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  : ملخص

 

نتناول في هذه الاطروحة بعض النماذج الوظيفية ذات متغير عشوائي بحيث نقوم بتنبؤات انطلاقا من متغير عشوائي 

فقد تطرقنا الى دراسة  .ونبحث عن تطوير بدائل لطريقة الانحدار( فضاء دالي)توضيحي يأخذ قيمه في فضاء غير منتهي

بحيث قمنا في المحور الاول بدراسة التقارب المنتظم و التقارب  .الوظيفية محوري بحث عن التقدير المعلمي للبيانات

يتعلق بالتقدير التراجعي فقد قمنا في  الثانياما المحور  . ةالشرطي ظمى لدالة الاخفاق او دالة الفشلالطبيعي لتقدير القيمة الع

قمنا بدراسة التقارب  الثانياما في المقام   .لوظيفيةالمقام الاول بتركيب التقدير التراجعي اللا معلمي الشرطي للبيانات ا

 .نسبة المتوسط و التربيعي في حالة البيانات المرتبطة

 .البيانات المرتبطة بقوة, التقدير اللا معلمي ,التقدير التراجعي , البيانات الوظيفية , فضاء شبه متري :   الكلمات المفتاحية

 

Résumé : 

 

Dans cette thèse, nous traitons quelques modèles fonctionnels avec une variable aléatoire afin 

de faire des prévisions à partir d’une variable explicative à valeurs dans un espace de 

dimension infinie (espace fonctionnel), et nous cherchons à développer des alternatives à la 

méthode de régression, en effet nous avons étudié deux axes de recherche d’estimation non 

paramétrique pour des données fonctionnelles. 

 Le premier axe concerne de l’étude de la convergence uniforme et la normalité asymptotique 

d’estimateur du maximum de la fonction de hasard conditionnelle. 

 Le deuxième axe penche sur l’estimation récursive. En premier lieu nous avons construit un 

nouvel estimateur des paramètres conditionnels  pour des données fonctionnelles.  

En deuxième lieu nous sommes intéressés par la convergence presque sûre et en moyenne 

quadratique de notre estimateur où les données sont fortement mélangées. 

 

Mots clés: Espace semi métrique,  les données fonctionnelles, l’estimation récursive, 

l’estimation non paramétrique, données fortement mélangées. 

 

 

Abstract: 

   In this thesis, we treat some functional models with a random variable to make predictions 

from an explanatory variable with values in an infinite dimensional space (functional space), 

and we try to develop alternatives to the regression method. Indeed, we have studied two 

research axes in nonparametric estimation for functional data. 

  The first axis concerns the study of uniform convergence and the asymptotic normality of 

the maximum estimator of conditional hazard function. 

  The second axis focuses on recursive estimation. Firstly, we built a new conditional 

parameter estimator for functional data. 

Secondly, we are interested in the almost sure and mean quadratic convergence of our 

estimator, where the data are strongly mixed. 

 

 

Keywords: 

Semi metric space, the functional data, the recursive estimation, the nonparametric estimation, 

data strongly mixed. 
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Introduction

Functional statistics are a current area of research that plays a very im-
portant role in statistical research. Recently, it has experienced important
developments, particularly in several statistical approaches, which are mixed
and complete. This branch of statistics has studied the data, which are on
very fine grids, and can be compared to curves or surfaces, for example the
functions of time or space. This is statistical modeling of the data that can
be observed on all their trajectories.

It is easy to obtain a very fine discretization of mathematical objects such
as curves, surfaces and temperatures observed by satellite images. This type
of variables can be found in many areas, such as meteorology, quantitative
chemistry, biometrics, econometrics or medical imaging.

Among reference books on this subject, we can refer to monographs of
Ramsay and Silverman [107],[108] for the applied aspects, Bosq[22] for the
theoretical aspects, Ferraty and Vieu[62] for the nonparametric study and
Ferraty and Romain[69] for the recent developments. In the same context,
we refer to Manteiga and Vieu[93] as well as Ferraty[80].

In this thesis we are interested in some functional models with random vari-
able in order to give predictions from an explanatory variable with values in
functional space.

This thesis is presented in four chapters:

Chapter one is devoted to the functional statistics, where we give im-
portant works and concrete problems in this context. In addition, we give
an overview on the conditional models and present a bibliographical list of
major work on this models.
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In chapter two we give some asymptotic notations and definitions, where
we present importance tools ( almost complete convergence, properties of
different kernels), some results of strongly mixing conditions are given.

In chapter three we present some asymptotic properties related to the
nonparametric estimation of the maximum of the conditional hazard func-
tion with functional data. Firstly we calculate the estimator of the maximum
of the conditional hazard function from the estimates of the conditional dis-
tribution and the conditional density. Secondly we study the almost complete
(uniform) convergence and the normality asymptotic of our estimator. we
give also some comment and remark, tools that will used in this works.

In the fourth chapter we use the recursive methods of nonparametric esti-
mation for construct a new estimator of the conditional distribution function
with functional data and we also study the almost sure and mean quadratic
convergence under strong mixing conditions of our estimator that we be cal-
culate from the recursive estimator of the regression function.

We finish the thesis by a conclusion, in which, we summarize all our
results. We also give some points prospects.
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Chapter 1

Functional variables and
conditional models

1.1 Functional variables

The statistical problems involved in the modeling and the study of functional
random variables have a large advantage in statistics. The first work in this
context is based on the discretization of these functional observations in
order to be able to adapt traditional multivariate statistical techniques. But,
thanks to the progress of the data-processing tool allowing the recovery of
increasingly data, an alternative was recently elaborated in treating this type
of data in its own dimension, i.e. by preserving the functional character.
Indeed, since the 1960s, the handling of the observations in the form of
trajectories was the object of several studies in various scientific disciplines
such Obhukov[99], Holmstrom[82] in climatic, Deville [46] in econometrics,
Molenaar and Boosma[95] and then Kirkpatrick and Heckman[85] in genetics.

The functional models of regression (parametric or nonparametric) are top-
ics which were privileged these last years. Within the linear framework,
the contribution of Ramsay and Silverman[107],[108] presents an important
collection of statistical methods for the functional variables. Bosq[22] sig-
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nificantly contributed to the development of statistical methods within the
framework of functional linear auto-regression process. By using functional
principal components analysis, Cardot ad al [114] built an estimator for the
model of the Hilbertien linear regression similar to Bosq[21] in the case of
Hilbertian auto-regressive process . This estimator is defined using the spec-
tral properties of the empirical version of the variance-covariance operator
of the functional explanatory variable. They obtained convergence of proba-
bility for some cases and almost complete convergence of the built estimator
for other cases.

1.1.1 Concrete problem in statistics for functional vari-
ables

In this part we mention a few areas wherein appear the functional data, to
give the idea were functional statistics solves the type of problems.
• In biology, we find the first precursor work in (1958) concerning a study

of increasing curves. More recently, another example is the study of variations
of the angle of the knee during walking (Ramsay and Silverman[108]) and
knee movement during exercise under constraint (Abramovich and Angelini[1],
and Antoniadis and Sapatinas[11]). Concerning animal biology, the med-
ley oviposition have been studied by several authors (Chiouad al [34],[35],
Cardot[29] and Chiou and Müller[33]). The data consist of curves giving
the spawn for each quantity of eggs over time. • Chemometrics is part of
the fields of study that promote the use of methods of functional statisti-
cal. Many works exists on the subject, include Frank and Friedman[73] ,
Hastie and Mallows[80] who have commented on the article by Frank and
Friedman[73] providing an example of the measuring curves log-intensity of
a laser radius refracted depending on the angle of refraction. Ferraty and
Vieu[55] were interested in the study of the percentage of fat in the piece of
meat (response variable) given the absorption curves of infrared wavelengths
of these pieces of meat (explanatory variable).
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• Environment-related applications have been particularly studied by
Aneiros-Perez ad al(2004) who have worked on a forecasting problem of pol-
lution. These data consist of measurements of peak ozone pollution every day
(response variable) given pollutants curves and meteorological curves before
(explanatory variables).
• Climatology is an area where functional data appear naturally. A study

of the phenomenon El Niño (hot current in Pacific Ocean) has been realized
by Besse ad al. [62]; Ramsay and Silverman [109], Ferraty ad al.[59] and Hall
and Vial[78].

1.2 Conditional models

The estimation of the conditional distribution function in a functional frame-
work was introduced by Ferraty ad al [61]) who is built a estimator of double
kernel for the conditional distribution function and he specified the rate of
almost complete convergence of this estimation when the observation are in-
dependent (i.i.d). The case of α− mixing observations has studied by Ferraty
ad al [60].

Another authors have addressed the estimation of the conditional distri-
bution function as a preliminary study of quantile estimation. For example
Ezzahrioui and Ould Saïd[118], [101] who studied the asymptotic normality
of this estimator in i.i.d and α− mixing cases.

We refer to Cordotad al [30] for a linear approach of conditional quantile
in functional statistics. The estimation of the conditional density function
and its derivatives in functional statistics was introduced by Ferraty ad al [61],
these authors have achieved almost complete convergence in the independent
case. Since this article, an abundant literature has developed on a conditional
estimation and its derivatives; in particular in order to use it to estimate
conditional mode. Indeed considering α− mixing observations. Ferraty ad
al [60] have established the almost complete convergence of kernel estimator
of conditional mode defined by maximizing random the conditional density.
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1.2.1 Conditional hazard function

The estimation of the hazard function is a problem of considerable interest,
especially to inventory theorists, medical researchers, logistics planners, re-
liability engineers and seismologists. The non-parametric estimation of the
hazard function has been extensively discussed in the literature. Beginning
with Watson and Leadbetter[121], there are many papers on these topics:
Ahmad[3], Singpurwalla and Wong[118], etc. We can cite Quintela[101] for
a survey. The literature on the estimation of the hazard function is very
abundant, when observations are vectorial. Cite, for instance, Watson and
Leadbetter[121], Roussas[113], Lecoutre and Ould-Saïd[88], Estèvez ad al [49]
and Quintela-del-Rio[100] for recent references. In all these works the authors
consider independent observations or dependent data from time series. The
first results on the nonparametric estimation of this model, in functional
statistics were obtained by Ferraty ad al [66]. They studied the almost com-
plete convergence of a kernel estimator for hazard function of a real random
variable dependent on a functional predictor. Asymptotic normality of the
latter estimator was obtained, in the case of α- mixing, by Quintela-del-Rio
[102]. We refer to Ferraty ad al [80] and Mahhiddine ad al [92] for uniform
almost complete convergence of the functional component of this nonpara-
metric model.

1.2.2 Recursive models

The idea of recursive methods is to use the estimates calculated on the basis
of the initial data and to update them with only new observations arriving in
the database. A major advantage of these methods is that it is not necessary
to restart all the calculation calculations of the model parameters whenever
the data base is completed by new observations. In general, the advantage of
these methods is to take into account the successive arrival of the data and
to refine, as time goes by, the estimation algorithms implemented, the appli-
cations of a Such approach are numerous. The gain in terms of computation
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time can be very interesting.
Historically, the recursive estimation with rate was introduced byWolverten

and Wagner[123]. Later, Baltagi and Li[13] proposed a simple recursive es-
timation method for linear regression models with AR(p) disturbances. As
a recent application of recursive methods we cite Amiri and Thiam[8] who
studied regression estimation by local polynomial fitting for multivariate data
streams. The objective of our work is to propose a parametric family of re-
cursive kernel estimator of the cdf by adopting to functional case the result
given by Roussas[114].

The estimate of the cdf in a functional setting has been introduced by
Ferraty ad al [62]. The authors built a double kernel estimator for the cdf
and they established the almost complete convergence rate of the estimator
when observations are independent and identically distributed (i.i.d). The
case of α-mixing observations has been studied earlier by Ferraty ad al [59].
The first uniforms results available in the literature on the estimation of the
distribution function conditionally to a functional variable were established
in Ferraty ad al. [80]. More recently, Amiri and Kherdani[10] who studied
a recursive kernel regression method adapted to censored data, the asymp-
totic normality of the kernel estimator of the cdf was studied by Bouadjemi
Abdelkader[25], the author introduced a new nonparametric estimator of the
cdf of a scalar response variable Y given a functional random variable X.
This estimate was based on recursive approach. Under certain terms and
conditions, he proved the asymptotic normality of the built model. Keddani
ad al [84] built an estimator of the cdf when the explanatory variable takes its
values in a functional space by using the recursive estimation method when
the sample is considered as an i.i.d sequence. Authors proposed a technique
based on a multivariate counterpart of the stochastic approximation method
for successive experiments for the local polynomial estimation issue.
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Chapter 2

Some asymptotic notations and
results

2.1 Definitions and tools

2.1.1 Types of convergence

All through this part, (Xn)n∈N and (Yn)n∈N are sequences of real random
variables, while (un)n∈N is a deterministic sequence of positive real numbers.
We will use the notation (Zn)n∈N for a sequence of independent and centered
r.r.v.
The following definitions and results can be found in (Ferraty and Vieu.[62])

Definition 2.1.1 One says that (Xn)n∈N converges almost completely (a.co.)
to some r.r.v. X, if and only if

∀ε > 0,
∑
n∈N

P (|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co.
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Definition 2.1.2 One says that the rate of almost complete convergence of
(Xn)n∈N to X is of order un if and only if

∃ε0 > 0,
∑
n∈N

P (|Xn −X| > ε0un) <∞,

and we write
Xn −X = Oa.co.(un)

Proposition 2.1.1 Assume that lim
n→∞

un = 0, Xn = Oa.co.(un) and lim
n→∞

Yn =

l0, a.co., where l0 is a deterministic real number.

i) We have XnYn = Oa.co.(un);

ii) We have
Xn

Yn
= Oa.co.(un) as long as l0 6= 0.

Remark 2.1.1 The almost convergence of Yn to l0 implies that there exists
some δ > 0 such that ∑

n∈N

P (|Yn| > δ) <∞.

Now, one suppose that Z1, . . . , Zn are independent r.r.v. with zero mean. As
can be seen throughout this part, the statement of almost complete conver-
gence properties needs to find an upper bound for some probabilities involving
sum of r.r.v. such as

P

(∣∣∣ n∑
i=1

Zi

∣∣∣ > ε

)
,

where, eventually, the positive real ε decreases with n. In this context, there
exists powerful probabilistic tools, generically called Exponential Inequal-
ities. The literature contains various versions of exponential inequalities.
These inequalities differ according to the various hypotheses checked by the
variables Zi’s. We focus here on the so-called Bernstein’s inequality. This
choice was made because the from of Bernstein’s inequality is the easiest for
the theoretical developments on functional statistics that have been stated
throughout our thesis. Other forms of such exponential inequality can be
found in (see Nagaev ([96],[97])).
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Proposition 2.1.2 Assume that

∀m ≥ 2, |EZm
i | ≤ (m!/2)(ai)

2bm−2,

and let (An)2 = (a1)2 + . . .+ (an)2. Then, we have:

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ εAn

)
≤ 2 exp

− ε2

2
(

1 + εb
An

)
 .

Corollary 2.1.1 i) If ∀m ≥ 2,∃Cm > 0, E|Zm
1 | ≤ Cma

2(m−1), we have

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ nε

)
≤ 2 exp

{
− nε2

2a2(1 + ε)

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n). If ∀m ≥
2,∃Cm > 0, E|Zm

1 | ≤ Cma
2(m−1), and if un = n−1a2

n log n verifies
lim
n→∞

un = 0, we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 2.1.2 By applying Proposition 2.1.2 with An = a
√
un, b = a2 and

taking ε = ε0
√
un, we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ ∞∑
i=1

Zi

∣∣∣ > ε0

√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
un)

}
≤ 2n−C

′ε20 .

Corollary 2.1.2 i) If ∃M <∞, |Z1| ≤ M , and denoting σ2 = EZ2
1 , we

have

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ nε

)
≤ 2 exp

{
− nε2

2σ2(1 + εM
σ2 )

}
.
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ii) Assume that the variables depend on n (that is, Zi = Zi,n) and are
such that ∃M = Mn < ∞, |Z1| ≤ M and define σ2

n = EZ2
1 . If un =

n−1σ2
n log n verifies lim

n→∞
un = 0, and if M/σ2

n < C <∞, then we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 2.1.3 By applying Proposition 2.1.2 with a2
i = σ2, An = nσ2, and

by choosing ε = ε0
√
un, we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ ∞∑
i=1

Zi

∣∣∣ > ε0

√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
vn)

}
≤ 2n−C

′ε20 .

where vn = Mun
σ2
n

2.1.2 The properties of kernel

Definition 2.1.3 i) A function K from R into R+ such that
∫
K = 1

is called a kernel of type I if there exist two real constants 0 < C1 <

C2 <∞ such that:
C11[0,1] ≤ K ≤ C21[0,1].

ii) A function K from R into R+ such that
∫
K = 1 is called a kernel of

type II if its support is [0, 1] and if its derivative K ′ exists on [0, 1] and
satisfies for two real constants −∞ < C2 < C1 < 0:

C2 ≤ K ′ ≤ C1.

The first kernel family contains the usual discontinuous kernels such as the
asymmetrical box one while the second family contains the standard asym-
metrical continuous ones (as the triangle, quadratic, ...). Finally, to be in
harmony with this definition and simplify our purpose, for local weighting of
real random variables we just consider the following kernel-type.

17



Definition 2.1.4 A function K from R into R+ such that
∫
K = 1 with

compact support [−1, 1] and such that ∀u ∈ (0, 1), K(u) > 0 is called a kernel
of type 0.

We can now build the bridge between local weighting and the notation of
small ball probabilities. To fix the ideas, consider the simplest kernel among
those of type I namely the asymmetrical box kernel. Let x be f.r.v. valued
in F and x be again a fixed element of F . We can write:

E
(
1[0,1]

(
d(x,X)

h

))
= E(1B(x,h)(X)) = P(X ∈ B(x, h)).

The probability of the ball B(x, h) appears clearly in the normalization. At
this stage it is worth telling why we are saying small ball probabilities. In
fact, as we will see later on, the smoothing parameter h (also called the
bandwith) decreases with the size of the sample of the functional variables
(more precisely, h tends to zero when n tends to ∞). Thus, when we take n
very large, h is close to zero and then B(x, h) is considered as a small ball
and P (X ∈ B(x, h)) as a small ball probability.
From now, for all x in F and for all positive real h, we will use the notation:

φx(h) = P(X ∈ B(x, h)).

This notion of small ball probabilities will play a major role both from the-
oretical and piratical points of view. Because the notion of ball is strongly
linked with the semi-metric d, the choice of this semi-metric will become an
important stage.
Now, let X be a f.r.v. taking its values in the semi-metric space (F , d), let
x be a fixed element of F , let h be a real positive number and let K be a
kernel function.

Lemma 2.1.1 If K is a kernel of type I, then there exist nonnegative finite
real constant C and C ′ such that:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).
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Lemma 2.1.2 If K is a kernel of type II and if φx(.) satisfies

∃C3 > 0, ∃ε0, ∀ε < ε0,

∫ ε

0

φx(u)du > C3εφx(ε),

then there exist nonnegative finite real constant C and C ′ such that, for h
small enough:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).

Lemma 2.1.3 [65] We have

1

F (h)

∫ 1

0

tK (t) dP‖x−xi‖/h (t) −→M0 as n −→∞;

1

F (h)

∫ 1

0

K (t) dP‖x−xi‖/h (t) −→M1 as n −→∞;

1

F (h)

∫ 1

0

K2 (t) dP‖x−xi‖/h (t) −→M2 as n −→∞.

Proof.
We note that

tK (t) = K (1)−
∫ 1

t

(sK (s))′ ds.

Applying Fubini’s Theorem, we get∫ 1

0

tK (t) dP‖x−xi‖/h (t) = K (1)F (h)−
∫ 1

0

(∫ 1

t

(sK (s))′ ds

)
dP‖x−xi‖/h (t)

= K (1)F (h)−
∫ 1

0

(sK (s))′ F (hs) ds.

Similarly, we have

∫ 1

0

K (t) dP‖x−xi‖/h (t) = K (1)F (h)−
∫ 1

0

(K (s))′ F (hs) ds
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and ∫ 1

0

K2 (t) dP‖x−xi‖/h (t) = K2 (1)F (h)−
∫ 1

0

(
K2 (s)

)′
F (hs) ds.

This proof is finished by applying Lebesgue’s dominated convergence the-
orem.

Lemma 2.1.4 Toeplitz’s Lemma[24] Let (an,k)n≥1,k≥1 be a real sequence
and (wn)n≥1 a sequence which converges to w. On suppose that:

(i) for any k ≥ 1 limn→∞ an,k = 0;

(ii) limn→∞
∑∞

k=1 an,k = A <∞;

(iii) there exists a constant C > 0 such that for any n > 1,
∑∞

k=1 |an,k| <
C <∞.

Thus we have:

∞∑
k=1

an,kwk −→∞,

as n −→∞.

2.1.3 Approximation theorem

The following theorem allows to approximate independent random variables
using Brownian motion to exploit the law of iterated logarithm checked by
Brownian motion (see Bosq[24]) then we will give the strongly mixing con-
ditions.

Theorem 2.1.1 Let Xn a sequence of independent random variables defined
on a probability space (Ω,A, P ) such that for any n ≥ 0, EX2

n exists and
EXn = 0.

Let:

Sn =
n∑
i=1

Xi, S0 = 0 andVn =
n∑
i=1

EX2
i ifn ≥ 1, V0 = 0.
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for any α ≥ 0, suppose that Vn −→∞ and:

∞∑
k=1

(ln2 Vk)
α

Vk
E

(
X2
k1{

X2
k>

Vk

ln Vk(ln2 Vk)2(α+1)

}
)
<∞.

Let S a random function defined on [0, +∞[ such that:

∀ tε [Vn, Vn+1[ , S (t) = Sn.

So, defining {S (t) , t ≥ 0} if necessary on a new probability space, there
exists Brownian motion ζ such that

|S (t)− ζ (t)| = o
(
t
1
2 (ln ln t)

1−α
2

)
.

law of iterated logarithm for Brownian motion

Theorem 2.1.2 If ζ is Brownian motion, then we have:

lim
t→∞

ζ (t)√
2t ln ln t

= 1 a.s.

2.1.4 The mixing conditions

The α − mixing or strong mixing notion witch is one of the most general
among the different mixing structures introduced in literature (see Ferraty
and Vieu[62] for definitions of various other mixing structures and link be-
tween them the strong mixing notion is defined in the following way:

We consider a sequence of random variables (∆n)n∈N defined on prob-
abilistic space (ω,F ,B) in some space (ω,F ′). let us denote for −∞ ≤
j ≤ k ≤ +∞ and for Fkj the σ algebra generated by the random variables
(∆i, j ≤ i ≤ k).

The strong mixing coefficients are defined by the following quantities

α(n) = sup
k∈Z

sup
A∈Fk−∞

sup
F+∞
k+n

∣∣P(A ∩B)− P(A)B)
∣∣
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Definition 2.1.5 The sequence (∆n)n∈Z is said α−mixing (or strongly mix-
ing) if

lim
n−→∞

α(n) = 0

Definition 2.1.6 The sequence (∆n)n∈Z is said arithmetically equivalently
algebraically α−mixing with rate α > 0 if:

∃C > 0, α(n) ≤ Cn−α.

it is called geometrically α−mixing if

∃C > 0, ∃t ∈ (0, 1), α(n) ≤ Ctn.

Lemma 2.1.5 Let ∆ii∈N the family of random variables valued in R that
verified the of strongly mixing we put:

S2
n =

n∑
i=1

n∑
j=1

∣∣Cov(∆i,∆j

∣∣
If ‖∆‖ ≤ ∞,∀i ∈ N then they are for all ε > 0 and for all x > 1

P
(
|
∑

∆i| > 4ε
)
≤
(
1 +

ε2

rS2
n

)−r
2 + 2nCr−1

(2r

ε

)a+1

a > 0 and (α = n−a)

Lemma 2.1.6 We consider a family of random variables ∆i∈N valued in R.
If the condition of strongly mixing is verified and if ‖∆‖ < ∞ there are for
all i 6= j ∣∣Cov(∆i,∆j)

∣∣ ≤ 4α(|i− j|).
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Chapter 3

Consistency rates and asymptotic
normality of the high risk
conditional for functional data

In this chapter we will present some asymptotic properties related to the
non-parametric estimation of the maximum of the conditional hazard func-
tion for functional data. In a functional data setting, the conditioning vari-
able is allowed to take its values in some abstract semi-metric space. In
this case, Ferraty ad al. (2008) define non-parametric estimators of the con-
ditional density and the conditional distribution. They give the rates of
convergence (in an almost complete sense) to the corresponding functions, in
a independence and dependence (α-mixing) context. We extend their results
by calculating the maximum of the conditional hazard function of these esti-
mates, and establishing their asymptotic normality, considering a particular
type of kernel for the functional part of the estimates. Because the hazard
function estimator is naturally constructed using these two last estimators,
the same type of properties is easily derived for it. Our results are valid in a
real (one- and multi-dimensional) context.
If X is a random variable associated to a lifetime (ie, a random variable with
values in R+, the hazard rate of X (sometimes called hazard function, failure
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or survival rate ) is defined at point x as the instantaneous probability that
life ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is
easy to see that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1− F the survival
function of X.

In many practical situations, we may have an explanatory variable Z and
the main issue is to estimate the conditional random rate defined as

hZ(x) = lim
dx→0

P (X ≤ x+ dx|X > x, Z)

dx
, for x > 0,

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
=

fZ(x)

1− FZ(x)
, once FZ(x) < 1. (3.1)

Study of functions h and hZ is of obvious interest in many fields of science
( biology, medicine, reliability , seismology, econometrics, ... ) and many
authors are interested in construction of nonparametric estimators of h.

1 (with rates of convergence2) for nonparametric estimates of the deriva-
tive of the conditional hazard and the maximum risk.

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost com-
pletely to some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) <∞. This mode

of convergence implies both almost sure and in probability convergence (see for instance
Bosq and Lecoutre[24]).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ε > 0 for which

∑
n P(|Tn| > εun) < ∞. This is

denoted by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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3.1 Nonparametric estimation with functional
data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one dis-
tributed as (Z,X), where the variable Z is of functional nature and X is
scalar. Formally, we will consider that Z is a random variable valued in
some semi-metric functional space F , and we will denote by d(·, ·) the asso-
ciated semi-metric. The conditional cumulative distribution of X given Z is
defined for any x ∈ R and any z ∈ F by

FZ(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fZ(x) is defined as the density of
this distribution with respect to the Lebesgue measure on R. The conditional
hazard is defined as in the non-infinite case (3.1).

In a general functional setting, f , F and h are not standard mathematical
objects. Because they are defined on infinite dimensional spaces, the term
operators may be a more adjusted in terminology.

3.1.1 The functional kernel estimates

We assume the sample data (Xi, Zi)1≤i≤n is i.i.d.
Following in (Ferraty ad al.[66]), the conditional density operator fZ(·)

is defined by using kernel smoothing methods

f̂Z(x) =

n∑
i=1

h−1
H K

(
h−1
K d(z, Zi)

)
H ′
(
h−1
H (x−Xi)

)
n∑
i=1

K
(
h−1
K d(z, Zi)

) ,

where k and H ′ are kernel functions and hH and hK are sequences of smooth-
ing parameters. The conditional distribution operator FZ(·) can be estimated
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by

F̂Z(x) =

n∑
i=1

K
(
h−1
K d(z, Zi)

)
H
(
h−1
H (x−Xi)

)
n∑
i=1

K
(
h−1
K d(z, Zi)

) ,

with the function H(·) defined by H(x) =
∫ x
−∞H

′(t)dt. Consequently, the
conditional hazard operator is defined in a natural way by

ĥZ(x) =
f̂Z(x)

1− F̂Z(x)
.

For z ∈ F , we denote by hZ(·) the conditional hazard function of X1

given Z1 = z. We assume that hZ(·) is unique maximum and its high risk
point is denoted by θ(z) := θ, which is defined by

hZ(θ(z)) := hZ(θ) = max
x∈S

hZ(x). (3.2)

A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which
maximizes a kernel estimator ĥZ(·), that is,

ĥZ(θ̂(z)) := ĥZ(θ̂) = max
x∈S

ĥZ(x), (3.3)

where hZ and ĥZ are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are

valid for any choice satisfying (3.3). We point out that we can specify our
choice by taking

θ̂(z) = inf

{
t ∈ S such that ĥZ(t) = max

x∈S
ĥZ(x)

}
.

As in any non-parametric functional data problem, the behavior of the
estimates is controlled by the concentration properties of the functional vari-
able Z.

φz(h) = P(Z ∈ B(z, h)),
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where B(z, h) being the ball of center z and radius h, namely B(z, h) =

P (f ∈ F , d(z, f) < h) (for more details, see Ferraty and Vieu[62], Chapter 6
).

In the following, z will be a fixed point in F , Nz will denote a fixed
neighborhood of z, S will be a fixed compact subset of R+. We will led to
the hypothesis below concerning the function of concentration φz

(H1) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and lim
h→0

φz(h) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting
on the distribution of the f.r.v. of Z.

Our nonparametric models will be quite general in the sense that we will
just need the following simple assumption for the marginal distribution of Z,
and let us introduce the technical hypothesis necessary for the results to be
presented. The non-parametric model is defined by assuming that

(H2)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0

|F z1(x1)− F z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|b2),

(H3)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0

|f z1 (j)(x1)− f z2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|β),

(H4) ∃γ <∞, f ′Z(x) ≤ γ, ∀(z, x) ∈ F × S,

(H5) ∃τ > 0, FZ(x) ≤ 1− τ, ∀(z, x) ∈ F × S.

(H6) H ′ is twice differentiable such that

(H6a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1, 2

and H(j)are bounded for j = 0, 1, 2;

(H6b)
∫
R
t2H ′2(t)dt <∞;

(H6c)
∫
R
|t|β(H ′′(t))2dt <∞.
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(H7) The kernel K is positive bounded function supported on [0, 1] and it is
of class C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K ′(t) < C2 < 0

for 0 < t < 1.

(H8) There exists a function ζz0 (·) such that for all t ∈ [0, 1]

lim
hK→0

φz(thK)

φz(hK)
= ζz0 (t) and nhHφx(hK)→∞ as n→∞.

(H9) The bandwidth hH and hK and small ball probability φz(h) satisfying
(H9a) lim

n→∞
hK = 0, lim

n→∞
hH = 0;

(H9b) lim
n→∞

log n

nφx(hK)
= 0;

(H9c) lim
n→∞

log n

nh2j+1
H φx(hK)

= 0, j = 0, 1.

Remark 3.1.1 Assumption (H1) plays an important role in our methodol-
ogy. It is known as (for small h) the "concentration hypothesis acting on
the distribution of X" in infinite dimensional spaces. This assumption is
not at all restrictive and overcomes the problem of the non-existence of the
probability density function. In many examples, around zero the small ball
probabilityφz(h) can be written approximately as the product of two indepen-
dent functions ψ(z) and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was
adopted by Masry[94] who reformulated the Gasser ad al.[75] one. The in-
creasing propriety of φz(·) implies that ζzh(·) is bounded and then integrable
(all the more so ζz0 (·) is integrable).

Without the differentiability of φz(·), this assumption has been used by
many authors where ψ(·) is interpreted as a probability density, while ϕ(·)
may be interpreted as a volume parameter. In the case of finite-dimensional
spaces, that is S = Rd, it can be seen that φz(h) = C(d)hdψ(z) + ohd), where
C(d) is the volume of the unit ball in Rd. Furthermore, in infinite dimensions,
there exist many examples fulfilling the decomposition mentioned above. We
quote the following (which can be found in Ferraty et al.[64]):
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1. φz(h) ≈ ψ(h)hγ for som γ > 0.

2. φz(h) ≈ ψ(h)hγ exp {C/hp} for some γ > 0 and p > 0.

3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for
all fixed h. Its pointless limit ζz0 (·) also plays a determinant role. It intervenes
in all asymptotic properties, in particular in the asymptotic variance term.
With simple algebra, it is possible to specify this function (with ζ0(u) := ζz0 (u)

in the above examples by:

1. ζ0(u) = uγ,

2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,

3. ζ0(u) = 1]0,1](u).

Remark 3.1.2 Assumptions (H2) and (H3) are the only conditions involv-
ing the conditional probability and the conditional probability density of Z
given X. It means that F (·|·) and f(·|·) and its derivatives satisfy the Hölder
condition with respect to each variable. Therefore, the concentration condi-
tion (H1) plays an important role. Here we point out that our assumptions
are very usual in the estimation problem for functional regressors (see, e.g.,
Ferraty ad al.[66]).

Remark 3.1.3 Assumptions (H6), (H7) and (H9) are classical in functional
estimation for finite or infinite dimension spaces.

3.2 Nonparametric estimate of the maximum
of the conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of
hZ on S. We will suppose that hZ is sufficiently smooth ( at least of class
C2) and verifies that h′Z(θ) = 0 and h′′ Z(θ) < 0.
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Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of
S, and that θ satisfies the uniqueness condition, that is; for any ε > 0 and
µ(z), there exists ξ > 0 such that |θ(z)− µ(z)| ≥ ε implies that |hZ(θ(z))−
hZ(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function
through the first derivative of the estimator. Our maximum estimate is
defined by assuming that there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative
of the function hZ on the basis of these ideas. To estimate the conditional
distribution function and the conditional density function in the presence of
functional conditional random variable Z.

The kernel estimator of the derivative of the function conditional random
functional hZ can therefore be constructed as follows:

ĥ′
Z

(x) =
f̂ ′
Z

(x)

1− F̂Z(x)
+ (ĥZ(x))2, (3.4)

the estimator of the derivative of the conditional density is given in the
following formula:

f̂ ′
Z

(x) =

n∑
i=1

h−2
H K(h−1

K d(Z,Zi))H
′′(h−1

H (x−Xi))

n∑
i=1

K(h−1
K d(Z,Zi))

. (3.5)

Later, we need assumptions on the parameters of the estimator, ie on
K,H,H ′, hH and hK are little restrictive. Indeed, on one hand, they are
not specific to the problem estimate of hZ (but inherent problems of FZ , fZ

and f ′Z estimation), and secondly they consist with the assumptions usually
made under functional variables.

We state the almost complete convergence (withe rates of convergence)
of the maximum estimate by the following results:
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Theorem 3.2.1 Under assumptions (H1)-(H7) we have

θ̂ − θ → 0 a.co. (3.6)

Remark 3.2.1 The hypothesis of uniqueness is only established for the sake
of clarity. Following our proofs, if several local estimated maxima exist, the
asymptotic results remain valid for each of them.

Proof. Because h′Z(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0

such that
|x− θ| > ε⇒ |h′Z(x)− h′Z(θ)| > η(ε).

Therefore,

P{|θ̂ − θ| ≥ ε} ≤ P{|h′Z(θ̂)− h′Z(θ)| ≥ η(ε)}.

We also have

|h′Z(θ̂)−h′Z(θ)| ≤ |h′Z(θ̂)− ĥ′Z(θ̂)|+ |ĥ′Z(θ̂)−h′Z(θ)| ≤ sup
x∈S
|ĥ′Z(x)−h′Z(x)|,

(3.7)
because ĥ′Z(θ̂) = h′Z(θ) = 0.

Then, uniform convergence of h′Z will imply the uniform convergence of
θ̂. That is why, we have the following lemma.

Lemma 3.2.1 Under assumptions of Theorem 3.2.1, we have

sup
x∈S
|ĥ′Z(x)− h′Z(x)| → 0 a.co. (3.8)

The proof of this lemma will be given in Appendix.

Theorem 3.2.2 Under assumptions (H1)-(H7) and (H9a) and (H9c), we
have

sup
x∈S
|θ̂ − θ| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
. (3.9)
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Proof. By using Taylor expansion of the function h′Z at the point θ̂, we
obtain

h′Z(θ̂) = h′Z(θ) + (θ̂ − θ)h′′Z(θ∗n), (3.10)

with θ∗ a point between θ and θ̂. Now, because h′Z(θ) = ĥ′Z(θ̂)

|θ̂ − θ| ≤ 1

h′′Z(θ∗n)
sup
x∈S
|ĥ′Z(x)− h′Z(x)|. (3.11)

The proof of Theorem will be completed showing the following lemma.

Lemma 3.2.2 Under the assumptions of Theorem 3.2.2, we have

sup
x∈S
|ĥ′Z(x)− h′Z(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
. (3.12)

The proof of lemma will be given in the Appendix.

3.3 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to
add the following assumptions:

(H6d)
∫
R
(H ′′(t))2dt <∞,

(H10) 0 = ĥ′
Z

(θ̂) < |ĥ′
Z

(x)|),∀x ∈ S, x 6= θ̂

The following result gives the asymptotic normality of the maximum of the
conditional hazard function. Let

A =
{

(z, x) : (z, x) ∈ S × R, ax2FZ(x)
(
1− FZ(x)

)
6= 0
}
.
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Theorem 3.3.1 Under conditions (H1)-(H10) we have (θ ∈ S/fZ(θ), 1 −
FZ(θ) > 0) (

nh3
Hφz(hK)

)1/2
(
ĥ
′Z(θ)− h′Z(θ)

)
D→N

(
0, σ2

h′(θ)
)

where →D denotes the convergence in distribution,

axl = K l(1)−
∫ 1

0

(
K l(u)

)′
ζx0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ax2h
Z(θ)

(ax1)2 (1− FZ(θ))

∫
(H ′′(t))2dt.

Proof. Using again (3.17), and the fact that(
1− FZ(x)

)
(1− F̂Z(x)) (1− FZ(x))

−→ 1

1− FZ(x)
;

and
f̂ ′Z(x)(

1− F̂Z(x)
)

(1− FZ(x))
−→ f ′Z(x)

(1− FZ(x))2 .

The asymptotic normality of (nh3
Hφz(hK))

1/2
(
ĥ′
Z

(θ)− h′Z(θ)
)

can be
deduced from both following lemmas,

Lemma 3.3.1 Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφz(hK))1/2
(
F̂Z(x)− FZ(x)

)
D→N

(
0, σ2

FZ (x)
)
, (3.13)

where

σ2
FZ (x) =

ax2F
Z(x)

(
1− FZ(x)

)
(ax1)2 .

Lemma 3.3.2 Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhHφz(hK))1/2
(
ĥZ(x)− hZ(x)

)
D→N

(
0, σ2

hZ (x)
)
, (3.14)

where

σ2
hZ (x) =

ax2h
Z(x)

(ax1)2 (1− FZ(x))

∫
R
(H ′(t))2dt.
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Lemma 3.3.3 Under Assumptions of Theorem 3.3.1, we have(
nh3

Hφz(hK)
)1/2

(
f̂ ′
Z

(x)− f ′Z(x)
)
D→N

(
0, σ2

f ′Z (x)
)

; (3.15)

where

σ2
f ′Z(x) =

ax2f
Z(x)

(ax1)2

∫
R
(H ′′(t))2dt.

Lemma 3.3.4 Under the hypotheses of Theorem 3.3.1, we have

V ar
[
f̂ ′
Z

N(x)
]

=
σ2
f ′Z(x)

nh3
Hφz(hK)

+ o

(
1

nh3
Hφz(hK)

)
,

V ar
[
F̂Z
N (x)

]
= o

(
1

nhHφz(hK)

)
;

and
V ar

[
F̂Z
D

]
= o

(
1

nhHφz(hK)

)
.

Lemma 3.3.5 Under the hypotheses of Theorem 3.3.1, we have

Cov(f̂ ′
Z

N(x), F̂Z
D ) = o

(
1

nh3
Hφz(hK)

)
,

Cov(f̂ ′
Z

N(x), F̂Z
N (x)) = o

(
1

nh3
Hφz(hK)

)
and

Cov(F̂Z
D , F̂

Z
N (x)) = o

(
1

nhHφz(hK)

)
.

Remark 3.3.1
It is clear that, the results of lemmas, Lemma 3.3.4 and Lemma 3.3.5

allows to write

V ar
[
F̂Z
D − F̂Z

N (x)
]

= o

(
1

nhHφz(hK)

)
The proofs of lemmas, Lemma3.3.1 can be (seen in Belkhir ad al.[18]),

Lemma lem2-4 and Lemma lem3-4 (see Rabhi ad al.[104]).

Finally, by this last result and (3.10), we have the following theorem:
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Theorem 3.3.2 Under conditions (H1)-(H10), we have (θ ∈ S/fZ(θ), 1 −
FZ(θ) > 0) (

nh3
Hφz(hK)

)1/2
(
θ̂ − θ

)
D→N

(
0,

σ2
h′(θ)

(h′′Z(θ))2

)
;

with σ2
h′(θ) = hZ(θ)

(
1− FZ(θ)

) ∫
(H ′′(t))2dt.

3.4 Proofs of technical lemmas

Proof. Proof of Lemma 3.2.1 and Lemma 3.2.2 Let

ĥ′Z(x) =
f̂ ′Z(x)

1− F̂Z(x)
+ (ĥZ(x))2, (3.16)

with

ĥ′Z(x)− h′Z(x) =

{(
ĥZ(x)

)2

−
(
hZ(x)

)2
}

︸ ︷︷ ︸
Γ1

+

{
f̂ ′Z(x)

1− F̂Z(x)
− f ′Z(x)

1− FZ(x)

}
︸ ︷︷ ︸

Γ2

;

(3.17)
for the first term of (3.17) we can write∣∣∣ (ĥZ(x)

)2

−
(
hZ(x)

)2
∣∣∣ ≤ ∣∣∣ĥZ(x)− hZ(x)

∣∣∣.∣∣∣ĥZ(x) + hZ(x)
∣∣∣, (3.18)

because the estimator ĥZ(·) converge a.co. to hZ(·) we have

sup
x∈S

∣∣∣ (ĥZ(x)
)2

−
(
hZ(x)

)2
∣∣∣ ≤ 2

∣∣∣hZ(θ)
∣∣∣ sup
x∈S

∣∣∣ĥZ(x)− hZ(x)
∣∣∣; (3.19)

for the second term of (3.17) we have

f̂ ′Z(x)

1− F̂Z(x)
− f ′Z(x)

1− FZ(x)
=

1

(1− F̂Z(x))(1− FZ(x))

{
f̂ ′Z(x)− f ′Z(x)

}
+

1

(1− F̂Z(x))(1− FZ(x))

{
f ′Z(x)

(
F̂Z(x)− FZ(x)

)}
+

1

(1− F̂Z(x))(1− FZ(x))

{
FZ(x)

(
f̂ ′Z(x)− f ′Z(x)

)}
.
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Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′Z(x)

1− F̂Z(x)
− f ′Z(x)

1− FZ(x)

∣∣∣ ≤

C

{
sup
x∈S

∣∣∣f̂ ′Z(x)− f ′Z(x)
∣∣∣+ sup

x∈S

∣∣∣F̂Z(x)− FZ(x)
∣∣∣}

inf
x∈S

∣∣∣1− F̂Z(x)
∣∣∣ . (3.20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S
|F̂Z(x)− FZ(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nφz(hK)

)
, (3.21)

sup
x∈S
|f̂ ′Z(x)− f ′Z(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
, (3.22)

sup
x∈S
|ĥZ(x)− hZ(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nhHφz(hK)

)
, (3.23)

∃δ > 0 such that
∞∑
1

P
{

inf
y∈S
|1− F̂Z(x)| < δ

}
<∞. (3.24)

The proofs of (3.21) and (3.22) appear in (Ferraty ad al.[62]), and (3.23)
is proven in (Ferraty ad al.[66]).

• Concerning (3.24) by equation (3.21), we have the almost complete
convergence of F̂Z(x) to FZ(x). Moreover,

∀ε > 0
∞∑
n=1

P
{
|F̂Z(x)− FZ(x)| > ε

}
<∞.

On the other hand, by hypothesis we have FZ < 1, i.e.

1− F̂Z ≥ FZ − F̂Z ,

thus,

inf
y∈S
|1−F̂Z(x)| ≤ (1−sup

x∈S
FZ(x))/2⇒ sup

x∈S
|F̂Z(x)−FZ(x)| ≥ (1−sup

x∈S
FZ(x))/2.
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In terms of probability is obtained

P
{

inf
x∈S
|1− F̂Z(x)| < (1− sup

x∈S
FZ(x))/2

}
≤ P

{
sup
x∈S
|F̂Z(x)− FZ(x)| ≥ (1− sup

x∈S
FZ(x))/2

}
<∞.

Finally, it suffices to take δ = (1− sup
x∈S

FZ(x))/2 and apply the results

(3.21) to finish the proof of this Lemma.

Proof. Proof of Lemma 3.3.2 We can write for all x ∈ S

ĥZ(x)− hZ(x) =
f̂Z(x)

1− F̂Z(x)
− fZ(x)

1− FZ(x)

=
1

D̂Z(x)

{(
f̂Z(x)− fZ(x)

)
+ fZ(x)

(
F̂Z(x)− FZ(x)

)
−FZ(x)

(
f̂Z(x)− fZ(x)

)}
,

=
1

D̂Z(x)

{(
1− FZ(x)

) (
f̂Z(x)− fZ(x)

)
−fZ(x)

(
F̂Z(x)− FZ(x)

)}
; (3.25)

with D̂Z(x) =
(
1− FZ(x)

) (
1− F̂Z(x)

)
.

As a direct consequence of the Lemma 3.3.1, the result (3.26) (see Belkhir
ad al.[18]) and the expression (3.25), permit us to obtain the asymptotic
normality for the conditional hazard estimator.

(nhHφz(hK))1/2
(
f̂Z(x)− fZ(x)

)
D→N

(
0, σ2

fZ (x)
)

; (3.26)

where

σ2
fZ(x) =

ax2f
Z(x)

(ax1)2

∫
R
(H ′(t))2dt.
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Proof. Proof of Lemma 3.3.3 For i = 1, . . . , n, we consider the quantities
Ki = K

(
h−1
K d(z, Zi)

)
, H ′′i (x) = H ′′

(
h−1
H (x−Xi)

)
and let f̂ ′

Z

N(x) (resp. F̂Z
D )

be defined as

f̂ ′
Z

N(x) =
h−2
H

nEK1

n∑
i=1

KiH
′′
i (x) (resp. F̂Z

D =
1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
Z

(x)− f ′Z(x) =
1

F̂Z
D

{(
f̂ ′
Z

N(x)− Ef̂ ′
Z

N(x)
)
−
(
f ′Z(x)− Ef̂ ′

Z

N(x)
)}

+

f ′Z(x)

F̂Z
D

{
EF̂Z

D − F̂Z
D

}
, (3.27)

and on the following intermediate results.√
nh3

Hφz(hK)
(
f̂ ′
Z

N(x)− Ef̂ ′
Z

N(x)
)
D→N

(
0, σ2

f ′Z (x)
)

; (3.28)

where σ2
f ′Z (x) is defined as in Lemma 3.3.3.

lim
n→∞

√
nh3

Hφz(hK)
(
Ef̂ ′

Z

N(x)− f ′Z(x)
)

= 0. (3.29)

√
nh3

Hφz(hK)
(
F̂Z
D (x)− 1

)
P→ 0, as n→∞. (3.30)

• Concerning (3.28).

By the definition of f̂ ′
Z

N(x), it follows that

Ωn =
√
nh3

Hφz(hK)
(
f̂ ′
Z

N(x)− Ef̂ ′
Z

N(x)
)

=
n∑
i=1

√
φz(hK)√
nhHEK1

(KiH
′′
i − EKiH

′′
i )

=
n∑
i=1

∆i,
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which leads

V ar(Ωn) = nh3
Hφz(hK)V ar

(
f̂ ′
Z

N(x)− E
[
f̂ ′
Z

N(x)
])
. (3.31)

Now, we need to evaluate the variance of f̂ ′
Z

N(x). For this we have for
all 1 ≤ i ≤ n, ∆i(z, x) = Ki(z)H ′′i (x), so we have

V ar(f̂ ′
Z

N(x)) =
1

(nh2
HE[K1(z)])

2

n∑
i=1

n∑
j=1

Cov (∆i(z, x),∆j(z, x))

=
1

n (h2
HE[K1(z)])

2V ar (∆1(z, x)) .

Therefore

V ar (∆1(z, x)) ≤ E
(
H ′′21 (x)K2

1(z)
)
≤ E

(
K2

1(z)E
[
H ′′21 (x)|Z1

])
.

Now, by a change of variable in the following integral and by applying
(H4) and (H7), one gets

E
(
H ′′21 (y)|Z1

)
=

∫
R
H ′′2

(
d(x− u)

hH

)
fZ(u)du

≤ hH

∫
R
H ′′2(t)

(
fZ(x− hHt, z)− fZ(x)

)
dt+ hHf

Z(x)

∫
R
H ′′2(t)dt

≤ h1+b2
H

∫
R
|t|b2H ′′2(t)dt+ hHf

Z(x)

∫
R
H ′′2(t)dt

= hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
. (3.32)

By means of (3.32) and the fact that, as n → ∞, E (K2
1(z)) −→

ax2φz(hK), one gets

V ar (∆1(z, x)) = ax2φz(hK)hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
.
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So, using (H8), we get

1

n (h2
HE[K1(z)])

2V ar (∆1(z, x)) =
ax2φz(hK)

n (ax1h
2
Hφz(hK))

2hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
= o

(
1

nh3
Hφz(hK)

)
+

ax2f
Z(x)

(ax1)2nh3
Hφz(hK)

∫
R
H ′′2(t)dt.

Thus as n→∞ we obtain

1

n (h2
HE[K1(z)])

2V ar (∆1(z, x)) −→ ax2f
Z(x)

(ax1)2nh3
Hφz(hK)

∫
R
H ′′2(t)dt.(3.33)

Indeed
n∑
i=1

E∆2
i =

φz(hK)

hHE2K1

EK2
1(H ′′1 )2 − φz(hK)

hHE2K1

(EK1H
′′
1 )

2
= Π1n − Π2n.

(3.34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hK)

E2K1

E
{
K2

1

∫
H ′′2(t)

(
f ′Z(x− thH)− f ′Z(x) + f ′Z(x)

)
dt

}
.

Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φz(hK)EK2
1

E2K1

−→
n→∞

ax2
(ax1)2

,

which leads

Π1n −→
n→∞

ax2f
Z(x)

(ax1)2

∫
(H ′′(t))2dt, (3.35)

Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞

0. (3.36)

This result, combined with (3.34) and (3.35), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′Z (x) (3.37)

Therefore, combining (3.33) and (3.36)-(3.37), (3.28) is valid.
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• Concerning (3.29).

The proof is completed along the same steps as that of Π1n. We omit
it here.

• Concerning (3.30). The idea is similar to that given by (Belkhir ad
al.[18]).

By definition of F̂Z
D (x), we have√
nh3

Hφz(hK)(F̂Z
D (x)− 1) = Ωn − EΩn,

where Ωn =

√
nh3Hφz(hK)

∑n
i=1Ki

nEK1
. In order to prove (3.30), similar to

(Belkhir ad al.[18]), we only need to prove V ar Ωn → 0, as n→∞. In
fact, since

V ar Ωn =
nh3

Hφz(hK)

nE2K1

(nV arK1)

≤ nh3
Hφz(hK)

E2K1

EK2
1

= Ψ1,

then, using the boundness of function K allows us to get that:

Ψ1 ≤ Ch3
Hφz(hK)→ 0, as n→∞.

It is clear that, the results of (3.21), (3.22), (3.24) and Lemma 3.3.4
permits us

E
(
F̂Z
D − F̂Z

N (x)− 1 + FZ(x)
)
−→ 0,

and

V ar
(
F̂Z
D − F̂Z

N (x)− 1 + FZ(x)
)
−→ 0;

then

F̂ x
D − F̂Z

N (x)− 1 + FZ(x)
P−→ 0.
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Moreover, the asymptotic variance of F̂Z
D − F̂Z

N (x) given in Remark
3.3.1 allows to obtain

nhHφz(hK)

σ2
FZ

(x)
V ar

(
F̂Z
D − F̂Z

N (x)− 1 + E
(
F̂Z
N (x)

))
−→ 0.

By combining result with the fact that

E
(
F̂Z
D − F̂Z

N (x)− 1 + E
(
F̂Z
N (x)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this result is completed.

Therefore, the proof of this Lemma is completed.
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Chapter 4

Recursive estimation of the
conditional distribution function
under strong mixing conditions
for functional data

4.1 Framework of study

The idea of recursive methods is to use the estimates calculated on the basis
of the initial data and to update them with only new observations arriving
in the database.

A major advantage of these methods is that it is not necessary to restart
all the calculation calculations of the model parameters whenever the data
base is completed by new observations.

In general, the advantage of these methods is to take into account the
successive arrival of the data and to refine, as time goes by, the estimation
algorithms implemented, the applications of a Such approach are numerous.
The gain in terms of computation time can be very interesting.
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4.2 The model

Let (X1, Y1), (X2, Y2), . . . (Xn, Yn) n pairs of random variables with the obser-
vations (Xi), i = 1, . . . , n are dependents of type strongly mixing, as (x, y)

witch is a random pair valued in F × R, where (F , d(; )) is a semi-metric
space and d(x;Xi) = ‖x−Xi‖.

The conditional distribution function is defined by:

F̂ [X](y) =

n∑
i=1

1

[F (hi)l]
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)
n∑
i=1

1

[F (hi)l]
K

(
‖x−Xi‖

hi

) ,

where K is a kernel, H is a distribution function hn a sequence of positive
reals and l is a parameter in [0, 1], F (hi) = P(‖x−Xi‖ ≤ hi).

Our family of recursive estimators is defined by:

F̂ [X]
n (y) =

[
n∑
i=1

F (hi)

]1−l

ϕln(y) +

[
n+1∑
i=1

F (hi)

]1−l

H

(
y − Yi
hi

)
K

[l]
n+1(‖x−Xi‖)[

n∑
i=1

F (hi)

]1−l

Gl
n(y)(x, y)

[
n+1∑
i=1

F (hi)

]1−l

K
[l]
n+1(‖x−Xi‖)

,

with

ϕ[l]
n (x, y) =

n∑
i=1

1

[F (hi)]1−l
H

(
y − Yi
hi

)
K

(
‖x−Xi‖

hi

)
n∑
i=1

[F (hi)]
1−l

,

G[l]
n (x) =

n∑
i=1

1

[F (hi)]1−l
K

(
‖x−Xi‖

hi

)
n∑
i=1

[F (hi)]
1−l

,
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and
K

[l]
i (·) =

1

[F (hi)]l
i∑

j=1

[F (hi)]
1−l

K

(
·
hi

)

4.2.1 The hypothesis

(H0)

(i) ∀hi > 0,P(X ∈ B(x, hi)) =: F (hi) where B(x, hi) = {x′ ∈ F/d(x, x′ <

hi)}
(ii)(Xi)i∈N∗ is an α−mixing sequence where the coefficients of mixture verify:

∃a > 0,∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(iii)0 < sup
i 6=j

P((Xi, Xj) ∈ B(x, hi)×B(x, hj)) = ∂

(
(F (hi))

a+1
a

n
1
a

)
.

Note that H0(i) can be interpreted as a concentration hypothesis acting
on the distribution of the f.r.v, X where as H0(iii) concerns the behavior
of the joint distribution of the pairs (Xi, Xj). In the fact this hypothesis is
equivalent to suppose that for n large enough

sup
i 6=j

P((Xi, Xj) ∈ B(x, hi)×B(x, hj))

P(X ∈ B(x, h))
≤ C

(
F (hi)

n

) 1
a

.

(H1) K is a bounded kernel on the compact support [0, 1] such that

0 < c1 < K(t) < c2 <∞.

(H2)

(i)The sequence of bandwidths {hi, i ≥ 1} satisfies 0 < hi ↓ 0 as i −→∞.
(ii) If hn −→ 0 then F (hn) −→ F (0) = 0 as n −→ ∞ and ∀s ∈ [0, 1]τh(s) =
F (hs)
F (h)

−→ τ0 <∞ when h tends to 0.

H3

(i)hn −→ 0;nF (hn) −→∞ and

An,l :=
1

n

n∑
i=1

hi
hn

[
F (hi)

F (hn)
]1−l −→ αl <∞, as n −→∞;
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(ii)∀r ≤ 2, Bn,r :=
1

n

n∑
i=1

[
F (hi)

F (hn)
]r −→ βr <∞, when n −→∞.

(H4)

lim
n−→∞

nF (hn)(lnn)−1− 2
µ

(ln lnn)2(α+1)
=∞ and lim

n−→∞
(lnn)

2
µF (hn) = 0.

α is a real positive.
(H5)

(i)
∫
R
[H(t)]2dt <∞;

∫
R
[H(t)]2|t|β2dt <∞;

∫
R
[H(t)]dt <∞;∫

R
[H ′(t)]dt = 1;

∫
R
[H ′(t)]|t|β2dt.

(ii) For any y ∈ R ∀(x1, x2) ∈ N2
x

|F [x1](y1)− F [x2](y2)| ≤ (d(x1, x2)β1 + |y1 − y2|β2),

with β1 > 0, β2 > 0; (d(x1, x2) = ‖x1 − x2‖ and N2
x a fixed neighborhood of

x.

(H6)

(i)Cn,l :=
1

n

n∑
i=1

h2β1
i

[
F (hi)

F (hn)

]1−l

−→ 0 as n −→∞.

(ii) H is a square integrable function as:

σ2
εi

(X) = V ar

[
H

(
y − Yi
hi

)]
−→ σ2

ε(X) = F [X](y)(1−F [x](y)) when i −→∞.

(iii) The function φ is derivable at 0:

φ(‖x−Xi‖) = E
{[∫

R
H ′(t)F [X](y − hit)dt− F [x]

]
|‖x−Xi‖

}
.
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4.3 Almost sure convergence of the recursive
kernel estimate

Theorem 4.3.1 Under hypothesis H0(i)(ii)(iii); H1−H4; H5(i)(ii) and H6(i)(ii)(iii)

and if limn−→∞ nh
2
n = 0, then

lim sup
n−→∞

[
nF (hn)

ln lnn

] 1
2

[F̂ [x,l]
n (y)− F [x](y)] =

[2M2β1−2lF
[x](y)(1− F [x](y))]

1
2

M1β1−l
.

Proof. Let F [x](y) =
φ(x, y)

G(x)
, this later can be written as

F̂ [x,l]
n (y) =

φ
[l]
n (x, y)

G
[l]
n (x)

,

let the following decomposition:

F̂ [x,l]
n (y)− F [x](y) =

φ
[l]
n (x, y)− F [x](y)G

[l]
n (x)

G
[l]
n (x)

.

The idea is to show that G[l]
n (x) converges almost surely to G[l](x) and

that φ[l]
n (x, y)− F [x](y)G

[l]
n (x) converges almost surely to 0.

The numerator can be written

φ[l]
n (x, y)− F [x](y)G[l]

n (x) = {φ[l]
n (x, y)− F [x](y)G[l]

n (x)− E[φ[l]
n (x, y)− F [x](y)G[l]

n (x)]}

+ {E[φ[l]
n (x, y)− F [x](y)G[l]

n (x)]}

= I1 + I2.

We starting by studying I1. For this purpose, we set:

Wi =
1

[F (hi)l]
K

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

]
.

Zi = Wi − E(Wi)

and

Sn =
n∑
i=1

Zi.
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Remark that

I1 =
Sn

n∑
i=1

[F (hi)]
1−l
.

Let Vn =
n∑
i=1

E(Zi)
2

Vn =
n∑
i=1

V ar(Wi)

=
n∑
i=1

[F (hi)]
−2l

{
E
(
K2

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

]2)}
−

n∑
i=1

[F (hi)]
−2l

{
E2

(
K

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

])}
−

n∑
i 6=j

Cov

(
Wi,Wj

)
= A1 −A2 −A3

A1 is written as

A1 =
n∑
i=1

[F (hi)]
−2l

{
E
(
K2

(
‖x−Xi‖

hi

))
E
([
H

(
y − Yi
hi

)
− F [x](y)

]2

|

Xi

)}
.

As

E
([
H

(
y − Yi
hi

)
− F [x](y)

]2

| Xi

)}
= V ar

([
H

(
y − Yi
hi

)]
| Xi

)
+ E2

([
H

(
y − Yi
hi

)
− F [x](y)

]
| Xi

)
= σεi(X) + E2

([
H

(
y − Yi
hi

)
− F [x](y)

]
| Xi

)
.
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Since

E
([
H

(
y − Yi
hi

)
− F [x](y)

]
| Xi

)
=

∫
R
H ′(t)

[
F [xi](y − hit)− F [xi](y)

]
dt

+

∫
R
H ′(t)

[
F [xi](y)− F [X](y)

]
dt

≤ O(hβ2i ) + F [xi](y)− F [X](y)

≤ ‖x−Xi‖βias i −→∞.

Under l’hypothesis 5(i)(ii) we have

E
(
K2

(
‖x−Xi‖

hi

)[
H

(
y − Yi
hi

)
− F [x](y)

]2)
≤ ‖x−Xi‖2β1 + σεi .

In these case,

E
(
K2

(
‖x−Xi‖

hi

)2[
H

(
y − Yi
hi

)
− F [x](y)

]2)
≤ σε(X)E

[
K2

(
‖x−Xi‖

hi

)]
+E
[
‖x−Xi‖2β1K2

(
‖x−Xi‖

hi

)]
,

where

E
[
‖x−Xi‖2β1K2

(
‖x−Xi‖

hi

)]
≤ E

[
sup

Xi∈B(x,hi)

‖x−Xi‖2β1K2

(
‖x−Xi‖

hi

)]
≤ h2β1

i E
[
K2

(
‖x−Xi‖

hi

)]
,

with B(x, hi) is the closed ball with center x ad radius hi such that
B(x, hi) = {x′ ∈ F/‖x− x′‖ ≤ hi}, then we get

A1 ≤
n∑
i=1

[F (hi)]
−2l[σε(X) + h2β1

i ]E
[
K2

(
‖x−Xi‖

hi

)]
= A11 + A12.

We get

A11 ≤ σε(X)
n∑
i=1

[F (hi)]
1−2l

[
K2(1)−

∫ 1

0

(K2(s))′τhi(s)ds

]
.
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Under the hypothesis H3 and applying Toeplitz lemma we obtain

A11

n[F (hn)]1−2l
−→ β[1−2l]σ

2
ε(X)M2,

and under H6(i)(ii)(iii), we get

A12

n[F (hn)]1−2l
−→ 0

and
A2

n[F (hn)]1−2l
−→ 0.

Now we studying A3 .

A3 =
n∑
i 6=j

Cov(Wi,Wj)

=
n∑
i 6=j

F (hi)
−2lCov(Ni, Nj),

with Ni = KiHi where Ki = (h−1
i K

(
‖x−Xi‖

)
); Hi = (h−1

i K
(
y − Yi

)
).

Because H is a commultative kernel we have Hi ≤ 1. By using systemat-
ically this fact to bound the variables Hi we get

Cov(Ni, Nj) = Cov(∆i,∆j),

with ∆i = Ki − E(Ki).

On one hand, we have by the hypothesis H0(i), H0(iii) and H1

|Cov(∆i,∆j)| = O

((
φx(hi)

n

) 1
a

φx(hi)

)
,

these covariance can be controlled by means of the usual Davydov’s covari-
ance inequality for mixing processes (see Rio [111], formula 1.12a) to get her
with H0(ii) this inequality leads to:

∀∀i 6= j |Cov(∆i,∆j)| ≤ C|i− j|−a.
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By the fact ∑
K≥Cn+1

K−a ≤
∫ ∞
Cn

t−adt =
C−a+1
n

a− 1
,

thus by using the following classical technique (see Bosq[20]) we can write

Scovn =
∑

0<|i−j|<un

|Cov(∆i,∆j)|+
∑

|i−j|>un

|Cov(∆i,∆j)|.

Thus

Scovn ≤ Cn

(
φx(hi)

n

) 1
a

φx(hi) +
Ca+1
n

a− 1
,

choosing Cn =

(
φx(hi)

n

)−1
a

we can deduce

Scovn = O(nF (hi)),

A3 =
Scovn

nF (hi)2l
−→ 0 where n −→∞.

Therefore we can conclude that
Vn ∼ n[F (hn)]1−2lβ[1−2l]σ

2
ε(x)M2 when n −→∞.

By assuming that n[F (hn)] −→∞ we obtain lnF (hn)
lnn

−→ 0 when n −→∞
It is clear that

E[exp(λ|H|µ)] <∞,

for any λ and µ positive this implies

E( max
1≤i≤n|Ui|p

) = O[(lnn)
p
µ ], p ≥ 1, n ≥ 2,

where Hi = H

(
y − Yi
hi

)
.

By using the fact that

lim
n−→∞

nF (hn)(lnn)−1− 2
µ

(ln lnn)2(α+1)
=∞ and lim

n−→∞
(lnn)

2
µF (hn) = 0,

α is a positive real.
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We deduce that:

lim
n−→∞

nF (hn)(lnn)−
2
µ

ln[n(F (hn))1−2l]{ln ln[nF (hn))1−2l]}2(α+1)
=∞.

Let bn = (δ lnn)
1
µ with δ > 0. We will have the existence of n0 ≥ 1 such

that for all i ≥ n0

iF (hi)(ln i)
− 2
µ

ln[i(F (hi))1−2l]{ln ln[iF (hi))1−2l]}2(α+1)
>

2‖K‖2
∞max{|F [x](y)|2, (δ ln i)

2
µ
}

[F (hi)]2l
≥ Z2

i .

As the event Z2
i >

i[F (hi)]
1−2l

ln[i(F (hi))1−2l]{ln ln[iF (hi))1−2l]}2(α+1)
is impossible,

for i ≥ n0. From Vn ∼ n[F (hn)]1−2lβ[1−2l]σ
2
ε(x)M2, we deduce that

n∑
i=1

ln lnV α
i

Vi
E
(
Z2
i 1{ Vi

ln[Vi]{ln ln[Vi]}2(α+1)

}) ≤ ∞.
Let S a random function defined on [0,∞[, let

for t ∈ [Vn, Vn+1[, S(t) = Sn.

Theorem A.2.1 in the annexe (Amiri ad al.[16]) imples that it exists a
Brownian motion ξ such that∣∣∣∣S(t)− ξ(t)

(2t ln ln t)
1
2

∣∣∣∣ = O[(ln ln t)−
a
2 ]∀t ∈ [Vn, Vn+1[.

But since, by the theorem of the Brownian motion verifies the law of
iterated logarithm so:

lim
t→∞

S(t)

(2t ln ln t)
1
2

= lim
t→∞

[
S(t)− ξ(t)
(2t ln ln t)

1
2

+
ξ(t)

(2t ln ln t)
1
2

]
= 1 a.s.

Then, we have
Sn

(2Vn ln lnVn)
1
2

−→ 1 a.s.
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By using the fact that Sn = I1

n∑
i=1

[F (hi)]
1−l and

Vn+1

Vn
−→ 1 when n −→

∞, we obtain

lim
t→∞

∑n

i=1
[F (hi)]

1−lI1

(2Vn ln lnVn)
1
2

nF (hn)1−2l{ln ln[nF (hn)1−2l]}
1
2

nF (hn)1−2l{ln ln[nF (hn)1−2l]}
1
2

= 1 a.s

But
n∑
i=1

[F (hi)]
1−l = Bn,(1−l)n[F (hn)]1−l.

We have

{ln ln[nF (hn)1−2l]}
1
2Bn,(1−l)Bn,(1−l)

(2Vn ln lnVn)
1
2

−→
β[1−l]

{2β1−2lσ2
ε(X)M2}

1
2

,

when n −→∞. It comes, then:

lim
t→∞

{
nF (hn)

ln ln [n(F (hn))1−2l]

} 1
2

I1 = σl a.s

with σl =

{
2β[1−2l]σ

2
ε (X)M2

} 1
2

β[1−l]
.

As ln ln
[
n (F (hn))1−2l

]
= (ln lnn) [1 + o (1)], we conclude that

lim
n→∞

{
nF (hn)

ln lnn

} 1
2

I1 =

{
2β[1−2l]σ

2
ε (X)M2

} 1
2

β[1−l]

Studying I2:
We have to prove that

lim
t→∞

{
nF (hn)

ln lnn

} 1
2

I2 = 0.
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We have

I2 = E[φ[l]
n (x, y)− F [x](y)f [l]

n (x)]

=
1

n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l
E
{[

H

(
y − Yi
hi

)
− F [x]

]
K

(
‖x−Xi‖

hi

)}

=
1

n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l

{
hiϕ

′(0)F (hi)

[
K(1)−

∫ 1

0

(sK(s))′τhi(s)ds

]
+ o(hi)

}
.

The last equality above was obtained using the equation (4.1) when n
tends to l’infinity (in the vicinity of infinity), based on the hypothesis H3,

we have
I2 ' hnϕ(0)

α[l]

β1−l
M0[1 + o(1)]

Thus{
nF (hn)

ln lnn

}
1

2
I2 =

{
nF (hn)

ln lnn

}
hnϕ(0)

α[l]

β1−l
M0[1 + o(1)] = o(1).

In witch is verified for lim
n→∞

nh2
n = 0, we conclude then

lim
t→∞

{
nF (hn)

ln lnn

} 1
2

I2 = 0.

Thus

{
nF (hn)

ln lnn

}
1

2

[
ϕ[l]
n − F [x]G[l]

n

]
−→

{
2β[1−2l]σε(X)M2

} 1
2

β[1−l]
.

Now we show the almost sure convergence G[l]
n (x) to G[l](x) to decide that

of F x,l
n (y) to F [x].

In the same way, by letting Zi = Wi − E(Wi) we can prove

G[l]
n (x)− EG[l]

n (x) = O

(√
ln lnn

nF (hn)

)
as.
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As E
[
G

[l]
n (x)

]
= M1

[
1 + o(1)

]
, G

[l]
n (x) converge almost surely to M1

because we can write

G[l]
n (x) =

[
G[l]
n (x)− EG[l]

n (x)

]
+ E

[
G[l]
n (x)

]
.

That makes the end of the proof.

4.4 Mean quadratic convergence of the recur-
sive Kernel estimate

We consider the next theorem:

Theorem 4.4.1 : suppose that H0(i)(ii)(iii); H1−H4; H5(i)(ii) and H6(i)(ii)(iii)

and satisfied, if these is a constant c > 0 such that nf(hn)h2
n → c when

n→∞ then

lim
n→∞

E[F [x,l]
n (y)− F [x](y)]2 =

B[1−2l]

B2
1−l

M2

M2
1

F
[x]
(y)(1− F

[x]
(y)) + c[ϕ′(0)]2

α2
[l]

B2
[1−l]

M2
0

M2
1

Proof. It is known

E
[
F [x,l]
n (y)− F [x](y)

]2

= V ar

[
F [x,l]
n

]
+ E2

[
F [x,l]
n (y)− F [x](y)

]
= E1 + E2,

we will use the following decomposition for the calculation of E2

E
[
F [x,l]
n (y)

]
=

E
{[

ϕ
[l]
n (x, y)

]}
E
[
f

[l]
n (x)

] −
E
{[

G
[l]
n (x)− EGl

n(x)

]
ϕln(x, y)

}
{
E
[
G

[l]
n (x)

]}2

+

E
{[

G
[l]
n (x)− EG[l]

n (x)

]2

F x,l
n (y)

}
{
E[G

[l]
n (x)]

}2 .

55



For the calculation ofE1we use the following de composition of the vari-
ance that can be fond in (Collombe[36].

V ar

[
F [x,l]
n (y)

]
=

V ar

[
ϕ

[l]
n (x, y)

]
E
[
G

[l]
n (x)

]2 − 4

E
[
ϕ

[l]
n (x, y)

]
Cov

[
G

[l]
n (x), ϕ

[l]
n (x, y)

]
{
E
[
G

[l]
n (x)

]}3

+ 3V ar

[
Gl
n(x)

]{E[ϕ[l]
n (x, y)

]}2

E
{
Gl
n(x)

}4 +O

[
1

nF (hn)

]

Studying the convergence of E2:

We start by studying
E
[
ϕ

[l]
n (x, y)

]
E
[
Gl
n(x)

] − F [x](y) we observe that:

E
[
ϕ

[l]
n (x, y)

]
E
[
G

[l]
n (x)

] −F [x](y) =

n∑
i=1

1

[F (hi)][l]
E
{[

H

(
y − Yi
hi

)
− F [x](y)

]
K

(
‖x−Xi‖

hi

)}
n∑
i=1

1

[F (hi)][l]
E[K

(
‖x−Xi‖

hi

)
]

Let:

ϕ(t) = E
[ ∫

R
H(t)F [x](y − hit)dt− F [x](y)

]
‖x−Xi‖ = t

Suppose that the function ϕ is derivable at point t = 0 by the hypothesis
H6(ii) we have:

E
[
H

(
y − Yi
hi

)
− F [x](y)

]
K

(
‖x−Xi‖

hi

)
= E

[
ϕ

(
‖x−Xi‖

)
K

(
‖x−Xi‖

hi

)]
=

∫ 1

0

ϕ(hit)K(t)dP
‖x−Xi‖
hi (t)

56



So using the taylor expansion for ϕ around 0, we obtains

E
{[

H

(
y − Yi
hi

)
−F [x](y)

]
K

(
‖x−Xi‖

hi

)}
= hiϕ

′(0)

∫ 1

0

tK(t)dP
‖x−Xi‖
hi (t)+O[hi],

(4.1)
based on the proof of lemma 2 in (Ferraty ad al[64]), H1 and fubini theorem∫ 1

0

tK(t)dP
‖x−Xi‖
hi (t) = F (hi)[K(1)−

∫ 1

0

(sK(s)′)τhi(s)ds]

and by(H1) we obtain:

E
[
ϕln(x, y)

]
[
Gl
n(x, y)

] − F [x](y) =

n∑
i=1

hi[F (hi)]
1−l
{
ϕ′(0)

[
K(1)−

∫ 1

0

(sk(s)′)τhi(s)ds

]}
+ γi

n∑
i=1

[F (hi)]
1−l[K(1)−

∫ 1

0

(sK(s)′)τhi(s)ds]

=
D1

D2

Finally(H2)and(H3) and Toeplitz lemma (see Masry[94]) permit us have:

D1

nhn[F (hn)]1−l
= α[e]ϕ

′(0)M0[1 + 0(1)]
D2

n[F (hn)]1−l
= B[1−l]M1[1 + 0(1)]

Eϕln(x, y)

EF l
n(x)

− F [x](y) = hnϕ
′(0)

α[l]

β[1−l]

M0

M1

[1 + 0(1)],

the convergence of the other terms of the composition for calculating E2

is a consequence of the terms of the variance there fore, we establish the
convergence of the variance we have:

E[G[l]
n (x)] =

1
n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

[F (hi)]1−l
E
[
K

(
‖x−Xi‖

hi

)]

=

n∑
i=1

[F (hi)]
1−l

n[F (hn)]1−l
[K(1)−

∫ 1

0

(K(s)τhi(s)ds)]

βn,[1−l]

= M1[1 + o(1)]
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and

E[ϕ[l]
n (x, y)] =

1
n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

[F (hi)]l
E
[
H

(
y − Yi
hi

)
K

(
‖x− xi‖

hi

)]

=
1

n∑
i=1

[F (hi)]
1−l

n∑
i=1

E
[ ∫

R
H ′(t)F x(y − hit)dt

−F [x](y) + F [x](y)
]
K

(
‖x−Xi‖

hi

)
=

1
n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

F (hi)l
E[(hβ2i ) + F [x](y)]K

(
‖x−Xi‖

hi

)

=
1

n∑
i=1

[F (hi)]
1−l

n∑
i=1

1

F (hi)1−lF (hi)M1[F [x](y) + o(hβ2i )]

= F [x](y)M1[1 + o(1)]

V ar
(
ϕ[l)
n (x, y)

)
=

[
n∑
i=1

[F (hi)]
1−l

]−2 n∑
i=1

[
1

F (hi)l

]2[
V ar

(
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

))

−Cov(KiHi, KjHj)

]
,

V ar

(
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

))
= E

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]2

−E2

(
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

))
,

as

E2

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]
= o[{F (hi)}2],
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E

[
K

(
‖x−Xi‖

hi

)
H

(
y − Yi
hi

)]2

= E
{
K2

(
‖x−Xi‖

hi

)
E2

(
H

(
y − Yi
hi

)
|X
)}

+E

{
σ2
εi

(x)K

(
‖x−Xi‖

hi

)}
,

and

E2

[
H

(
y − Yi
hi

)
|X

]
= o(hi) + [F [x](y)]2.

There are σ2
εi

(x) = V ar

[
H

(
y − yi
hi

)
|X

]
we have by (h6)(ii), because

Hi(y) ≤ 1 the distribution function

Cov(KiHi, KjHj) = Cov(∆i,∆j),

Cov(KiHi, KjHj) = o(nF (hn)),

V ar(ϕln(x, y)) =

(
n∑
i=1

[F (hi)]
1−l

)−2 n∑
i=1

(
F (hi)

l
)−2

M2F (hi)(
F x(y)2 + σ2

εi
(x)
)

(1 + γi)−O(nF (hn)),

with γi = O(hi), we get

V ar(ϕ[l]
n (x, y)) =

β[1−2l]

β2
[1−l]

[
[F [x](y)]2 +σ2

ε(x)

]
1

nF (hn)
M2[1+o(1)]−o

(
nF (hn)

)
.

V ar(Gl
n) =

{[ n∑
i=1

[F (hi)]
1−l
]−2 n∑

i=1

[
1

[F (hi)]l

]2}{
V ar

[
K

(
‖x−Xi‖

hi

)]
− Cov(Ki;Kj)

}
=

[ n∑
i=1

[F (hi)]
1−l
]−2 n∑

i=1

[
1

[F (hi)]l

]2(
M2F (hi)[1 + γi]− Cov(∆i; ∆j)

)
=

1(
n∑
i=1

[F (hi)]
1−l

)2

n∑
i=1

[F (hi)]
1−2lM2[1 + γi]− o(nF (hn))

=
β[1−2l]

β2
[1−l]

M2[1 + o(1)]− o(nF (hn))
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Cov(ϕ[l]
n , G

[l]
n ) =

1(
n∑
i=1

[F (hi)]
1−l

)2Cov(KiHi;Kj)

=
1(

n∑
i=1

[F (hi)]
1−l

)2

{ n∑
i,j=1

E
[
KiHiKj

]
−
[ n∑
i=1

E
(
KiHi

)
×

n∑
j=1

E
(
Kj

)]}
,

because Hi ≤ 1 is distribution cumulative function we get:

Cov(ϕ[l]
n , G

[l]
n ) =

1(
n∑
i=1

[F (hi)]
1−l

)2

n∑
i=1

n∑
j=1

Cov(Ki, Kj)

=
1(

n∑
i=1

[F (hi)]
1−l

)2

n∑
i=1

n∑
j=1

Cov(∆i,∆j)

= O

(
1

nF (hn)

)
.

Finally, we have

V ar

[
F̂ x,[l](y)

]
=
β1−2l

β1−l

M2

M2
1

σ2
ε

1

nF (hn)
[1 + o(1)].

Given

E
{[

Gl
n(x)− EGl

n(x)

]
ϕ[l]
n (x, y)

}
= O

(
1

nF (hn)

)
,

E
{[

Gl
n(x)−G(x)

]2

F̂ [x,l]
n (y)

}
= O

(
1

nF (hn)

)
,

and

E
[
F̂ [x,l]
n (y)− F [x](y)

]
= hnϕ

′(0)
α[l]

β[1−l]

M0

M1

[1 + o(1)] +O

(
1

nF (hn)

)
.

The proof takes and here.
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General conclusion

In our work we are realized an important subject of statistics nonpara-
metric in functional case, we are also interested to prove the different results
of the convergence as will as the asymptotic normality of the estimator of the
maximum of the conditional hazard function and the almost sure and mean
quadratic convergence of our estimator under the strong mixing condition.

The richness of this functional statistical research area offers many per-
spectives both theoretically and practically. In the following, we will com-
ment on some results already obtained, with the major concern of focusing
on all open issues some of which are under development.

Prospects

The work developed in this thesis offers many prospects in the short and
long term. Regarding the short-term prospects:

• recursive estimation of the mode and conditional quantile.

• the recursive estimation of the conditional distribution for truncated
or censored data.

• the recursive estimation of the conditional distribution and density for
ergodic observations.

• The work on the estimation of conditional quantiles and the condi-
tional hazard function for functional explanatory variable opens sev-
eral perspectives. For example, another estimator may consider using
a different method than the estimate by the kernel method as Fourier
techniques: Fourier series decomposition, wavelet series decomposition,
series decomposition of polynomials...
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• Estimation with spatial functional data can be approached in several
ways
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