some of their properties.

Definition 2.3.1. We consider the weighted spaces of continuous functions

Cyla,bl ={f:1a,b] — R: (x—a)" f(x) € Cla, bl},

and
Clla, bl ={f € C" '[a,b]: f™ € C/la,bl,n €N},

Cyla, bl = Cyla,bl.
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2.3. FRACTIONAL INTEGRALS AND DERIVATIVES

Definition 2.3.2. [51] The Riemann Liouville fractional integrals I7, f and I}’ f of order

a = 0 are defined by
LS
T(a)Ja (t-s)17

M B (O
I f() = F(a)ft —iads (<b

This integrals are called the left-sidel and the right sidel fractional integrals. Her I'(.) is

IZ+f(t) =

ds, t>a

the gamma function.
Property 2.3.1. [5]1] Ifa > 0 and 5 > 0 then the equations

19,10, f (0 =157

at

fo; 1810 fo =17 f), (2.5)

are satisfied at almost every point x € [a, b for f(x) € LP(a,b) 1 < p < o00). Ifa+p>1
then the relations in[2.5 hold at any point of [a, b].

Lemma 2.3.1. [51] For x > a we have

IN05))
rp+a)

12, (1= )P (x) = (-l a=0,6>0,

D% (t—a)* ')(x)=0, 0sa<l.

Lemma 2.3.2. [5]1] Leta >0 and 0 <y < 1. Then Ig+ is bounded from Cyla, b] into
Cyla, bl.

Lemma 2.3.3. [5]] Leta >0and0<y <1 ify<a, then I, is bounded from Cla, D].

Lemma 2.3.4. [5]] Let0 <y <1and f € Cyla,b], then I{, f(a) = lim I7 f(x)=0,0<
x—a*

Y <a.

Proof. Note that by lemma , IZ‘+ feCla,b].
Since f € Cyla, b] then (x— a)? f(x) is continuous on [a, b] and thus | (x - a) f (x) [< M,
x € [a, b] for some positive constant M. Therefor

| 17, f(x) |< MII7. (t—a) "](x),
and by lemma|2.3.1

ra-y (x—a)*7.

a —
15 015 Mg

Since a > v, the right hand side — 0 as x — a*, This completes the proof. O
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2.3. FRACTIONAL INTEGRALS AND DERIVATIVES

Definition 2.3.3. [68] (Riemann-Liouville fractional integral on the real line) The Riemann-
Liouville fractional integral on R are defined as

a ,_L * _na-1 _L * _noa-1
(Iff) )= r(a)f_oo(x r) f(t)dt—r(a)f_oo(x n¢~ f(ndt, (2.6)

and
I%f) (%) := f t—x)* 1 f(dt = — f t—x)*f(ndt, 2.7
(1%f) (x) @ ( )5 f(@) r@ ( )2 (@) 2.7)
Remark 2.3.1. The function f € D(If,_) if the corresponding integrals converge for a.a
xeR.

Property 2.3.2. [68]

i. Fractional integration admits the following composition formulas for fractional
integrals:
e =18 2.8)

forfEL”’([R{),a,,B>0anda+/3<%.

ii. We consider fe LP(R), g€ L1R), p>1,qg>1, and % + % =1, then we obtain the
following integration by parts formula

fR gx) (I¢ f) (x)dx = fR f(x)(I%g) (vdx. (2.9)

iii. (Inclusion property)
Let CM(T) be the set of Holder continuous functions f : T — R of order A i.e,

CHD ={f: T=RII fla:=supier | () | +supguer | f(8) = f(B) | (t=9) " < oo}
Ifa>0,andap > 1, then
19_(LP®) = CMa, b]
1

forany—oo<a<b<ooand0</l<a—5.

Definition 2.3.4. [51] The Riemann-Liouville fractional derivative I7, f and I} f of or-
der a = 0 are defined by

n-l-a
F( ) dt f(t s) fs)ds, t>a

1
F(—)

E-Dpe () = f(s 0" f(s)ds, t<b
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where the function f (t) has absolutely continuous derivative up to order (n—1).

Remark 2.3.2. When a = n be a natural number, then we have
(DY ) () = (DY- N (©®) = f(1).

(DL NHD =7 .
(DN (@) =(=D" ().
Where £ (t) is the usual derivative of f(t) of order n.

Lemma 2.3.5. [68] If f be a continuous function and f € LP[a,b] withp >0 and t > a
then the following equalities

(D212, F)o = o,
and

(D1} f) 0 = fao,
hold almost everywhere on [a, b].

Property 2.3.3. [68] If0 < g < p then for f(x) € LP([a, b)), the relations:
(P12 )= (1) o,

(DE1_f)w = (172",

hold almost everywhere on [a, b].

2.3.2 Caputo Fractional Derivatives

In this section we present the definitions and some properties of the Caputo frac-
tional derivatives. Let [a, b] be a finite interval of the real line R.

Definition 2.3.5. [68] The fractional derivatives (“D?. f)(t) and (°Dj_ f)(t) of order a >

0 on [a, b] are defined via the above Riemann-Liouville fractional derivatives by

n-1 f(k)(a) r

(CDZ+f) (1) = (D;ﬁ flx) - Z T(x—a) ) (2.10)
k=0
n—1 f(k)(b) i

CD§-f0) = |Dj- | f - Y =——b-x"||. (2.11)
k=0

These derivatives are called left-sided and right sided Caputo fractional derivatives of
order a.
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Remark 2.3.3. Ifa be a real number then the Caputo fractional derivative[2.10 and[2.1]]
coincide with the Riemann Liouville fractional derivatives,

(*DL f) (1) = (D% f)(0).

Remark 2.3.4. Ifa = n €N and the derivative f"(t) of order n exists, then (“D%, f) (1)
concides with f" ().

(‘D™ f) () = f"(0) and (“D}-f) (1) =(=D"f" (). (2.12)

The Caputo fractional derivatives (D, f) and (°DJ. f) (¢) are defined for functions
f(¢) for which the Riemann-Liouville fractional derivatives of the right hand sides of
and exist.

In particular, they are defined for f(¢) belonging to the space AC"[a, b] of absolutely

continuous functions.

Theorem 2.3.1. [68] Leta> 0 and n =« fora e N. If f(t) € AC"[a, b], then the Caputo
fractional derivatives (CDZ+ f) () and (CDZ_ f) (1) exist almost every where on |a, b].

a) Ifa¢N, (“DY, f) (1) and (DY f) (t) are represented by

t fn(s)

Fn-a)la (t—s)2 -+l

(*DZ. f) (1) = ds=(I"7"D" f)(1).

and
(=™ b )
I'n—-a)J; (s—na—n+l

(‘DL f) (D) = ds=(-1)"I,~*D" f)(1),
whereD =d/dx.

b) Ifa=neN, then (CDZ+ f)(®) and (CDZ_ f) (v) are represented by In particular
(°DY. f) (1) = Dy f) (1) = f(0).

Theorem 2.3.2. [68] Let « > 0 and n = a for « € N. Also let f(t) € C"[a,b]. Then the
Caputo fractional derivatives (°D%, f) (¢) and (°D{- f) (¢) are continuous on [a, b].

Remark 2.3.5. The Caputo derivatives have similar properties to those of the Riemann-

Liouville fractional derivatives.
Lemma 2.3.6. Leta >0 and let f(t) € Cla, b]
e Ifa=né¢NoraeN then
‘DG I7 ) (D) = f(1); (“Dy-I () = f(2).
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2.3.3 Hifler fractional derivative

Hilfer [50] proposed a general operator for fractional derivative, called “Hilfer frac-
tional derivative,” which combines Caputo and Riemann-Liouville fractional deriva-
tives. Hilfer fractional derivative is performed, for example, in the theoretical simula-

tion of dielectric relaxation in glass forming materials.

Definition 2.3.6. [50] The Hilfer fractional derivative of order0<a <1 and0< <1
for a function fis defined by

da

Remark 2.3.6. When a =0, 0 < § < 1, the Hilfer fractional derivative coincides with

classical Riemann-Liouville farctional derivative

Prwy =1 rw="0F rw.

When a =1, 0 < B < 1, the Hilfer fractional derivative coincides with classical Caputo

fractional derivative
_pd
Dyl f()=1y-P = f()=° D, f (0.
Now, we introduce the space

Clla, bl ={f € C1_yla,b]: DLF fe C1yla, by,

and
Cl_,la,bl={feCi_yla,b]: D], f € Ci_yla,bl}.

Since Cly_y[a, bl Cf‘_’i[a, b].
The following lemma follows directly from the semigroup property in property[2.3.1]

Lemma2.3.7. [34] LetO<a<1,0<sf<landy=a+pf—ap.Iff€ Cly_y[a, b] then
Y Y f_ e b
D' f=1.D"f,

and
Y _ ~fl-a)
Da+ I;ﬂf = Da+ f.

Lemma2.3.8. [34] Let f € L'[a,b]. IFD""~ f exists and in L', b] then

(XﬁI +f Iﬁ(l a)Dﬁ(l a)f
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a,B _ pl-a) 1-p-a) _ Bl-a) 1-(1-a) _ f(1-a) n,(1-a)
Proof. DSF1%, =10~ DI\ 18, =[P pprPe = (P9 pht O

Lemma 2.3.9. [34] LetO<a<1,0=f<landy=a+p—ap. If f € Ci_yla,b] and
I;:ﬁ(l_mf € Cll_y[a, b] then DZ;ﬁIZﬁf exists in (a, b] and

DPI% f(x) = f(x) x€(a,bl.
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Chapter 3
Stochastic Differential Inclusions

Differential inclusion is a generalization of the notion of an ordinary differential
equation, therefore all problems considered for differential equation, that is, existence
of solutions, continuation of solution dependence on initial conditions and parame-

ters, are present in the theory of differential inclusions.

3.1 Phase Space

The notation of the space 98 play an important role in the study of both qualita-
tive and quantitative theory for functional differential equations. A usual choice is a
seminormed space satisfying suitable axioms, which was introduced by Hale and Kato
129].

1. If x : (—o0,b) — A, b > 0, is continuous on (0, b] and x( in %, then for every
t € 0, a) the following conditions hold:
(a) x; isin 9B.
@) || x(1) llg=< H || x; || .
@l x¢ | =< K(£) supdl| x(s) [|g: 0 < s <t} + M(¥) || x0 | 8, where H = 0is a constant;
K, M : [0,00) — [0,00), K is continuous, M is locally bounded, and H, K, M are

independent of x(.).
2. For the function x(.) in i., x; is a ¥8-valued function [0, a).

3. The space % is complete.

3.2 Multi-valued mapps

A multivalued map F of a set X into a set Y is a correspondence which associates to
every x € X a nonempty subset F(x) c Y called the value of x. Denoting by 22(Y) the
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collection of all-nonempty subsets of Y we write this correspondence as
F: X=22(Y).

The notion of multivalued arises naturally in various branches of modern mathe-
matics, such as mathematical economics, theory of games, convex analysis, ect. Now
we give some basic definitions and properties of multivalued function.

Let (X, | . |)) be a Banach space and Y be a subset of X. We use the notations

P(X)={YeX:Y#g},
P.1(X)={Y € P(X) : Yclosed},

P (X) ={Y € 22(X) : Ybounded},
Pep(X) ={Y € (X) : Ycompact},
P.,(X) ={Y € P(X): Yconvex},
Pep,cv(X) ={Y € 2(X) : Ycompact and convex}.

Let A, B € 22(X). Consider H; : 22(X) x 2(X) — R™ U {oo} the Hausdorff distance
between A and B given by

H;(A, B) = max{supd(a, B),supd(A, b)}
acA beB

where d(A, B) = ingd(a, b) and d(a, B) ingd(a, b). As usual, d(x, @) = +oo.

ae €
Then (22,¢1(X), Hy) is ametric space and (22;(X), Hy) is a generalized (complete) met-
ric space.

Definition 3.2.1. [8] A multivalued operator N : X — 2;(X) is called
1. y-Lipschitz if there exists y > 0 such that

Hi;(N(x),N(y)) <vyd(x,y) forall x,y€ X.

2. Acontraction if it is y-Lipschitz withy < 1.

Definition 3.2.2. [8] A multivalued F : ] — 22;(X) is said to be measurable if, for each
y € X, the function
t — d(y,F(x)) =inf{d(x,z): z€ F(1)}

is measurable.
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Definition 3.2.3. [8] The selection set of a multivalued map G : ] — 2P(X) is defined by
Sc=1{uel':u(t)eG(t),aeteJ},
The set Sgo,, known as the set of selectors from F is defined by
Srou=1{ve L)) : v(t) € F(t,u(t)),a.e.t € Jh.

Definition 3.2.4. [8] Let X and Y be metric space. A set-valued F from X to Y is charac-
terized by its graph
Gr(F):={(x,y) e XxY: yeF(x).

Definition 3.2.5. [8] Let (X, |.|) be a Banach space. A multivalued map F : X — 2 (X)
is convex closed if F(X) is convex (closed) for all x € X.
The map F is bounded on bounded sets if F(B) = |J F(x) is bounded in X for all
BeZy(X) ie e

sup{sup{lyl: ye F(x)}} <oo.

X€EB

Definition 3.2.6. [8] A multivalued map F is called upper semi continuous (u.s.c) on X
if for each xy € X, the set F(x) is a nonempty, closed subset of X, and for each open set U
of X containing F(xy), there exists an open neighborhood V of xo such that F(V) < U.

A set-valued map F is said to be u.s.c if it is so at every point x € X. F is said to be
completely continuous if F(B) is relatively compact for every B € &2, (X).
If the multivalued map F is completely continuous with nonempty compact values,
then F is u.s.c. if and only if F has closed graph

(i.e.xp — X+, Yn — ¥V, ¥Yn € G(x,) imply y. € F(xy)).

The map F has a fixed point is there exists x € X such that x € Gx. The set of fixed point
of the multivalued operator G will be denoted by FixG.

Definition 3.2.7. [8] A measurable multivalued function F : ] — 22}, 1(X) is said to be
integrably bounded if there exists a function g € L'(R") such that | f| < g(t) for almost
allte J forall f € F(t).

Lemma 3.2.1. [8] Let G be a completely continuous multivalued map with nonempty
compact values. Then G is u.s.c if and only if G has a closed graph

(i.eup, — u, w, — w,wy € G(uy) imply w e G(u)).
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Definition 3.2.8. [8] A multivalued map F : JxRxR — 22 (R) is said to be L' -caratheodory
if
1. t — F(t,x,y) is measurable for each x, y € R.

2. x— F(t,x,y) isu.s.c foralmostall t € ].

3. Foreach q > 0 there exists ¢ 4 € L'(J,R*) such that

| F(t,x,¥) lo=supllfl: f € F(t,x,)} < pq(t)forall |x|<q,|yl<q and fora.e. t€].

The multivalued map F is said to be caratheodory if it satisfies (1) and (2).

Lemma3.2.2. Let X be a Banach space. LetF : Jx X — PP}, ¢, (X) bean L! -caratheodory
multivalued map, and let A be a linear continuous mapping from L' (J, X) to C(J, X).

Then the operator

AoSpoy : CU,X) — @cp,cv(c(],x))
w  — (AoSpou) (W) := (ASFou) (W)
is a closed graph operator in C(J, X) x C(J, X).
Property 3.2.1. Let F: X — Y be an u.s.c map with closed values. Then Gr(F) is closed.

Lemma 3.2.3. Let X be a seperable metric space. Then every measurable multivalued

map F : X — 22.1(X) has a measurable selection.
Definition 3.2.9. [8] The multivalued map F : ] x A — 2P (FE) is said to be [? -Carathéodory
if

i) t — F(t,v) is measurable for each v € A .

ii) t — F(t,v) isu.s.c foralmostall t € ].

iii) Foreach q > 0, there exists hy € L'(J,R") such that

|F(t, v)||? = sup E||f||2 < hy(1), for all IIVIIZ% <qandforae.t€].
feF(¢,v)

3.3 Semilinear stochastic inclusions in a Hilbert space

Let us consider the semilinear stochastic evolution inclusion with delays in a Hilbert

space, defined by

(3.1

dx(t) e [Ax(t) + F(x(p()))]dt+o(xt()dw; t€]J=[0,T]
x(t) = (1), t€Jo=[-1,0],
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where ¢ is Fj-measurable and A is the infinitesimal generator of strongly contin-
uous semigroup of closed linear operator S(#), ¢ = 0 on the separable Hilbert space A4
with inner product ¢.,.) and norm | . ||. p,7 : [0, +oo[— [-r,+0o0], r = 0 are suitable
delay functions. x: [-r, T] — # and ¢ : Jo — A is the initial datum such that ¢ () is
Fp-measurable for all r € Jy, E || ¢(0) ||P < oo and f?r E| ¢0) [P ds<oo, p=2.

Let £ be another separable Hilbert space with inner product (.,.) » and norm
| . l#. Suppose w(t) is a given .£ -valued Brownian motion or wiener process with a
finite trace nuclear covariance operator Q = 0.

Let Z (A, /) denotes the Banach space of all bounded linear operators from &
into #. Assume F : # — 21\ @, the space of nonempty subsets of the space .# and
o:H — L(X,H), are two measurable mappings in /-norm and L2(# , #°)-norm,

respectively.

Definition 3.3.1. [46] Let A be the infinitesimal generator of strongly continuous semi-
group of closed linear operators S(t), t = 0. Let ¢ be F-measurable # -valued stochastic
process satisfying E | ¢ |P< oo, and f € LP(A) is a selection of F(x(¢(t))). The function
x(t) is given by

{x(t) =S(OPO) + [f S(t—9) f(ds+ [y S(t— o (x(T(s)N)dw(s) te] 52)

x(1) =¢),te Jo=[-r0].
is the mild solution of the problem|3.1]

We denotes by BCC(A#) the set of all nonempty bounded, closed and convex sub-
sets of A.

Lemma 3.3.1. [46] Let A be a Hilbert space and ® : /& — BCC(A) a u.s.c and con-
densing map. If the set

U={xeA: Axe dx forsome A>1} isbonded, then ® has a fixed point.
The following lemma is crucial in the prof.

Lemma 3.3.2. [46] Let I be a compact interval and Y be a Hilbert space. Let F be a mul-
tivalued map which is measurable for each u € /€ upper semi continuous with respact
to u and for each fixed u € A the set,

Ngy ={f € LP(#): f(t) e F(u) fora.e. t€ ]} is nonempty.
Also letT be a linear continuous mapping from LP(1,Y) to C(I,Y). Then the operator
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I'oNp : C(I,Y) — BCC(C(1,Y))
x — ([oNp)(x) =I'(NEx)

is a closed graph operatorin C(I,Y) x C(I,Y).
Let us introduce the following hypothesis

(H1) A:D(A)c A — A is the infinitesimal generator of a strongly continuous semi
group S(t) in A, wich is a compact for ¢ = 0 such that

| S(t) ||< Me™"" forall =0 where M =1 and y > 0.

(H2) p,7:10,00) — [—1,+00) 1 =0, are continuous functions such that

—-r<p()<t and —-r<t(f)<t forall r=0.

(H3) There exists constants cj, ¢ = 0 such that

Elow |P<aE|ul? +c, ue s, p=2.

(H4) F: A — BCC(#); u — F(u) is a measurable for each u € A, upper semi

continuous with respect to u and for each fixed u € A the set

Ngy ={f € LP(#): f(t) € F(u) fora.e. t € J} is nonempty.

(H5) E|F(w) |P=sup{E|v|P:ve F(u)}<n(t)¥Y(E| u|P) foralmostall t € J and u € A,

where n € LP(J,R*) and ¥ : R* — (0,00) is continuous and increasing function
with
T_ o] du
f m(s)ds < f _
0 c 1l+u+¥Y(w
where c=37"'MP | ¢ |” and
m(0) = max[3P L TP L MPePY (1), 3P 1 TE  MP ¢ ePY!, 3P 1 TE L MP PV ).
(H6) The function o is completely continuous and for any bounded set V < . the set

{t — o(x(7(1))) : x € V} is equicontinuous in /.

Remark 3.3.1. N, is nonempty if and only if the function X : ] — R defined by
X(t) =inf{E|v|P: ve F(u)} belongs to LP(J,R).
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Theorem 3.3.1. [46] Assume that hypotheses (H1)-(H6) hold. Then the stochastic inclu-
sion|3.1] has at least one mild solution on J.

Proof. We transform the problem 3.1]into a fixed point problem. We consider the mul-
tivalued map ® : C — 2¢ defined by

o), 1€ Jo
(@x) (1) = , , (3.3)
S(OPO0) + [y S(t—9)f()ds+ [y S(t—$)o((x(x(5)))dWs, t € J.

Where f € Ngy={f e LP(A: f(t) € F(x(p(s)))) fora.e. t€J}.

It is clearly that the fixed point of ® are mild solution to|3.1

First we prove that ® is a completely continuous multivalued map, u.s.c, with convex
closed values.

The proof is given by the following steps. In the step one we shall that ®x is convex for
every x € C. Next in step two we prove that ® is a completely continuous operator.

As a consequence of step two and the hypotheses (H6) together with the Arzela-Ascoli
theorem it is concluded that ® : C — 2€ is a compact multivalued map, after we show

that ® has a closed graph.

By this steps, and by lemma we deduce that @ has a fixed point which is a solution
of the stochastic inclusion 3.1l O
Proof. See [46] for more details. O

Example 3.3.1. As an application of the above result, consider a one-dimensional rod
of length m whose ends are maintained at 0° and whose sides are insulated. Suppose
there is an exothermic reaction taking place inside the rod with heat being produced
proportionally to the temperature at a previous time t —r (for the sake of simplicity, we
assume the delay r = 0 is constant). Consequently, the temperature in the rod may be
modeled to satisfy

ou(t,x) _ 0%*u(t,x)

+hu(t—-rx) 0<x<m t>0

or 0x2
u(t,0)=u(t,m)=0 t>0 (3.4)
u(t,x) = ¢t x) te[-r0],x€[0,n]

where h depends on the rate of reaction and ¢ : [—r,0] x [0, 1] — R is a given function. We
observe that, when there is no heat production (i.e., h = 0), the problem|[3.4 has solutions
given by

[e.0]
_a2r
u(t,x)=)_ ape " 'sin(nx),
n=1
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wherer =0 and ¢(0,x) = % a,sin(nx).
However, it often occurs that Ifnh_e1 exothermic reaction can be random. In some cases, this
can be modeled by writing the term hu(t—r, x) in the form (hy+hy w'(t)) u(t—r, x) where
w(t) is real standard Brownian motion, hy : R — 2® is measurable with respect to first
argument and for each second argument, it is u.s.c. satisfying Lipschitz continuity and

hy :R — R is completely continuous. Thus,[3.4 can be written as

% € %+hou(t—r,x)+h1u(t—r,x)w’(t) 0<x<m, t>0
u(t,0) =u(t,m) =0 t>0 (3.5)
u(t,x) = ¢(t, x) te[-r0],x€[0,7]

and setting H = LP (0, ) and K = R and A the operator A = dd—; with domain

D(A) ={ EH'QQEH (0) = y(m) =0}
TEE g gz S YR Y=

F(u) = hou, o(u) = hyu and p(t),7(t) = t —r, the problem|3.4 can be reformulated as
follows (see Caraballo and Liu [58]):

{du(t) €[Au(t) + F(ulc())ldt+o(ulo()dw(t), t>0, (3.6)

u(t) =¢(1), te[-r0]

One can compute immediately that A generates a strongly continuous analytic semi
group S(t) and |S(t)| < Me"?, forall t = 0 wherey = M = 1.

Under these assumptions, Theorem applies and hence the problem|(3.6 has a mild
solution.

3.4 Stochastic differential inclusion with Hilfer fractional

derivative
Let us consider the stochastic differential inclusion driven by sub-fractional Brow-

nian motion with Hilfer fractional derivative of the form

a,p dsg
{Dw x(1) € AxX(D) + F(t,x) + (1) 7, 1€ T = [0, b), an

(I ") ()= = p € B.

Where Dg;ﬁ is the generalized Hilfer fractional derivative of orders a € (0,1) and type
B €10,1]. Ais the infinitesimal generator of strongly continuous semigroup of bounded
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linear operator {T(¢)}>0.

Assume that F : ] x /£ — P (A) is a bounded, closed and convex multivalued map,
g:]— fg(lf , /), & is a real separable Hilbert space with product (.,.) . Here
$8 (A, A) denotes the space of all Q-Hilbert-Schmidt operators from £ into /# and
Sg is an Q-sub-fBm with Hurst parameter H € (%, 1). Ié 7 is the fractional integral of

orders1 -y (y=a+pf—-ap).

Lemma 3.4.1. Let I be a compact interval and 7€ be a Hilbert space. Let F be an L?-
Carathéodory multivalued map with Sg,x # @ and letT" be a linear continuous mapping
from L?(], #) to C(J, 7). Then the operator F o Sg : C(J, ) — Pep,cv(H),x — (Lo
Sr)(x) =T'(Sgx) is a closed graph operator in C(J, #) x C(J, #€), where Sk is known as
the selectors set from F and given by

feSpy=1f € L2([0,1],76): f(t) € F(t,x) fora.e. te[0,TI}.

Now we introduce the space 2% formed by all ;-adapted measurable square in-

tegrable /£-valued stochastic process {x(?) : t € [0, b]} with norm ||x||é,cg = sup Ellx(7) 12,
t€[0,b]
then (2%, |.ll#¢) is a Banach space.

We define 26, = {x: (oo, b] — #: '~V x(t) € 26} with norm ||.|| ., defined by

2 1- 2
I.15. = sup Ellt " x(D)]".
Y re[0,b]

Obviously, 26 is a Banach space.
Let us define the operators {Sy g() : £ = 0} and {Pg(?) : £ = 0} by

Sap(0) =120 "P py(0),
Ps(t) = tP ' Tp(n),

Tp(t) = fooﬁe\yﬁ(e)T(tﬁe)de;
0

where 1
B o0 (_9)}1—
Ys(0) = n; CETE nﬁ),o <f<1,6€(0,00)

is a function of wright type which satisfies

ra+é

F(Tﬁé’)’ ¢€(—1,00).

o0
f 0°¥5(0)d0 =
0
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Lemma 3.4.2. [48] The operator Sy g and Pg have the following properties

i) Forany fixed t =0, Sq 5(t) and Pg are bounded linear operators, and

2(6-1)
IPg(t)x)* < M IxI? and
g T (p)?
tZ(a—l)(l—ﬁ)
I1Se,p(0)xI* < M B

T(a1-p)+P)?
ii) {Pp(t): =0} is compact if {T(t) : t = 0} is compact.

Definition 3.4.1. An /€-valued stochastic process {x(t)} is said to be mild solution of
system|[3.7 if the process x satisfies the following equation:

t

t
x(1) :Sayﬁ(t)(p+f Pﬁ(t—s)F(s,x(s))ds+[ Pﬁ(t—s)g(s)dsg(s), te].
0 0

3.4.1 Existence of Mild Solution
The convex case.

In this section, we will show the existence results of mild solutions for convex case
of system[3.7] So we impose the following assumptions to show the main results:
(H1) The operator A is the infinitesimal generator of a strongly continuous of bounded
linear operators {S(f)},»¢ which is compact for ¢ > 0 in .7 such that || S(¢) ||?< M for
each r € [0, b].
(H2)The maps F : ] x £ — Pcp 0y (HE) is an LZ—Caratheodory function and for any
t € [0, b] the multifunction ¢t — F(¢, x(t)) is measurable.
(H3) There exists a function h, € L%(J, #f) such that

| F(£,) 1< hg(0).
(H4) There exist a constant k = 0 such that
| F(t, x2(8)) = F(£, %1 () 1?< K | x2— x1 I” .

(H5) There exist a constant p > 2ﬁ+1 suchthatg:J — Lg (J,#€) satisfies

b 2
[lg) I ds < oo.
0 Ly
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Theorem 3.4.1. If the assumptions (H1)-(H4) are satisfied then system[3.7 has a unique
mild solution on %€y provided that

Np2B-1+1
1.
TP

Proof. For an arbitrary x, we define the operator ® on €, as follows

t t

(@x) (1) = Sq,p(D) +f Pp(t— s)F(s,x(s))ds+f Pp(t— s)g(s)dsg(s).
0 0
We will prove that @ has a fixed point on #€,, the proof will be given in serval steps.
Step1: We show that ® maps %€, into itself.
We divide the proof into two claims
Claim1: from lemmal3.4.2} Holder’s inequality and hypotheses (H1)-(H4), we have

2

t t
E| " x0|* = E| 7 Sa s+ tl‘YfO Pp(t—$)F(s,x(s)ds+ tl‘YfO Pp(t—5)g()dSg (s)

2

t
<3E| 1" Sap(0gp|” +3E tl—Yf Pg(t—$)F(s,x(s)ds
0

2

t
+3E tl‘Yf Pg(t—5)g(s)dS ()
0

<L+DL+Is.

_ 2
L:=3E |t Se 50|
£20r=1)
<3 Y M——FE|o|?
)

<3 Elgl?.

M
T2

56



3.4. STOCHASTIC DIFFERENTIAL INCLUSION WITH HILFER FRACTIONAL
DERIVATIVE

2
L:=3E|t!

t
—Yf Pg(t—$)F(s,x(s))ds
0

t 2
sst(l—”E( f ||Pﬁ(r—s)F(s,x(s))||ds)

2
s3b2(1_7’)m ( f (t—s5)P~ ”nF(s,x(s))nds)

3Mp*@ P
< - -
= THreF-1

3Mp2abD

hy(s)d

oo G

E f 1E (s, x())12ds

2
131235

t
tl—?’fo Pp(t— s)g(s)ng(s)

t
<3207 CH(_t)ZH_lf 1P (t—5)g(s) ”92%3@7( 04S
A ,

M t
20-y) . py2H-1 — )21 2

<3b2(1 )/)C (- b)ZH 1(1"('5))2 ([ (t— s) Pl ds) (f ||g(s)||$o(l,]g) )

p—
M 4 2p(B-1) p
1-2y+2H —_ ) T
<3b CH(F([}))Z( A (t—9) "7 ds) ([ IIg(S)Ilgo(l,Jf) )

Therefore ® maps 276y into itself.

Claim2: We prove that (®x)(¢) is continuous on ] for any x € €.
Lete >0and r € J, then
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| @x)(¢+€) = (@2)(1) 5, = sup E [ "7V (@2)(2+8) = (@x)(1) |1
0<t<b

= sup PUVE | (@x)(t+¢) — (@x)(1) |2
0<t<b

t+¢€
< sup ?UVE| Sa,ﬁ(t+£)(p+f Pg(t+e—3$)F(s,x(s))ds
0<t<b 0

t+e t
+f Pﬁ(t+e—s)g(s)dsg(s)—Sa,ﬁ(t)(p—f Pp(t—s)F(s,x(s))ds
0 0

t
_fo pﬁ(t—s)g(s)ng(S) I

<3 sup PUVE| Sept+e)p—Sapep > +3 sup 2177
0<t<b 0<t<b

t+€ t
Ellf Pﬁ(t+£—s)F(s,x(s))ds—f Pg(t—s)F(s,x(s))ds ||2
0 0

t+€ t
+3 sup *VE| f Pp(t+e~s)g(s)dSH(s) - f Py(t - 5)g()dSH(s) 2.
0 0

0<t<b

By lemm and hypothesis (H1)-(H4), we deduce that the right hand side of the
above inequality tends to zero as € — 0, then (®x)(#) is continuous.

Step2: (®x) is convex for each x € €.

If p1,p2 € ®(x), then we have

t t
pi:Sa,ﬁ(t)<p+f0 Pﬁ(t—s)F(s,xi(s))ds+f0 Pg(t—5)g(s)dS ().

Let0 <6 <1, then for each ¢ € [0, b] we have

t t
(Op1+ 1 —0)p2)(t) :5Sa,ﬁ(t)(p+6f0 Pﬁ(t—s)F(s,xl(s))ds+5fO Pﬁ(t—s)g(s)dsg(s)+(1—5)Sa,ﬁ(t)(p

t t
+(1—6)f Pﬁ(t—s)F(s,xg(s))ds+(1—6)[ Pﬁ(t—s)g(s)dsg(s)
0 0

t

t
:S“rﬁ(t)¢+ﬁ Pﬁ(t—s)(éF(s,xl(s))+(1—6)F(s,x2(s))ds+f0 Pﬁ(t—s)g(s)dsg(s)

F(t, x) has a convex values, then 6p; + (1 —6)p2 € (x).
Step3: @ is a contraction.

For any x; and x,; € 76y, we have

t t
(CDxl)(t):Sa,ﬁ(t)<p+fO Pﬁ(t—s)F(s,xl(s))ds—fo Pﬁ(t—s)g(s)dsg(s).
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1 @x2)(1) = (@x1) (D5, = sup E[[t77 (@) (1) = (®x1) (1)) I
0<t<b

< sup *UVE|(@x0) (1) — (@x1) (1)) I
0<t<b

t
< sup *VE| f Pg(t— 8)(F(s,x2(8)) — F(s, x1(s)ds ||
0<t<b 0

t
< sup *"VE f | Pa(t = $)(F(s, x2(s)) = F(s,x1(5)) |* ds
0<t<b 0

t
sbz“‘”ﬁ | F(s,x2(5)) = F(s, x1(s)) |2 fo (t—5)2F Vs
M

- pRB-D+1 2
TPREp-1 [l x2—x1 |l

Step4: ®(x) is closed for each x € €.
Let {h;}n=0 € @(x) such that h, — hin 2?<€,. Then h € 2?6, and there exist {v,,} € Sgx
such that foreach t€ J

t

t
hn(t):Sa,ﬂ(t)<p+f0 Pﬁ(t—s)vn(s)ds+fo Pﬁ(t—s)g(s)dsg(s).

Due to the fact that F has compact values, we may pass to a subsequence if necessary
to get that v, converges to vin L?(J, ) and hence v € Sg. Then for each r € J

t

t
hn(t)—>h(t):8a,ﬁ(t)(p+fo Pﬁ(t—s)v(s)ds+f0 Pﬁ(t—s)g(s)dsg(s).

Thus, h € ®(x). O

The non convex case.

In this section, we give a non convex version of system 3.7
Let o/ be a subset of ] x B. o is £ ® D measurable if o/ belongs to the o-algebra
generated by all sets of the form _¢# x 98, where _¢ is Lebesgue measurable in J and 28 is
Borel measurable in 4. A subset «f of L2(J, ) is decomposable if for all w, v € o« and
SF € ] measurable, w¥x s + v 4 € A, where & denotes the characteristic function.
Let F: ] x /£ — P, (A£). Assign to F the multivalued operator

F :C(J, ) — P(L*(J, #)),

Let & (x) = Sgx = {f € L*(J,#) : f(1) € F(t,x(t)) fora.e t€ J}. The operator & is called
the Niemytzki operator associated to E

Definition 3.4.2. [4]] Let Y be a separable metric space and let N : Y — ZP(L*(], 7))
be a multivalued operator. We say that N has property (BC) if
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1) N is lower semi continuous.

2) N has nonempty closed and decomposable values .

Definition 3.4.3. [4]] F: J x A — Z¢,,(A) be a multivalued function with nonempty
compact values. We say that F is lower semi continuous type (Ls.c type) if its associated

Niemytski operator & is l.s.c and has nonempty closed and decomposable values.
Consider H; : 22(A) x P (A) — Rufoo} given by H,; (A, B) = max{supd(a, B),sup d(A, b)},
acA beB
where d(A, b) = infld(a, b).
ac
Now, we give a selection theorem due to Bressan and Colombo [10].
Theorem 3.4.2. [4]] Let Y be a separable metric space and let N: Y — P(L2(], ) be
a multivalued operator which has property (BC). Then N has a continuous selection, i.e.
there exists a continuous function (single-valued) § : Y — L?(J, #) such that §(y) €
N(y) foreveryyeyY.
Lemma 3.4.3. Let (X,d) be a complete metric space. If the multivalued operator G :
X — P, (X) is a contraction then G has at least one fixed point.

Now, we introduce the following hypothesis

(H6) F:]x A — P(A)is nonempty compact valued multifunction map such that
a) (t,y) — F(t,y) is £ x 2 measurable and for every t € J, the multifunction
t — F(t, y;) is measurable.
b) (¢,y) — F(t, y) is lower semi continuous for a.e.t € J.

Theorem 3.4.3. Under assumption (H1)-(H6), the problem has at least one € -
mild solution.

Proof. the proofis given in serval steps.
Consider the problem[3.7]on [0, b]

a,p dsg
{Dw x(1) € Ax(t) + F(t,x) + (1) 7, 1€ T = [0, b), -

Ly (D)l =0 = @ € B.

Let 26, = {x: (—o0,b] — A : t' Y x(1) € €}, with || x |z, = (SupE || t' 77 x(2) 12)2.
te]
Thus (7€, | . ||gz<gy) is a Banach space.

Let D = BNPECy.
We transform the problem into fixed point theorem. Consider the multivalued op-
erator ®: ¥ — 2 (2) defined by

t t
O(x)={peD:p(t) :Sa,ﬁ(t)(pﬁtfPﬁ(t—s)F(s,x(s))ds+fPﬁ(t—s)g(s)dsg(s)}.
0 0
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Let ¢ : [0, b] — # be a function defined by ¢(t) = Sq,(t)p. Then ¢(t) is an element
of 2. Let x(t) = z(t) + ¢(¢) for t € [0, b], with
t

t
z(t) = [Pg(t—s)f(s)ds+ [Pg(t - s)g(s)dsg(s), where f(s) € F(t,z; + ¢;) for a.e. te
0 0

[0, b].
Let consider the operator @ PE€, — P (P€y) defined by

t t
@(z):{pe@%y:ﬁ(t):f() Pﬁ(t—s)f(s)ds+f0 Pﬁ(t—s)g(s)dsg(s)}.

Now we show that ® satisfies the assumption of lemma
Stepl: o) € PE€, for each z € €.
Let z, € ®(z) and || z,, — z II‘ZO],%&Y—> 0 for z € 2?€ and there exist f; € SF,z+¢3 such that

t t
zn(t):f Pﬁ(t—s)fn(s)ds+f Pﬁ(t—s)g(s)dsg(s).
0 0

Since F(t, z(t) + cf)(t)) is compact values and from hypothesis (H6), we pass to a subse-
quence if necessary to get that f,, converges to f in L?(J,.#).
Then for each t € [0, b],

t t
E| zn(t)—f Pﬁ(t—s)f(s)ds—f Pﬁ(t—s)g(s)dsg(s) |[— 0as n—0,
0 0

t t
so there exista f(.) € SEzi+d such that z(t) = [ Pg(t —s) f(s)ds+ [ Pg(t — s)g(s)dsg(s).
0 0

Step2: There exist § < 1 such that EH;(@D(ZI),ﬁ)(ZZ)) <d|lz1—2 IIgpch forany z;,z2; €
PEy.

Since for all h; € ®(z;), there exist fies é such that

Ez1+
t t
hl(t):fo Pﬁ(t—s)fl(s)ds+f0 Pﬁ(t—s)g(s)dsg(s).

We have Hd(F(t z1(1) +(p(t) F(t,zo(1)) +(/)(t)) <I(t) | z1 — z2 ||, so there exist
ho (1) = fPﬁ(t s)fz(s)ds+fP,3(t g()dSy.
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We have

t
o)~ (Ol =1 [ 2ot =909~ A5 I,

t
< sup 2UVE fo | Pa(t—9)(fa(s) — fi(9)) I ds
0<t<b

t
2(1-y) _ 2 _ a2(-D
<b (r(ﬂ))zlf(t) I 22(2) = z1(2) | fo(t $)7P s

- le(t)
T([TB2ep-1)

<lOz1-2z|°.

2(B— 1 2
P2 2y — 21 ||

p2B-2y+1

with (1) = G552 Ms (O- A

EHLZi (D(z1) - P(22)) < I(1) || 22— 21 ||? . So we conclude that @ is a contraction, and
thus by lemma ® has a fixed point so the problem admit at least one mild solu-
tion. O

3.4.2 Anexample

Consider the following stochastic differential inclusion

11 2 dast
DEAy(1,8) € T+ F(t,x) +g() L, te J=(0,bl, € [0,7),
Iy ")) = yo,

y(£,0)=y(t,m) =0.

Where Dé;i denotes the Hilfer fractional derivative.

Let # = L2([0,71],R), F: [0, b] x # — 9P (#F) is bounded, closed and convex multival-
ued map and satisfies the condition (H1)-(H3).

The operator A: D(A) ¢ # — A is defined by

D(A) ={ye 1y, y’are obsolutely continuous, x € FL|y(0) = y(r) = 0}.

Sg is Q-sub fractional Brownian motion with Hurst parameter H € (%, 1).

Ié_y is the fractional integral of orders 1 —vy.
n o
Ay=y then Ay= ) n? < ¥, Yn > Yn- Where y, (1) = \/%sin(nt) n=12,..
1

n=
We see that A generates a compact analytic semi group {T'(£)} ;> in .

We assume that f; : [0, b] x &£ — A,i = 1,2 such that
i) f1and f, are u.s.c.
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ii) fl < f2.

iii) For every s > 0 there exists a function h, € L2([0, b] x ) such that fi(t,x) < hg(2).

4 .
Let g : ] — L5(10,4],.7) such that [ %0 ds < oo, p>-1.
t3

0
We take F(t,x) = [fi(t,x), fo(t,x)].
All the assumptions in theorem|3.4.1|are verified thus this inclusion has a mild solution.

63



Chapter 4

Impulsive fractional stochastic

differential inclusions

4.1 Introduction

In this section, we aim to study this interesting problem. We prove the existence of
2% - mild solutions for impulsive fractional stochastic differential inclusions driven by
sub-fractional Brownian motion with infinite delay and non-instantaneous impulses

of the form

asg
°DY¥x(t) € AX(0) + F(t,x:) + g(t) 2, t € (8i, ti41],i = 0,1,.., N
x(0)=¢@e %, 4.1)
x(0) =Li(t,x), te(t,s),i=1,..,.N

Where ¢ D® denotes the Caputo fractional derivative operator of order a € (0, 1) with
the lower limit zero; x(.) takes its values in the separable Hilbert spaces .# with in-
ner product {.,.) » and norm || . || »; A is a fractional sectorial operator defined on #;
F:Jx# — 2" _{@}is a multifunction, J:=[0,b],0=fy=sg <1 <S]<SH <1r <..<
IN—1 < SN < Iy < tn+1 = b be prefixed numbers; g: J — &fg(J{,’,Jf), A is another real
separable Hilbert space with inner product (.,.) » and norm || . || ~. Here .598 (A, HO)
denotes the space of all Q-Hilbert-Schmidt operators from £ into # and Sg isan Q-
sub-fBm with Hurst parameter H € (%, 1). The history x; : (—o0,0] — A, x:(0) = x(t +0)
belongs to some abstract phase 2, I; € C((¢;, s;] x 8,.#), for all i = 1,...,, N. The initial
data {¢(#) : —oo < t <0} is an F-adapted B-valued random variable independent of
the sub-fBm with infinite second moment.
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4.2 Preliminaries

In this part, we discuss some basic definitions, notations, theorems, lemmas and
some basic facts about sub-fractional Brownian motion, the fractional calculus and
sectorial operators.

Let (A, . |l (., )7) and (AL, | . | %, .).») the separable Hilbert spaces. The no-
tation C(J, #) stand for the Banach space of continuous functions from J to /# with

supermum norm i.e., | x ||;=sup || x(#) || and L'(J, 7€) denotes the Banach space of
te]

function x : /] — # which are Bochner integrable normed by || x [|;1= fob | x(0) || dt,
for all x € L' (J,.#). A measurable function x : ] — 7 is Bochner integrable if and only
if | x || is Lebesgue integrable. B(#°) is a Banach space of all linear bounded operator
from # into itself with norm || F || )= sup il F(x) || x [|< 1}.

Let (2, %#,P) be a complete probability space equipped with a normal filtration {%;} ;5
satisfying the usual conditions (i.e., right continuous and %, containing all P-null sets).

Lemma 4.2.1. ([72]) Let x : (—oo, b] — A be an F-adapted measurable process such
that the %y-adapted process xy = @(t) € Lg (Q, PB) and the restriction

x:J— L‘? (Q, AB) is continuous, then

I x5 i< MpE | ¢ | +Kpp sup E || x(s) [l ,

0<s<b

where Ky = sup{K(t) : t € J} and My = sup{M(t):te€ J}.

We introduce the space 2% formed by all #;-adapted measurable square inte-
grable .#°-valued stochastic processes {x(f) : t € [0, b]} such that x is continuous at
t # t;, x(t) = x(¢7) and x(¢]) exist for all i = 1,..., N. We always assume that 2% is
endowed with the norm

—

2
I x = ( sup E | x(1) ||2) .
0<t<b

Then (226, | . | #+«) is a Banach space.

Definition 4.2.1. ([25]) Let {%,,} nen=1 be a sequence of subsets of /. Suppose there is a
compact and convex subset % c /€ such that for any neighborhood N of % thereisann
so that foranym=n :%,,c N. Then () conv( U %,)c¥.

N>0 n=N
Lemma 4.2.2. ([25]) Every semicompact sequence in L' ([0, b], #) is weakly compact in
L'([0, b], 7).
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Now, we introduce the Hausdorff measure of noncompactness y ~(.) defined by
XY z(B) =inf{e > 0: B admits a finite cover by balls of radius <¢ in Z}

for any Hilbert space Z.
Some basic properties of y z(.) are given in the following lemma.

Lemma 4.2.3. Let Z be a real Hilbert space and B be a bounded set in Z. Then, the fol-
lowing properties are satisfied:

i. Bis pre-compact if and only if x (B) = 0.

ii. y7(B) = xz(B) = xz(convB), where B and convB are the closure and the convex
hull of B, respectively.

iii. yz(B) < yz(C) when B < C.

ivyz(B+C)<xz(B)+xz(C) whereB+C={x+y:x€eB,yeC}.
v. xz(BUC) = max{yz(B), xz(C)}.

vi. Yz(AB) <|A| xz(B) forany A € R.

vii. If the map ¢ : D(¢p) < Z — Z s Lipschitz continuous with constant k then
Xz (PB) < kxz(B) for any bounded subset B < D(¢), where Z " is another real Hilbert
space.

viii. If {V,}7., is a decreasing sequence of bounded closed nonempty subset of Z and

o0
nlim xz(Vy) =0, then N V,, is nonempty and compact in Z.
— n=1

Lemma 4.2.4. Let W be a closed convex subset of a Banach space Xand R: W — P;;(X)

be a closed multifunction which is & -condensing where & is a non singular measure of
noncompactness defined on subsets of W, then R has a fixed point.

Lemma 4.2.5. Let W be a closed subset of a Banach space X and R : W — P(X) be a
closed multifunction which is Z -condensing on every bounded subset of W, where & is
a monotone measure of noncompactness defined on X. if the set of fixed points for R is a
bounded subset of X then it is compact.

Lemma 4.2.6. Let (X,d) be a complete metric space. If R : X — P, (X) is contraction,
then R has a fixed point.
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Lemma4.2.7. Let B be a bounded setin Z. Then for every € > 0 there is a sequence (xy) n>1
in B such that

X(B)=2x{xp,:n=1}+e.

Lemma 4.2.8. Let yc(;.) be the Hausdorff measure of noncompactness on C(J, 7). If
W < C(J,#) is bounded, then for everyte€ J,

xW(1) < xcy,2) (W)

where W (t) = {x(t) : x € W}. Furthermore, if W is equicontinuous on J, Then the map

t — x{x(1) : x € W} is continuous on ] and

Xcg,72) (W) = stlg)x{x(t) :xe W}
Lemma4.2.9. Let{f,:neN}c LP(]J,#), p =1 be an integrable bounded sequence such
that yif,:n =1} < y(1), a.e.t € J, wherey € L'(J,R"). Then for each € > 0 there exists
a compact K, < E, a measurable set ], c ], with measure less than €, and a sequence of
functions{gt} < LP(J,A€),t € ] and
| fn(8) —g5() I<2y(t) +€, foreveryn =1 and everyte J — ..

Next, we are ready to recall some facts of fractional Cauchy problem. Bajlekova [18]

studied the following linear fractional Cauchy problem

(4.2)

D¢ x (1) = Ax(t)
x(0) =xp e A

where A is linear closed and D(A) is dense.

Definition 4.2.2. A family {S,(t) : t = 0} € L(A) is called a solution operator for
if the following conditions are satisfied:

(@) Sq(t)is strongly continuous for t = 0 and S, (t) = 1.

(b) S (t)D(A) € D(A) and AS,(t)x = Sq (1) Ax for x € D(a) and t = 0.

(c) Sq(t)x is a solution offor allxe D(A) and t = 0.

Definition 4.2.3. An operator A is said to be belong to e* (M, w) if the solution operator

Sa () of[4.2satisfies

I Sa () | £7ey< Me®', £ =0

for some constants M =1 and w = 0.
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Definition 4.2.4. A solution operator Sq(t) of[4.3 is called analytic if it admits an ana-
lytic extension to a sector Zg, = {A € C—{0} : |lar gAll < 0o} for some0, € (0, %]. An analytic
solution operator is said to be of analyticity type (0y,wy) if for each 0 < 0y and v > wy
thereisan M = M0, w) such that

I Sa (D) | 2e= Me™, re 3y

Set

e (w):=Ule* M,w) : M =1} and e* := U{e* (w) : v = 0},

A%(0y,wg) ={A € e”: Agenerates an analytic solution operator S, of type (6, wo)}

Lemma 4.2.10. If A€ A%(0y,wy) then
I Sa (D) | 2ey< Me®* and || To (1) | 2(7)< Ce® (1 +1*71)
foreveryt >0, w > wy. So putting

M= sup | Sq (1) ”g(]ﬁ),ﬁ]‘:: sup Ce®!(1+ 179,
0<t<b 0<t<b
We get

I Sa(®) ll2e)< My, | Ta(0) | 200y < t* M. (4.3)

Definition 4.2.5. Let A€ A%(0y,wo) with 0y € (0,%] and wy € R. A function x is called a

mild solution of (4.1) if

Sa(x0+ Joy Ta(t=39)f(S)ds+ [§ Ta(t = $)g(s)dSH (), 1 € Jo
Sa(Dxo+ Sa(t—t) L (1)) + fy Talt—9)f(S)ds+ [y Talt— S)g(S)ng(S), teh

X(t):<'

Sa(H)xo + % Sa(t=t) (X)) + fy Ta(t =) f(ds + f§ Ta(t = $)g()dSE(s), 1 € Iy
= (4.4)

where f € S x())-

SF(,x() IS the set of the measurable selections of the multivalued map such that Sp( x()) =

{(feL?(J,70): f(b) € F(t,x(1)}.

4.3 Existence of mild solution

Theorem 4.3.1. Let A€ A%(0y,wo) with 0 € (0, g] and wo €R, F: ] x /0 — Py cp(H) a
multifunction, g: ] — .568(1,%) and I; € C([t;, s;] x B, H).

We assume the following conditions:

(H1) For any x € A4, the multifunction t — F(t,x) is measurable and for all t € ],
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x — F(t,x) is upper semicontinuous.

(H2) There exists a function ¢ € Lé (J,R%), g € (0,@) and a nondecreasing continuous
function ® : R* — R* such that for any x € /€

I F(z,x) = (0O | x| 1

(H3) i) There exist a function f € L1 (J,R"), g € (0, a) satisfying

anMry <1, 4.5
nMrlpl e (4.5)

be—4
W

_ a—q
wheren = "

ii) For every bounded subset Z < A
Z(F(t,2)) < )X (Z2), for a.e. t e ], where X is the Hausdorff measure of noncom-

andw =

pactness in A .

(H4) For g : [0,b] — 28 (X, A) we assume the following conditions: for the com-

plete orthonormal basis {e,} nen in K, we have:

S 1
> I1gQzen ll2(o,p),7)< o0
n=1

(0, 0)
Z I g(t)Q%en |7 converges uniformly for t € [0, b].

n=1

(H5) The function g: ] — $8 (X, H) satisfies

b
fo I g(s) "2’8 ds=A<oo.

(H6) For any i = 1,2,...,N, I; is continuous and there exists a positive constant h;
such that

112, ) < hi | x II°, x € 7

Then the problem has a mild solution provided that there is r > 0 such that

_ 3____ b -
IV PRV | x, |+ S b f (b-9"TE| f(s) 2 ds
0
(4.6)
[e'e) t
+3cyb* Zf | Ta(b—)Q2" |3, ds<r
n=1J0

Proof. We transform the problem (4.1) into a fixed point problem, we define a multi-
function R : PC(J, ) — 2PCU-7) a5 follows:
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For x € PC(J, #), R(x) is the set of all functions y € R(x) such that

Sa(t) X0+ [§ To(t—9)f(ds+ [y To(t—$)g(8)dSH(s), L€ Jo
Sa ()Xo + Sq(t— ) [ (£]) + [y Ta(t— ) f(S)ds+ [y Ta(t— $)g(8)dSH(s), e Ny

y(t) =<

Sal0x0+ X Salt= )R + fi Talt = 9) f(s)ds+ f{ Talt - $)g($)dSy(s),te Iy
= (4.7)

where f € S}J(” (- BY the hypothesis (H1) the values of R are nonempty. It is easy to

see that any fixed point for R is a mild solution for[4.1] so our aim is to show, by using

lemmaf4.2.5} that R has a fixed point. The proof will be given in the following steps.

Step 1. We proof that the values of R are closed.

Let x € PC(J,#) and {y, : n = 1} be a sequence in R(x) which is convergent to y in

PC(J,#€). Then according to the definition of R, there is a sequence {f,, : n = 1} in

S}D(”x(.)) such that for any ¢ € J;, i =0,1,..., N, we have

Sa(DX0+ fy Ta(t =) fu()ds + [y Ta(t = 9)g(s)dSE (), L€ Jo
Sa()Xo+Sa(t =)L) + fy Ta(t=$) fu(8)ds+ [y Ta(t—9)g(s)dSH(s), 1€ ]y

Yu(t) =4 .

N
Sa(BXo+ ¥ Salt = ) L;(X()) + fy Tult = $) fu()ds + [ Ta(t - )g(s)dSH(s), t € Jy
i=1

(4.8)
By the assumption (H2) for every n =1, and fora.e. t€ J

I fr(0) lI= @O x ) = @O x [ pcy,72)

This show that the set {f;, : n = 1} is integrally bounded. Therefore for a.e. t € J {f,:
n=1}c F(t,x(1)), the set {f;, : n = 1} is relatively compact in / for a.e.t € J. Moreover,
the set {f;, : n = 1} is semicompact and then by lemma [4.2.2] it is weakly compact in
L'(J,.70). So, without loss of generality we can assume that f,, converges weakly to a
function f € L!(J,.#). From Mazur’s lemma, for any j € N there exist a natural number

ko(j) > j and a sequence of nonnegative real numbers A;x, k = j,..., ko(j) such that
ko(j) ko(j)

> Ajk =1and the sequence of convex combinations z; = 3 A, fx, j = 1 converges
k=j k=j
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strongly to fin L!(J,.#) as j — co. so we can suppose that zj(t) — f(r) fora.e. € J.
Since F takes convex and closed values, we obtain for a.e. t € J

f) e (e k= jic [convifi: k= j}cF(t,x(1).
j=1 j=z1

Noting that, by (4.3) for every ¢,s€ J,s€[0,tf]and n =1

| To(t=9$)2n(s) l|< (= ) " Mrp()O | x | pcy. ) -

k(;)
Next taking y, (1) = > A jkyk, implies
k=j

Sa(t) X0+ [ Talt—9)zn()ds+ [y Talt— $)g()dS](s), 1€ Jo
Sa(OXo+Sa(t =)L) + fy Ta(t = $)zn(8)ds + [y Ta(t = $)g(s)dSH (s),t € Ty

yn(t) =4 .

Sa(t)xo + g Sa(t—t) i (x(£;)) + fot To(t=8)zn(s)ds+ fot To(t— S)g(S)ng(S), teJn
= (4.9)

But y,(f) — y(¢) and z,(t) — f(¢) for a.e. t € J, therefore, by tending n to co in (4.9), we

get from the Lebesgue dominated convergence theorem that for every i =0, 1, ..., N.

Sa(t) X0+ [§ To(t—9)f()ds+ [y To(t—$)g(8)dSH(s), L€ Jo
Sa(t) X0+ Sq(t = ) (£]) + [y Ta(t = $) f(S)ds + [y Ta(t— $)g(8)dSH(s), e Ny

yo=1{

Sal0x0+ X Salt= )R + fi Talt = 9) f(s)ds + f{ Talt - $)g($)dSg(s),t€ Iy
= (4.10)

This proves that R(x) is closed.

Step 2. Set By = {x € PC(J,#) :|| x ||pc< r}. Obviously, By is a bounded, closed and

convex subset of PC(J, #). We want to prove that R(By) < By. to show that, let x € By
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and y € R(x). By using (4.3), (4.6), (4.9); (H2) and Holder’s inequality, we get for ¢ € J;.

Elyn|* =k

2

t t
Sa(t)x0+f Ta(t—s)f(s)ds+f Ta(t—s)g(s)dsg(s)
0 0

2
+3E

2

t t
<3E|Se()xol1> +3E Hf To(t—s)f(s)ds f To(t—$)g(s)dSy (s)
0 0

— — t* [t a-
< 3M,e*RE | xo |2 +3M2T;f (t-9)T E| f(s) |2 ds
0

00 t
+3cy 21 Zf | To(t—$)QZ ey, |2 ds.
n=1J0

We getforevery t€ J;,i=1,2,...,N

I y(8) I5c=< 1 < oco.

Therefore R(By) <€ By.
Step 3. Let Z = R(By). In this step we will show that the set defined as follows

Z5 ={y"€CUy,#):y () =y, t€ i, y" (t) = y(t] )y € Z}

is equicontinuous for every i = 1,2,..., N.
Let y € Z. Then there is x € By with y € R(x). According to the definition of R, there is
f €Sk () such that

yo=1{

Sa(t) X0+ [§ To(t—9)f(ds+ [y To(t—$)g(8)dSH(s), L€ Jo
Sa ()Xo + Sq(t = ) (£]) + [y Ta(t—$) f(S)ds + fy Ta(t— $)g(8)dSH(s), ey

N
Sa(x0+ X Sa(t= LX) + [y Tat = 8) f(S)ds + [ Ta(t—5)g(s)dSE (5), 1 € T

i=1
(4.11)

We consider the following cases:
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Casel. When i = 0, we consider two points t and ¢+ & be two points in Jo, then:

t+6

T (t+6— s)f(s)ds+f To(t+6—95)g(s)dSy (s)
0

t+6

|y c+8 -y @] =I Sa(t+6)x0+/(;
t t
_Sa(t)xo_/(; Toc(t—s)f(s)ds—f0 To(t=5)g(8)dSG () |
t+0 t
= (Sa(t+6)—8a(t))x0+fo Ta(t+6—s)f(s)ds—f0 Ta(t—95)f(s)ds
t+6 t
+f0 Ta(t+6—s)g(s)dsg(s)—f0 To(t—9)g()dSH(9) |
t
= (Sa(t+5)_sa(t))x0+f (Ta(t+6—38)—Ta(t—29) f(s)ds
0
t+6 t
+f Ta(t+6—s)f(s)ds+f (Ta(t+5—s)—Ta(t—s))g(s)dsg(s)
t 0
t+0
+f To(t+6-5)g()dSH(s) |
t
t
< || (Sa(t+6)—Sa(8)x0 ||+||f0 (Ta(t+6—35)—Ta(t—29) f(s)ds ||
t+6 t
[ Tatt+0-90ds 141 [ (Talt+8-9 = Talt-)g(91dSH(s |
t
t+6
[ Tatr+0-9g0)asEo I
t
Elly* (t+8) = y* (1) I’S3E || (Sa(t+8) — Sa (1) x0 |17
t
+3E||f (Ta(t+8—5)—To(t—s)f(s)ds|?
0
t+6
+35||f To(t+6—-39)f(s)ds|?
t
t
#3E [ (Talt+0-9) - Talt - )gOASH) I
0

t+6
+3E || f To(t+6 - s)g(s)dsg(s) I>:= 3(G1 + G2 + G5 + G4 + Gs).
4
(4.12)
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Where

Gr=E | (Salt+8)—Sa(D)xo %,
t

GzzEnf (Talt +6—5) = Talt— ) f($)ds I,
0
t

GszEnfO (To(t+8—5) = Ta(t—9)g()dSG () II%,
t+6

G4:E||f To(t+6 -9 f(8)ds |2,
t

t+0
Gs=Ell [ Tult+5-9gdshis) I2.
t

We only need to check G; — 0as 6 — 0 forevery i =1,2,3,4,5.

for G; we have

G =E| Sa(t+6) - Sa()xo |2
<|| Sa(t+8) = Sa(t) I E | xo |I?
<|| Sa(t+8) - Sa(® |12 r2.

sup E || Sa(t+6) = Sa(t)xo %< sup || Sa(t+6)—Sa(0) | 12
0<t<b 0<t<b

| (Sa(t+8) = Sa(®)x0 150 sup Il Salt+8)—Sq(0) | r2
0<t<b

D=

(lsiir(l)ll (Sa(t+6)—Sa(1)xo ||pcshm sup || S(t+8)—Sa(2) [ r2 =

6—-00<t<h

uniformly for x € By.

For G, we apply the Lebesgue dominated convergence theorem to get
t
Go=El [ (Tult+5-9=Tat=)f()ds
t 2
<[ 1Tatr+6-9-Toe=s) W f15) 1]
t 2
sup Gz < sup EU I (Ta(t+6—95)—Ta(z=s) Il f(s) dS)

0<t<b 0<t<b

2
lim sup Gy <lim sup E(f | (Ta(t+0—8)—Ta(t—9) Il £(5) I ds) =0.
6—-00<t<b 6—-00<t<p
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For G3 we use holder’s inequality we obtain

I fot(Ta(Ha—s)— To(t—$)g(9)dSg (s) 1= fotTa(Ha—s)g(s)dsg(s)
—fOtTa(t—S)g(s)ng(S) I
<I fO[Ta(t+6—s)g(S)ng(S) I+ fOtTa(r—s)g(s)dsg(s) ||
< sup To(t+6-39) ||f0tg(s)dsg(s) I+ sup Ta(t-s) ||f0tg(s)dsg(s) I

0<t<b 0<t<b

- t - t
<(t+6-9"Mr ||f g(s)dSH(s) | +M (1—5)*! ||f0 g(s)dsy(s) |
0

t . t
||f (To(t+8—5) = Ta(t—)g()dSG (5) ||252(r+6—s)2(“‘”M2T||f gs)dsg(s) I°
0 0

. t
+2M (1 - 52@7V | fo g(s)dsg(s) |1?

t . t
E||f (Ta(t+8 )~ Ta(t— $)g()dSH(s) |P<2(1+ 6 — )2 VM E ||f g(9)dsg (s) I
0 0
t
+2]\_/[2T(t—s)2(“‘1)E||f g(8)dSy(s) |1?

<2(t+6 - 2@ Ve 2H- 1[ I g(s) |1 ds

5’0 (K, H)

sup E|| (Ta(t+(5—s) Ta(t - $)g(s)dSH(s) I>< sup [2(t+6—s)2(“ DR cpt2H1
0<t<b 0 0<t<b

fng(s) ||$0(Mf)ds+2MT(t 5)%@” ”ch I 8(s) ||$0wmd]

D=

(sup E| (Ta(t+6—s) Ta(t - $)g(9)dS{(s) I

< ( sup [2(t+6 — 3)2(“_1)A_/IZTCHIZH_1
0<r<b

0<t<b

1
[ 18001 st W97 Vet (Mg 1 dsl)

1

(lslm(sup E| (Ta(t+6 §)—Ty(t— s))g(s)dsg(s) ||2) <2(t- s)"‘1

0\o<t<p 0
([ 186 121 s ) .
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t
||f0 [Ta(t+6 = 5) = Ta(t = 5)Ig(s)dSg (s) I =2(t-9)% ks (f I g(s) ||$owﬂj)

For Gy, by the Holder’s inequality we have

t+6 t+6
||f To(t+6—3)f(s)ds| sf | Talt+5—5) 1] £is) I ds
t t
t+6 _
s[ (148 My || £5) [l ds
t

_ t+6
SMTf (t+85-9" f(s) I ds
t

. t+0 % t+0 %
SMTf (t+5—s)(“_”pds) (f I £(s) ||qu)
t t

-1

. t+6 (a-1)q 7 t+6 %
<Mr f (t+6—s) a1 ds) (f | @7(s) | ®F || x || ds)
t I3

. t+6 PN i t+6 7
<My f (t+6—s)ﬁds) O x| (f I @7(s) | ds)
t t

w

_ (&w\97!
v ;) olxllel .

L"(]R+)
Wh —(“——1)
erew = | = q+1
t+0 (Y q-1
[ tates-950dst =N () elxlliol,
t+6 — 5 (§®)\2a-D
||f To(t+6-9)f(s)ds |2 < My |— Ol xllel*,
w L4 (J,RY)
t+0 5@ 2(g-1)
BN [ Tateso- 9 fwds P <y T (@2 1<l )
La(J,R")

t+6 =D 2
sup El | Ta(t+6—s)f(s)ds|? < sup MZ( ) (@2 "x””‘/’“L;UWJ

0<t<b t 0<t<b

1+6 3 o\3 (80 \q-1
2 2% (0 1la2 2
sup E || Ta(t+6—-35)f(s)ds || <|sup My| [— Ez(®° [ xllel°,
w L9 (J,RY)

0<t<b t 0<t<b

t+6 %
hrn( sup E || Ta(t+6—19)f(s)ds IIZ) <0.
6—0 0<t<b t

For G5 we have
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t+0 t+0
Mt Ta(t+6—s)g(s)dsg(s)w < sup Ta(t+6—s)”ft g(s)dsg(s)H

0<t<b

t+6 t+6
f To(t+6-9g($)dSH ()| < sup To(t+6-5) f g(s)dS (s)
t 0<t<b t
t+6 2 2 pt+6 2
f To(t+6-5)g()dSH(s)| =< ( sup Ta(t+6—3)) g(s)dSi(s)
t 0<t<b

46 2 2 +6 2
E f To(t+6-5)g()dSH(s)| = ( sup Ta(t+6—s)) E g(s)dSi(s)
t 0<t<b 13
2 2H-1 r+o 2
<M“2H(t+d-35) ft | g(s) IIL%(K"%) ds.
t+0 2 t+0 2
sup E f To(t+6—5)g(s)dS (s) 5M22H52H‘1f ||g(s)||L%(Kjﬁ) ds
0<t<b t t
t+6 2\
(sup E f To(t+6—5)g(s)dSg (s) )
0<t<b t

1

2H-1 t+8 2 ’
< avams 2 ([ gy ]
t

2\2
)so.

Case2. For i €1{1,2,..., N}, let t, t + 6 be two points in J;. According to the definition of

lim| sup E

t+6 H
Ty(t+6—15)g(s)dS, (s)
5—’0(05t5b ft ¢ 8 <

R, we have
ly* @+ -y @ =1 yt+d)—-y@) .

N t+6
I y(t+8)—y@) | =Il Sa(t+8)x0+ Y Sa(t+8—t;)1;(x(t])) +f0 To(t+6—3)f(s)ds

i=1

t+6 N
+f Ta(t+6—9)g($)dS(s) = Sa ()Xo — Y St — t)I;(x(17)
0 i=1

t t
—fo Ta(r—s)f(s)ds—fo Ta(t~5)g()dSG(s) -
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i
| y(t+6) = y(8) | <N (Salt+8) = Sa() o | + Y [|Salt+8 — ) Ik (x(£7)) = Sat — ti) Ik (x ()|
k=1

t+0 t
+ f Ta(t+6—s)f(s)ds—f Ta(t=9)f(s)ds
0 0

t+0 t
+f Ta(t+6—s)g(s)dsg(s)—f To(t—$)g(s)dSq (s)
0 0

| y(t+6) = y(8) 1> <311 (Salt+8) = S () Xo I* +3 Y [[Sa(t +6 — ti) It (x(£)) = Sa(t — tr) L (x(t ) ||
k=1

2

t+0 t
+3 U Ta(t+6—s)f(s)ds—f Ta(t—=9)f(s)ds
0 0

2
+3

t+6 t
f Ta(t+6—s)g(s)d8g(s)—f To(t—$)g(s)dSy (s)
0 0

E|ly(t+6)—y(®) > <3E | (Sq(t+8)—Sa(t)) X0 I

+3E Y ||Salt+6 - 1) Ji(x(£7)) = Sa(t — 1) [ (x () ||*
k=1
2

t+6 t
+3E f Ta(t+6—s)f(s)ds—f Ta(t—95)f(s)ds
0 0

2
+3E

t+6 t
f Ta(t+6—s)g(s)dsg(s)—f To(t—$)g(s)dSy (s)
0 0

sup E|| y(t+8) —y() |*<3 sup E || (Sg(t+8)—Sa(t) xo I
0<t<b 0<t<b

+3sup E Y ||Salt+6 - ) Je(x(£7)) = Sa(t — t) I (x(£0)||°
0<t<b f=1
2

+3 sup E
0<t<b

t+0 t
f Ta(t+6—s)f(s)ds—f Ta(t=9)f(s)ds
0 0

2

t+6 t
+3 sup E f Ta(t+5—s)g(s)dsg(s)—f To(t—$)g(s)dSy (s)
0 0

0<t<b

As in the first case we get

(1551(1) | y(t+6)—y(®) llpc=0.

Case3. When t =t;,i=1,2,..., N, let A > 0 be such that t; + A € J; and o > 0 such that
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;<o <t;+0 < tjy1, then we have
I y*(ti +0)—y* (&) lpc= 1iH;+ I y(t; +6) = y(@) lpc-
o=
According to the definition of R we get
N ti+0
I y(t;i +6) = y(©) | =l Salti +8)xo+ Y_ Salti +6 — ti) I (x(£;)) +f To(ti+6—-39)f(s)ds
0

k=1

ti+0 N
+f0 Ta(ti+8—5)g()dSG () = Sa(0) X0~ Y, Sal0 — i) I (x (1))
k=1

g t
—fo Ta(U—S)f(S)ds—fo Ta(a—S)g(S)ng(S) [l .

N
Y (Salti +6— 1) = Sq (0 — 1)) I (x(£)
k=1

ti+0 g
f Ta(ti+6—s)f(s)ds—f To(o—35)f(s)ds
0 0

I y(ti +8) = y(0) || Il (Sa(ti +6) = Sa(0)) xo || +

+

+

ti+0 o
f Ta(ti+6—s)g(s)dsg(s)—f To(0—5)g(s)dSG (s)
0 0

Arguing as in the first case we can see that

lim | y(ti+6)~ y(@) =0 (4.13)

0—0,0—t

i

From the inequalities — we conclude that Z is equicontinuous for every
i=12,..,m.
Now for every n = 1, the set B, = convR(By-1). From step 1, B, is a nonempty, closed
and convex subset of € (J, #). Moreover B; = convR(By) € By. Also B, = convR(B;) €
convR(By) € By byinduction the sequence (Bj,), n = 1is decreasing sequence of nonempty,
closed and bounded subsets of 26 (J, A).
We need only to show that the subset B = FWOI B, isnonempty and compactin 22€ (J, A).

ne

by lemma4.2.3] it is enough to show that )
r}im )(pc(Bn) =0. (4.14)

where ypc is the Hausdorff measure of noncompactness on PC(J, #’) defined in sec-
tion 2. In the next step we prove the equation (4.14).
Step 4. Let n = 1 be a fixed natural number and € > 0. In view of lemma4.2.7, there
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exists a sequence (yx) =1 in R(B;-1) such that

xpc(Bn) = xpcRBn-1) <2xi{yk: k=1} +e.
From the definition of y pc, the above inequality becomes

Xxpc(Bn) SZi:glle,}?iin(Sgi) +e (4.15)
Where S = {y : k > 1} and y; is the Hausdorff measure of noncompactness on C(J;, 7).
As we have done in the previous step, we can show that Bn|7,~’ i=0,1,..., N is equicon-
tinuous. Then, by applying lemma we get:

Xi(S;7,) =sup x(5(2)),

1 €7i

where y is the Hausdorff measure of noncompactness on Z. Therefore, by using the
nonsingularity of y, the inequality (4.15) becomes

sup y (S(1))

t €7i

+e=2supy(S() =2supy{yk(H:k=1}+¢ (4.16)
te] te]

,,,,,,

Now, since y € R(B;-1), k = 1 there exists x; € B,_1 such that yx € R(xy), k= 1. By

recalling the definition of R for every k = 1 there is fi € S};( such that forevery t € J

Xk ()

X 1Sa(xo} + x {5 Talt=9) fils)ds: k= 1}
0 {fy Talt - 98k(9)dSH(s) : k= 1}, € Jo

x{ve(@®:k=1}<<-

N
X (Sa(Dx0} + Zl)({Sa(t— tp) Iy (x(t,)) : k> 1
p:

+x{fs Ta(t—9) fe(ds: k= 1}+X{f0t Ta(t—s)gk(s)ng(s) k= 1}, tejn

(4.17)
Hence, for every t € ] we have
1{Sa () xp: k=11 =0. (4.18)
Moreover for every p=1,2,..., N and every t € J
XSt — tp)(Ip(xk(t’;))) ck=1}=0. (4.19)
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In order to be able to estimate
XU Ta(t—9) fe(s)ds: k=1}
We can see that from (H3) it holds that for a.e. t€ J

Yife®: k=1 < y{F(t, xe (D) : k= 1}
< B xixe(): k=1}
< B x(Bn-1(1))
< () xpc(Bp-1(1) =y(1).

Furthermore, for any k =1, by (H2), for almost t € J, we have || fi(?) [|< @(£)O(r). Con-
sequently, fi € L‘i (J,#6), k = 1. Note thaty € Lq (J,R"). Then from lemmad4.2.9, there
exists a compact set K, < H and a measurable set J, < J. With a measure less than ¢,

and a sequence of functions {g;} < L% (J,#) such that for every s € J, {g;(s): k= 1} <
K, and || fi(s) — g(s) = 2y(s) +¢, for every k= 1 and every s € ]; = J —J¢, then using
Minkowski’s inequality, we get

[ f] Ta(t = 5)(fi(s) - gr(Nds | < Mrn f,(2y(s)+€)‘l’ds q
<Mz ZY(SH'S”L’ URY
<Mrn |1 2y(s) ”ﬁ(/,ﬂv) +lel 3 R
<M |l 2y(s) ||L%U,R+) +2 e “Lw%

q
<abtmn| Iyl ([ eha

<2M +eb’
™ |1 y(s) IIL%UW) €

<2M By +eb1
|1 rrcBan e

<2Mn | xpc(Bn-1) | B ||L1

9(J,R*)

+£b"] )

Finally we get:

q
xpc(Bn-1) Il B ”L%(], +¢eb

R*)

H f]  Talt=9)(fi(s) - gE(s)ds|| < 2Mrn 120
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By Holder’s inequality, we have:

l f] Talt—9)fi(s)ds | < f] | Talt—9) 1 fels) | ds

IRV 1 \4
s(f] I Tote =917 ds) (f] 1)1 ds)
) avp (—L1\P p 1\
<(t-97] (M;) (f ds) ( | fi(s) ||qu)
Je Je
— q
snMT(f] (@)(r)<p(s))éds)
— ) ) q
snMT(a(r)(f (pﬁ(s)ds) )
Je
Consequently we get
_ 1 q
I ] To(t—3)fr(s)ds ||ST]MT®(T)(f] (pq(s)ds) (4.21)
So by (4.20) (4.21), we derive

X{f To(t=3)fr(s)ds: k>1} X Ta(t S) fr(s)ds: k>1}
0

+

x{ To(t—9) fr(s)ds: k>1}
X{ To(t—3)(fi(s) - gp(s))ds: k= 1}
+7({ Ta(t—9)gr(s)ds: k>1}

+X{f To(t—3) fr()ds: k= 1}
Je

<2Mrn | xpc(Bu-1) Il B I S +eb| +
— q
nM71O(r) (f (p?f(s)ds) .
Je
By taking into account that € is arbitrary, we get forall £ € J
t
X{f To(t=9)fe(s)ds: k= 1} <2Mrnypc(Bp-1) || B ”Lq(mm

In order to estimate

t
x{f Ta(t=$)gr(8)dSG : k= 1}.
0
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We use lemmal(1.5.7|in order to calculate the following majoration:
! H 2H-1
E| f Talt = 985G = ent®™™ ) f | Tult—9)ge(s)Qben 12, ds

t
sup E|| | Talt~ $)gr($)dSG (s) ||HscHt2HIZf | Ta(t - 9)gr()Q2 e, I ds
0<t<b

||f Tolt = 5)g()dSG (5) 5= eyt~ 12[ | Ta(t - 9)gk(s)Q% en I ds.
In an other hand we have:

Z ” To(t— S)gk(s)Qzen ”H ds< Z ” Ta(t—9) ” [ gk(S)Qzen ”H ds

n=170

=Y Il ge(9)Qte, ||i,f | Tult—3) |2 ds
n=1

2a—1
]\_/12b

2a1

IA

Z | ge(s)Q%en 1%,
and we know that -~
1
Y 1l ge(5)Qzey lI5,< 00
n=1

So we have

2H+2a-2

t . L
||f0 To(t—9)8k(8)dS (3) llpc= CHZa—lMZTK'

where .
= Z [l gk(S)Qzen ||H<OO
n:

Then forevery t € J

b
X{f To(t—$)g(8)dS;(s) : k= 1} <0,
0

Yiye@:kz1p <2MrnyecBu-0 1Bl 3 o

The inequality and the fact that ¢ is arbitrary, imply

xpc(Bp) <2 [2Mnxpc(Bn-1) | B I3 gan |
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By the previous steps (1,2,3,4) we find that:

n-1

0<ypc(Bn) <|4M1n | B Is me|  APCB)

Since this inequality is true for every n € N, by (4.5) and by tending n — oo, we obtain
lim ypc(By,) =0.
n—oo

Step 5. In this step, we will apply lemmad4.2.3] The goal is to prove that the set B =

[o.@]
M B, is a nonempty and compact subset of PC(J, #). Moreover for every B,, being
n=1
bounded, closed and convex, B is also bounded closed and convex. Let us check that

R(B) € B. Indeed, R(B) € R(B,) S convR(B;) = Byi1.
o0
For every n = 1, therefore R(B) € () Bjy. On the other hand B,, c B, for every n = 1. So,

n=2

RB)c()Bn=()Bn=B

n=2 n=1

Step 6. In this step we show that the graph of the multi-valued function Rp: B — 28 is
closed. We consider a sequence {x,},>1 in# with x, — x in / and let y,, € R(x,) with
¥n — yin PC(J, #). we will show that y € R(x). By recalling the definition of R, there is
fn€ S}?(.,x,, ) forany n > 1, such that

S0+ Jy Ta(t =) fu()ds + [y Ta(t = 5)g(s)dSG (s), 1€ Jo
Sa()%o+Sa(t= )1 (1) + fy Ta(t =9 f()ds + [y Tu(t=5)g()dSG(s), € Iy

yn(t) =4"

i
Sa(Do+ X Salt =10 [(x(1)) + [ T (t=9) fu(s)ds
=0

+fo Talt— gS)dSG(s),teJ1<i<N
(4.22)
Observe that for every n =1 and fora.e. t€ J

I fn(®) = @Ol x,() ) < @()O(r)

This show that the set {{f}, : n = 1} is integrably bounded. In addition, the set {{f,,(?) :

n = 1} is relatively compact for a.e. ¢ € J by the assumption (H3) and the convergence
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of {x,} n>1, imply that
Y{fn(t):n=1} < y{F(t,x,) :n=1} < B(Oxix,(t) :n =1},

then y{f,(t):n=1}=0.

So the sequence {f,,},>1} is semi-compact, hence by lemma4.2.2]it is weakly compact
in L'(J,.#). So without loss of generality we can assume that f; converges weakly to
a function L!'(J, #). From Mazur’s lemma, for every j € N there exist a natural num-

ber ko(j) > j and a sequence of nonnegative real numbers A r, k = j, ..., ko(j) such that
ko(j) ko(j)

2. Ajk =1and the sequence of convex combinations z; = 3. A, fx, j = 1 converges
k=j k=j
strongly to fin L!(J,.#) as j — co. So we may suppose that zj(t) — f(r) fora.e.t € J.
Let t be such that F(¢,.) is upper semicontinuous. Then, for any neighborhood U of
F(t,.), there is a natural number ng € N so that for any n = ny we have F(t, x,(¢)) < U.

Because the values of F are convex and compact, definitio tells us that

N conv( U F(t, x, ()| € F(t,x(1).

j=z1 nzj
As in step 1, from Mazur’s theorem, there is a sequence {z,, : n = 1} of convex combina-

tions of f;, such that fora.e.t € J
f)e _ﬂl{zn(t):nzj}g N convi{f,(t):n=j}
j=

j=1
and z, converges strongly to f € L' (J,.7). then, fora.e. t€ J

fHe 'ﬂl{zn(t):nzj}g ﬂlconv{{fn(t):nzj}g .ﬂlconv U.F(t,xn(t))) c F(t,x(1)).
j= j= j= nzj

Then, by the continuity of g, Sy, Ty, Ix(k = 1,2, ..., N) and by the same arguments used
in step 1, we get from relation that

Sa(Dx+ [y (t=8) 1 T (t—8) f()ds+ [y (t— )% Tp(t - $)g(8)dSE(s), 1€ Jo

y(t) =+

Sa ()Xo + kZ Sa(t = 1) I (x(t;) + o (=9 Ty (t - 5) f(s)ds
=0

+fo (1= 9 T (1= 9)g()dSG (s), t€ [ 1<i<N

(4.23)
Therefore, y € R(x). This show that the graph of R is closed.
As a result of the step 1-5 the multivalued R 3 : B — 25 is closed and y pc-condensing,

with nonempty convex compact values. By applying the fixed point theorem and lemma4.2.4]

there exist x € B such that x € R(x). Then x is a PC-mild solution for the problem

4.1l O
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4.4 Example

We consider the differential stochastic inclusion of the form

1 dsg
‘D?y(t,z) e Ay(t,2) +F(t,y) +g(0)— tel0,1], z€[0,7]

t
y(,0)=y(t,m)=0
y(,2) =¢(1,2)(1,2) €[0,1] x [0, 7]
y(t,2) = [y ni(t—9)y(s,2)ds

Where 1; : R — R is continuous.

We take .72 = L?[0, 1] Hilbert spaces endowed with the norm || . | and

g:]— 28 (A, 7€), where 28 (A, 76) be the space of all operators Q Hilbert Schmidt.
Now we define the operator A = A.

D(A) = {ue C***0,n]: u(0)=n and u(m)=0},

it is easy to see that the operator A is sectorial.

Now we suppose that f;:[0,1] x &£ — A

i fi, fo are measurable and upper semi continuous.
ii f1, f> are increasing functions.
iii (<O x|, i=1,2.
Then we can transform the problem as follows
‘D¥x(t) € Ax() + F(t,x,) + g(t)%, te(sjtiv1,i=0,1,.... N

x(0) =@ e %,
x(t) =1;(t,xs), t€(t,8],i=1,...,N

From our assumptions on (i)-(ii) it follows that the multivalued function satisfy the
conditions (H;y) — (H>).
All the assumptions in theorem (3.1) are satisfied so our inclusion has a mild solution.
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Conclusion

The main goal of this thesis is to investigate the subject of fractional stochastic differ-
ential equations and inclusions in Hilbert spaces. We study some classes of stochastic
differential equations and inclusions with caputo and Hilfer fractional derivative with
an impulsive condition, Sufficient conditions for the existence of 226 -mild solution
are established by using the theory of fixed point and the principle of fractional calcu-
lus. We studied the convex case and non convex case.

The main results are obtained by means of the theory of sectorial operators, semigroup
analysis, fractional calculus, fixed point, and stochastic analysis theory and methods
adopted directly from deterministic fractional inclusion.

Our future work will try to make some the above results and study the approximate
controllability for impulsive fractional neutral stochastic inclusions with Hilfer deriva-
tive driven by sub-Fractional Brownian motion with infinite delay and sectorial opera-

tors.

87



Bibliography

[1]

(2]

3]

(4]

[5]

(6]

[7]

(8]

(9]

(10]

A. N. Kolmogorov, Wienersche Spiralen und einige andere interessant Kurven im
Hilbertschen Raum, C. R. (Doklady) Acad. URSS (N. S.) 26 (1940), 115-118.

A. Boudaoui, T. Caraballo, A. Ouahab |Existence of mild solutions to stochastic delay
evolution equations with a fractional Brownian motion and impulse, stoch. Anal.
Appl.,33 (2015)244-258.

A. N. Caravalho, T. Dlotko and M.].D, |Nascimento, Nonautonomous semilinear

evolution equations with almost sectorial operators, J. Evol. Equ, 8 (2008), 631-659.

A. Pazy Semigroups of linear operators and applicationd to partial differential
equations, New York Springer.

A. Boudaoui, T. Caraballo, A. Ouahab Impulsive stochastic functional differential
inclusion driven by a fractional Brownian motion with infinite delay, Math. Meth.
Appl. Scien., 39, 6, (2016) 1435-1451.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional
Differential Equations , Elsevier Science B.V, Amsterdam, 2006.

A.A. Levakov, M.M. Vas’kovskii, = Existence of solutions of stochastic differen-
tial inclusions with standard and fractional Brownian motion, Diffe. Equa.,
51,8(2015)991-997.

A. Lin, L. Hu, Existence results for impulsive neutral stochastic functional integro
differential inclusions with non local initial conditions, Comput. Math. with Appl.,
59(2010)64-73.

A. Ouahab, | Fractional semilinear differential inclusions, Comput. Math. Appl.,
64(2012)3235-3252.

A. Bressan and G. Colombo, Extensions and selections of maps with decomposable
values, Studia Math. 90 (1988), 69-86.

88


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

BIBLIOGRAPHY

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

B. pasik- Duncan, Semilinear Stochastic Equations in Hilbert Space with a Frac-
tional Brownian Motion, SIAM Journal on Mathematical analysis.

B. Ahmad, R.P. Agarwal, A. Alsaedi, fractional differential equation and inclusions
with semiperiodic and three-point boundary conditions , Boundary Value Prob-
lems,(20016) 2016:28.

B. Boufoussi, S. Hajji Functional differential equations driven by a fractional Brow-
nian motion, Comput. Math. With Appl. Scien., 62 (2011) 746-754.

B.B. Mandelbrot, J.W.V Ness, Fractional Brownian motions, fractional noises and
applications, SIAM. Rev., 10(1968)422-437.

B. Gaveau.| Integral stochastique radonifiante, C.R. Acad. Sci. Paris Ser. A 276, 617-
612 (1973).

C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics: An
Intenational Jourmal of Probability and Stochastic Processes 79 (2007) 431-448.

D. Nualart, | The Malliavin Calculus and related Topics, 2nd edn. Springer, Berlin
(2006).

E. Bajlekova, = Fractional evolution equations in Banach spaces (Ph.D. Thesis).
Eindhoven University of Technology, 2011.

E Periago and B. Straub, A functional calculus for almost sectorial operators and
applications to abstract evolution equations, J. Evol. Equ, 2 (2002), 41-68.

G. Da prato and J. Zabczyk | Stochastic Equations In Dnfinite Dimensions Cam-
bridge Univ. Press, 1992.

G. Shen, C. Chen, Stochastic integration with respect to the sub-fractional Brown-
ian with H € (0, %), Stat. Prob. Letters, 82 (2012) 240-251.

H. Markus The functional calculus for sectorial operators, oper. Theory Adv. Appl.,
Birkhauser-Verlag, Basel , 169 (2006), 19-60.

I Podlubny, | Fractional Differential Equations, Academic Press, San Diego, 1999.

I. Mendy, Parametric estimation for sub-fractional Ornstein- Uhlenbeck process,
J. Stat.plan. inference 143(2013)633-674.

J.P. Aubin, H. Frankoeska, Set-valued Analysis,Birkhuser, Boston, Basel, Berlin
1990.

89


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

BIBLIOGRAPHY

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

J. Cao, Y. Luo, G, Liu Some results for impulsive fractional differential inclusions
with infinite delay and sectorial operators in Banach spaces, Appl. Math. Comput.,
273 (2016)237-257.

J. Wang, A.G. Ibrahim, M. Feckan,| Nonlocal impulsive fractional differential inclu-
sions with fractional sectorial operators on Banach spaces, Appl. Math. Comput,
257 (2015) 103-118.

J.Y. Park, J.U. Jeong, Existence results for impulsive neutral stochastic functional
integro- differential inclusions with infinite delays, Adv. Differ. Eq., 2014:17 (2014).

J.K. Hale, J. Kato, Phase spaces for retarded equations with infinite delay, Funkc.
Ekvacioj. 21 (1978) 11-41.

J.R. Graef, J]. Henderson, A.Ouahab, Impulsive differential inclusions: A fixed point
Approach, De Gruyter Series in Nonlinear Analysis and Applications, 20, 2013.

K. Dzhaparidze, H. Van Zanten A series expansion of fractional Brownian motion,
Probab. Theory relat. Fields, 102(2004) 39-5.5.

K. Yosida,| Functional Analysis, Springer, New York (1980).

K.S.Miller, B. Ross, | An Introduction to the Fractional Calculus and Fractional Dif-
ferential Equations,John Wiley and Sons, New York. 1993.

K. M. Furati, M.D. Kassim, N.e. Tatar |[Existence and uniqueness for a problem in-
volving Hilfer fractional derivative computer and Mathematics with applications
64(2012) 1616-1626.

L. Gawarecki. Extension of a stochastic integral with respect to cylindrical martin-
gales, Stat. Probab. Lett. 34, 103-111 (1997).

L. Gawarecki and V. Mandrekar Stochastic Differential Equations in Infinite Di-
mensions Springer-Verlag(2010).

L. Yan, G. Shen, K. He, Itos formula for a sub-fractional Brownian motion, Com-
mun. Stoch. Anal. 5 (2011) 135-159.

LC. Young, An inequality of the Holder type connected with Stieltjes integration,
Acta Math, 67 (1936) 251-282.

M. Benchohra, J. Henderson, S.K. Ntouyas, A.Ouahab, Existence results for frac-
tional order functional differential equations with infinite delay , J. Math. Anal.
Appl., 338, 2, (2008) 1340-1350.

90


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

BIBLIOGRAPHY

(40]

(41]

[42]

(43]

(44]

(45]

[46]

[47]

(48]

(49]

[50]

(51]

[52]

(53]

M. Benchohra, J. Henderson, S.K. Ntouyas, A.Ouahab, Impulsive Differential
Equations and Inclusions ,Hindawi, Philadelphia, 2007.

M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations

and inclusion, New York. Hindawi Publishing coporation, 2006.

M. Metivier and J. Pellaumail. Stochastic Integration, | Academic Press, New York
(1980).

M. Ledoux and M. Talagrand. Probability in Banach spaces, Springers, Berlin
(1991).

M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for im-
pulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul.,
17,7(2012)3050-3060.

P. Billingsley Probability and measure, Wiley, New York (1979).

P. Balasubramaniam, S.K. Ntouyas, D. Vinayagam | Existence of solutions of semi-
linear stochastic delay evolution inclusions in a Hilbert space ]J. Math. Anal. Appl.
305 (2005) 438-451.

P, Billingsley.| Probability and Measure, Wiley, New York (1979).
R. S. Schatten Norm Ideals of Continuous Operators, Springer, New York (1970)

R.P. Agarwal, M. Benchohra, S. Hamani, Asurvey on existence results for bounday
value problems of nonlinear fractional differential equations and inclusions, Act
Appl. Math.,109, 3(2010), 973-1033.

R.Hilfer, Application of fractional calculus in physics. Singapore: world Scien-
tific,2000.

R.P. Agarwal, M. Belmekki, M. Benchohra, Asurvey on semilinear differential equa-
tions and inclusions involving Riemann-Liouville fractional derivative, adv. Differ.
Equ., 2009, 981728 ( 2009).

S. Abbas, M. Benchohra, G.M. N’'Guérékata Topics in fractional Differential Equa-
tions, Springer, New York, (2012).

S.K. Ntouyas, S. Etemad | On the existence of solutions for fractional differential
inclusions with sum and integral boundary conditions,Appl. Math. Comput, 266
(2015) 235-243.

91


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

BIBLIOGRAPHY

[54]

[55]

[56]

[57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

[65]

[66]

T. E. Duncan, J. Jakubowski and B. pasik- Duncan, | Stochastic integration for Frac-
tional Brownian Motion in Hilbert Space, Stoc. Dynamics, to appear.

T.L.G. Bojdecki, L.G. Gorostiza, A. Talarczyk, Some extensions of fractional Brown-
ian motion and sub-fractional Brownian motion related to particle systems, Elect.
Commun. Probab., 12, (2007) 161-172.

T.L.G. Bojdecki, L.G. Gorostiza, A. Talarczyk, Sub-fractional Brownian motion and
its relation to occupation times, Stat. Prob. Lett., 69 (2004) 405-419.

T. Caraballo, M.J. Garrido-Atienza, T. Taniguchi The existence and exponential be-
havior of solutions to stochastic delay evolution equations with a fractional Brow-
nian motion, Nonl. Anal., 74(2011)3671-3684.

T. Caraballo, K. Liu, | Exponential stability of mild solutions of stochastic partial
differential equations with delays, Stochastic Anal. Appl. 17 (1999) 743-763.

T.Guendouzi, L. Bousmaha Existence of solutions for fractional partial neutral
stochastic function integro-differential inclusions with state-dependent delay and
analytic resolvent operators , Vietnam J. Math., 43,4(2015) 687-704.

T.Guendouzi, L. Bousmaha @ Approximate controlability of fractional neutral
stochastic functional integro-differential inclusions with infinite delay Qual. The-
ory Dyn., Syst., 13,1 (2014)89-119.

T.Guendouzi, O. Benzatout, Existence of mild solutions for impulsive fractional
stochastic differential inclusions with state-dependent delay , Ch. ]J. Math., V 2014
(2014), Article ID 981714, 13 pages.

W. Grecksch and V. V. Anh, | A parabolic stochastic differential equation with frac-
tional Brownian motion input, |Statist. Probab. Letters 41 (1999) 337-345.

Y.Mishura-Stochastic Calculus for fractional Brownian Motion and Related Pre-

cess-Springer 2008.

Y. Zhou, Fractional Evolution Equations and Inclusions: Analyse and Control, San

Diego, CA, Elsevier Science, 2016.

Y.V. Rogovchenko, Nonlinear impulse evolution systems and applications to popu-
lation models, J. Math. Anal. Appl., 207 (1997) 300-315.

Y. Ren, X. Cheng, R. Sakthivel On time-dependent stochastic evolution equations
driven by fractional Brownian motion in Hilbert space with finite delay, | Math.
meth. Appl. Scien., 37 (2013) 2177-2184.

92


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

BIBLIOGRAPHY

[67] Y. Ren, X. Cheng, R. Sakthivel, impulsive neutral stochastic functional integro-
differential equations with infinite delay driven by fBm, Appl. Math. Comput, 247
(2014) 205-212.

[68] Y.Mishura-Stochastic Calculus for fractional Brownian Motion and Related Pre-
cess-Springer 2008.

[69] Y. Ren, T. Hou, R. Sakthivel, Non-densely defined impulsive neutral stochastic
functional differential equations driven by fBm in Hilbert space with infinite de-
lay, Front. Math. China, 10, 2 (2015) 351-365.

[70] Z.Zhang, B. Liu, Existence results of nondensely defined fractional evolution dif-
ferential inclusions, J. Appl. Math., 2012, 316850 (2012).

[71] Z. Yan, H. Zhang, | Existence of solutions to impulsive fractional partial neutral
stochastic integro-differential inclusions with state-dependent delay, Elec. Journal
of Differ. Equa, 81 (2013) 1-21.

[72] Z. Yan, X. Yan,  Existence of solutions for impulsive partial stochastic neutral in-
tegro differential equations with state-dependent delay, Collect. Math, 64 (2013)
235-250.

93


https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf
https://tobi.oetiker.ch/lshort/lshort.pdf

Titre de la thése : Une Contribution a l'étude de certaines classes d'inclusions différentielles
stochastiques non-linéaires.

Résumé: Dans cette thése, nous avons étudié le probléme des inclusions
différentielles stochastique fractionnaire dirigé par le mouvement Brownien
sous-fractionnaire dans |I'espace de Hilbert. Nous avons étudié I'existence de la
solution PC-mild en utilisant la théorie du point fixe. Un exemple est donné
pour illustrer la théorie retenue.

Mots clé : Solution mild, Inclusions différentielle stochastique fractionnaire impulsive,
Mouvement Brownien fractionnaire, Operateur sectoriel.

Thesis title : A contribution to the study of certain classes of nonlinear stochastic differential
inclusions.

Abstract: The research reported in this thesis deals with the problem of
fractional stochastic differential inclusion driven by Sub-fractional Brownian
motion in Hilbert space. We have study the existence of PC-mild solution by
using the fixed point theory. An example is given to illustrate the obtained
theory.

Keywords: Mild solution, Impulsive fractional stochastic differential inclusions, Fractional
Brownian motion, Fractional sectorial operators, Infinite delay.
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