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Summary

In this thesis, we focused the invariance principal for Nadaraya Watson conditional empiri-
cal process when the covarites are functional .

We propose set-indexed conditional empirical process where we establish the weak con-
sistence and the asymptotic normality as well the density under some general conditions
when the variables are stationary and strong mixing then we use our main results to the
test of the conditional independence, than we extend our results to the ergodic data.
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Résumé

Dans cette thèse, nous avons focalisé le principe d’invariance du processus empirique
conditionnel lorsque les covariables sont fonctionnelles en introduisant l’estimateur du type
Nadaraya Watson .

Nous avons proposé une processus empirique conditionnel indixé par une classe d’ensemble
où nous établissons la consistance faible et la normalité asymptotique ainsi que la équicon-
tinuité dans certaines conditions lorsque les variables sont stationnaires et fort mixtes puis
nous utilisons nos principaux résultats pour tester l’indépendance conditionnel, et nous
étendons nos résultats aux données ergodiques.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Description and Contribution of Thesis

Nonparametric estimation constitutes a current research axis and important in statistics,
this field of research is based on the study of nonparametric model for functional explana-
tory variable i.e. random variables with value in a space of infinite dimension, Consequently
the literature including the study of functional data have grown considerably.

This thesis is to studyies the classical and important problem in nonparametric statistics
for the theory of empirical process which is the invariance principal . In our work we are
interested Nadaraya-Watson conditional empirical processes and we study some asymptotic
properties of the constructed estimator when the covarites are functional.

As applications we investigate our results in this thesis by proposes a testing procedure
for the justification of the theoretical results obtained. The test only needs a nonparametric
estimator of the regression function depending on the explanatory variables which are
significant under the null hypothesis, directly we use our empirical process as a models
statistics for hypothesis testing.

The results presented in this thesis are far more general and they apply to a variety of
interesting and novel situations in functional data analysis .

The thesis is organized as follows:

In the first chapter:
The next chapter is an introductory chapter, which presents a bibliographic study of
problems related to statistical analysis of functional variables as well as non parametric
estimation for conditional models whether in the finite dimension framework or infinite, we
also give our model studied and a brief of the results.
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1.2. BIBLIOGRAPHIC CONTEXT

In the second chapter:
We put some fundamental results of regression estimator in multivariate framework. We
give the fundamental statistical properties of locally polynomial estimator of the regression
function.
In the third chapter:
We put the definitions of basic elements of the thesis as the empirical process. We put the
definitions of basic elements of the thesis as the functional variable, small ball probabilities,
entropy ......etc.

In the fourth chapter:
We present our model Nadaraya Watson set-indexed conditional empirical process formed
by strong mixing random variables and under some general conditions when the covariates
are functional we establish the uniform weak consistence and the asymptotic normality
as well density under some assumptions and richness of the index class and we apply our
results for conditional independence test.
In the chapter five:
We extend the results of chapter 4 for the ergodic data.
In the last chapter:
we give the conclusion containing ours results with some comments and the prospects to
focus on open future problems.

1.2 Bibliographic context

The theory of empirical processes plays a fundamental role in statistics with many ap-
plications can appear in too much theoretical and practical problems, one of the first
applications of empirical process theory is to understand goodness of fit test statistics such
as Kolmogorov-Smirnov statistic, Cramér-von Mises statistic used in the work of Darling
(1957), in the areas of estimating some models statistics and to derive consistency and
rate of convergence for them , a number of publications and books published during the
past decades see for examples books Shorack and Wellner (1986), Pollard (1990), Van der
Vaart and Wellner (1996), Dudley (1999), Van der Vaart and Wellner (2000), Van de Geer
(2006), we mention some other applications such as empirical quantile refer Csörgo and
Révész (1978),Deheuvels and Mason (1992) and to statistics of censored data one of the
most popular statistics of censored is Kaplan-Meier empirical process,the M-estimators
approach seeVan de Geer (2006), the Bootstrap methods Aenssler (1985), Radulović
(1996), the Two-sample problem, copula processes Doukhan et al. (2009), Marcin (2017),
U-statistic Dehling et al. (1987), for more applications of empirical process see the books
mentioned previously.
In classical non parametric statistics the simplest sort of empirical process arises when
trying to estimate a probability distribution, Glivenko (1933) and Cantelli (1933) showed
the maximum difference between the empirical and true distribution functions converges

12



CHAPTER 1. GENERAL INTRODUCTION

to zero when samples are independents and identically distributed, In literature a num-
ber of examples have been study asymptotic proprieties of empirical process considering
the independents observations can be found in Gänssler and Stute (1979), pyke (1968),
Révész (1976), we cite among many others Dudley (1978), Giné and Zinn (1984), Le Cam
(1983), Pollard (1982), Bass and Pyke (1984), for conditional process Stute (1986a)proved
almost sure and weak convergence results for kernel and nearest neighbor estimates of
the conditional empirical function and Horváth and Yandell (1988) studied asymptotic
of the kernel and the nearest neighbor type estimator of Nadaraya Watson empirical
process, Interestingly, the statistical applications of empirical process was soon increase so
empirical process also was soon extend to various types of mixing for example Yoshihara
(1988) introduced a nearest-neighbour-type estimate of regression function and proved
that the distribution of the estimate is asymptotically normal under some conditions when
the sequence is φ-mixing, invariance principles studied by Doukhan (1995) considered
β-framework we cite among Withers (1975) , Phillip (1984), Harel and Puri (1987),
Massart (1988) however, In the last few years many authors interested to studies the
asymptotic proprieties of empirical process considering multivariate conditional mixing
framework Polonik and Yao (2002) studied invariance principal for set-indexed conditional
empirical process where it was extended by Poryvăı (2005) for conditional empirical process
indexed by functions but, situation where both X and Y are real or multivariate it has
received significantly less attention currently.

Non-parametric estimation for statistics models based on kernel and their asymptotic
properties according as well applications frequently used in the theory of empirical process,
recall the density estimation has been the subject of a great deal of work, its field of applica-
tion is very broad and covers various fields, such as the analysis of regression, chronological
series and the theory of reliability, the most important nonparametric methods for density
estimation are: kernel method introduced by Rosenblatt (1956)and Parzen (1962), the
series method orthogonal studied among others by Schwartz (1967)and Watson (1964)
and the method of histogram introduced by Graunt then developed by Scott and Tran
(1994) and, Carbonet al. (1996).

Studying the links between two random variables is a very important question. aunt in
statistics. Historically, this problem has been addressed for the first time in a geometric
context by Galileo Galilei (1632), The main idea is to adjust a point cloud by a right
to interpret the relationship between contaminated data.A mathematical formulation for
this problem, known in the literature under the name of linear regression, was given by
Legendre and Gauss independing, in (1805) and (1809) and is based on the principle of
least squares. In statistics, this problem can be modeled as follows boasts: suppose we
have two dependent random variables X and Y, the forecast of Y knowing X is done
through X by an application r. In other words, we are looking for a function r such that
r(X) is a good approximation of Y from a given criterion.In our non-parametric context,
the first results were obtained by Tukey (1961) . While the kernel method estimate has

13



1.2. BIBLIOGRAPHIC CONTEXT

been first used in 1964 separately by Nadaraya (1964)and Watson (1964). This estimation
method has undergone continuous development. Indeed, Devroye (1978) established the
almost sure uniform convergence of this estimator. The optimal convergence rate for
nonparametric regression a was given by Stone (1982) , Collomb (1981),Collomb (1985)
Collomb (1983) Collomb (1984) brings a decisive contribution to this model. These works
are focused on using regression in forecasting time series. The first asymptotic results
on the nonparametric estimate of the regression function on the α-mixing processes have
been developed by Györfi et al. (2007). In this α-mixing framework, Vieu (1991) gave the
asymptotically exact terms of the quadratic error of the estimator at core of the regression
function. We refer to Bosq and Lecoutre (1987), Schimek (2000), Sarda and Vieu (2000)
for a wide range of references.

The study of nonparametric models related to the conditional distribution has been widely
considered in nonparametric statistics. Historically, the first results on these models were
obtained by Roussas (1969) he treated the estimation of the conditional distribution func-
tion by the kernel method using Markov observations.He established the convergence in the
probability of the constructed estimator.An alternative estimator for the same model was
developed by Stone (1977)the later study the empirical estimator of conditional distribution
function and applied the results obtained to the estimator of the conditional quantiles as the
generalised inverse of the conditional distribution function Stute (1986b) added results on
the almost complete convergence of the conditional distribution function of a vector random
variables conditionally to vector explanatory variable added results on the almost complete
convergence of the kernel estimator of the distribution function of a vector random variable
conditionally to a vector explicative variable. The estimation of the conditional mode was
treated for the first time by Collombet al (1987). These authors showed the uniform conver-
gence of the kernel estimator of this conditional model when the observations are φ mixing,
Samanta (1989), studied the asymptotic normality of the kernel estimator of conditional
quantiles when the observations are independent and identically distributed.The latter, in
collaboration with Samanta (1990), obtained the same asymptotic property for a kernel
estimator of the conditional mode by considering the case i.i.d. Roussas (1991) established
the almost sure convergence of a kernel estimator.Of the conditional quantiles when the
observations come from a Markov process. The contribution of Youndjé (1993) on the esti-
mation of the conditional density is decisive. He addressed the question of the choice of the
smoothing parameter by considering the two independent and dependent cases. Quintela
and Vieu (1997) have treated the conditional mode as being the point that cancels the first
order derivative of the conditional density and constructed an estimator for this model using
the kernel estimator of the derivative of the conditional density.Ould-said (1997) studied the
kernel estimator of the conditional mode from ergodic observations. We refer to Berlinet et
al. (1998a),Louani and Ould-Said (1999) for the convergence in law of the kernel estimator
of the conditional mode in the α-mixing case. The Berlinet et al. (1998b) gives a general
theorem of the asymptotic normality of the conditional quantile estimators, independently
of the correlation of the observations.Zhou and Liang (2000) used the L1 approach to

14



CHAPTER 1. GENERAL INTRODUCTION

construct a conditional median estimator using α-mixing observations. They showed the
asymptotic normality of this estimator. The convergence in Lp norm of the kernel estimator
of the conditional density of a stationary Markov process was obtained by Laksaci and
Yousfate (2002), Ioannides and Matzner-Lober (2002) constructed an estimator for the
conditional mode, when, the observations are tainted by errors. In this article the authors
focus on the almost sure convergence of the proposed estimator. While its asymptotic nor-
mality has been demonstrated by the same authors in Ioannides and Matzner-Lober (2004).

On the other hand, The modelization of functional variables that taking values in infinite
dimensional spaces had received a lot of attention in the last few years, there are an
increasing number of situation coming from different fields of applied sciences(environment,
chemometrics, biometrics, medicine, econometrics,....) in which the collected data are
curves,the study of statistical models adapted to such type of infinite dimensional data has
been the subject of several works in the recent statistical literature good overviews about
this literature can be found in Ramsay and Silverman (2005a), Bosq (2000), Ramsay and
Silverman (2005b), Ferraty and Vieu (2006), Bosq and Blanke (2007), Shi and Choi (2011),
Horváth and Kokoszka (2012), Zhang (2014), Bongiorno et al. (2014), Hsing and Eubank
(2015) and Aneiros et al. (2017) and hundreds of papers and books have been published in
this framework last decade.

The study of the problem of testing conditional independence has a long history. However,
there are relatively few results on nonparametric tests when the vectors X, Y and Z are
continuous. some examples of such tests can be found Su and White (2007), Su and
White (2008) A primary role of hypothesis testing in empirical work is to justify model
simplification. Whether one is testing a restriction implied by economic theory or an
interesting behavioral property, the test asks whether imposing the restriction involves a
significant departure from the data evidence,When the methods of analysis are widened to
include nonparametric techniques, the need for model simplification is arguably even more
important than with parametric modeling methods there is a large literature on testing
independence with various method applied. for example authors have proposed tests based
on a comparison between the empirical integrated regression and the estimated parametric
integrated regression function under the specification in the null; see, for example, Brunk
(1970), Hong-zhy and Bing (1991), Sue and Wei (1991) and Stute (1997). These tests are
based on a marked empirical process and, in general, their null asymptotic distribution
depends on certain features of the data generating process. The limiting distribution can
be tabulated when the distribution of the regressors is known. Also Stuteet al. (1998) and
Koul and Stute (1999) suggest a transformation of the underlying empirical process, when
the regression depends only on one variable, which is asymptotically distribution free under
the null. Transformations when the regression model depends on more than one variable
are still unexplored.
And for our needs a complete treatment of the necessary weak convergence theory, it
is worthwhile to see the monograph of Van der Vaart and Wellner (1996) presents an
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1.3. BRIEF PRESENTATION OF RESULTS

important collection of statistical tools for empirical process and also by Shorack and
Wellner (1986).

1.3 Brief Presentation of Results

1.3.1 Notations:

We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn) copies of (X,Y ) that
takes its value in a space E × Rd. The functional space E is equipped with a semi-metric
dE(·, ·). The links between X and Y , estimating by functional operators associated to the
conditional distribution of Y given X such as the regression operator, for some measurable
set C in a class of sets C ,

G(C | x) = E
(
1{Y ∈C} | X = x

)
.

This regression relationship suggests to consider the following Nadaraya Watson-type
conditional empirical distribution:

Gn(C, x) =

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) ,

where K(·) is a real-valued kernel function from [0,∞) into [0,∞) and hn is a smoothing
parameter C is a measurable set, and x ∈ E .Concerning the semi-metric topology defined
on E we will use the notation

B(x, t) = {x1 ∈ E : dE(x1, x) ≤ t},

for the ball in E with center x and radius t. We denote

Fx(t) = P(dE(x,X) ≤ t) = P(X ∈ B(x, t)),

which is the small ball probability function which we will note φ(hn) . We study the
asymptotic behaviour of the conditional empirical process:

ν̃n(C, x) =
√
nφ(hn) (Gn(C, x)− IE(Gn(C, x))) , for C ∈ C .

1.3.2 Results:

Strong mixing data

Theorem 1 (Uniform Consistency). For (Xt, Yt) is geometrically strong mixing with β > 2.
Let C be a class of measurable sets for which N (ε,C ,G (· | x)) <∞ for any ε > 0. Suppose
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CHAPTER 1. GENERAL INTRODUCTION

further that ∀C ∈ C

|G(C, y)f(y)−G(C, x)f(x)| −→ 0, as y → x.

If nφ(hn)→∞ and hn → 0 as n→∞, then

sup
C∈C
|Gn(C, x)− IE (Gn(C, x))| P−→ 0.

Theorem 2 (Asymptotic normality). Let (H2)-(H5)(i)(ii)-(H6)-(H8)-(H9)(i) hold
and (Xi, Yj) is geometrically strong mixing with β > 2, then nφ(hn)→∞ as n→∞. For
m ≥ 1 and C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m}
D−→ N (0,Σ),

where Σ = σij(x), i, j = 1, . . . ,m and

σij(x) = C2
C2

1f1(x)
(
E(1{Y ∈Ci∩Cj} | X = x)− E(1{Y ∈Ci} | X = x)E(1{Y ∈Cj} | X = x)

)
,

whenever f1(x) > 0 and

C1 = K(1/2)−
∫ 1/2

0
K
′(s)τ0(s)ds, C2 = K2(1/2)−

∫ 1/2

0
(K2)′(s)τ0(s)ds.

Theorem 3. The process (Xi, Yi) are exponentially strong mixing for each σ2 > 0, let
Cσ ⊂ C be a class of measurable sets with

sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (Rγ) with γ ≥ 0. Further, we assume that φ(hn) → 0 and
nφ(hn)→ +∞ as n→ +∞, such that

nφ(hn) ≤
(
Λγ(σ2, n)

)2
,

and as n→ +∞, we have

nφ

(
σ2 log

( 1
σ2

))1+γ

log(n) →∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to be replaced by
σ2 ≥ φ(hn) log

( 1
φ(hn)

)
then for every ε > 0 there exist a constant M > 0 such that

P
(

sup
C∈Cσ

|ν̃n(C | x)| ≥MΛγ(σ2, n)
)
≤ ε,

for all sufficiently large n. Then the following function which provides the information on
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the asymptotic behaviour of the modulus of continuity

Λγ(σ2, n) =


√
σ2 log 1

σ2 , if γ = 0;
max

(
(σ2)(1−γ)/2, nφ(hn)(3γ−1)/(2(3γ+1))

)
, if γ > 0.

Theorem 4. The process:
{ν̃n(C | x) : C ∈ C } ,

converges in law to a Gaussian process {ν̃(C | x) : C ∈ C } , that admits a version with
uniformly bounded and uniformly continuous paths with respect to ‖ · ‖2−norm.

1.3.3 Testing the independence:

We consider a sample of random elements (X1, Y1,1, Y1,2), . . . , (Xn, Yn,1, Yn,2) copies of
(X,Y1, Y2) that takes its value in a space E ×Rd1 ×Rd2 and define, for (C1, C2) ∈ C1 × C2,

Gn(C1 × C2, x) =

n∑
i=1
1{Yi,1∈C1}1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (1.1)

Gn,1(C1, x) =

n∑
i=1
1{Yi,1∈C1}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (1.2)

Gn,2(C2, x) =

n∑
i=1
1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) . (1.3)

We will investigate the following processes, for (C1, C2) ∈ C1 × C2,

ν̂n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x))) , (1.4)

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)−Gn,1(C1, x)Gn,2(C2, x)) . (1.5)

Notice that we have

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x))) .
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Hence we have

ν̆n(C1, C2, x) d=
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)IE(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x)))

= ν̂n(C1, C2, x) + IE(Gn(C2, x))ν̃n(C1, x)− IE(Gn(C1, x))ν̃n(C2, x).(1.6)

One can show that, for (A1, B1), (A2, B2) ∈ C1 × C2,

cov(ν̂n(A1, B1, x), ν̂n(A2, B2, x))

= C2
C2

1f1(x)
(
E(1{Y ∈A1∩A2} | X = x)− E(1{Y ∈A1} | X = x)E(1{Y ∈A2} | X = x)

)
×
(
E(1{Y ∈B1∩B2} | X = x)− E(1{Y ∈B1} | X = x)E(1{Y ∈B2} | X = x)

)
, (1.7)

whenever f1(x) > 0. Let {ν̂(C1, C2, x) : (C1, C2) ∈ C1 × C2} be a Gaussian process
with covariance given in (4.13). Let us introduce the following limiting process, for
(C1, C2) ∈ C1 × C2,

ν̆(C1, C2, x) = ν̂(C1, C2, x) + G(C2, x)ν̃(C1, x)−G(C1, x)ν̃(C2, x).

We would test the following null hypothesis

H0 : Y1 and Y2 are conditionally independent given X = x.

Against the alternative

H1 : Y1 and Y2 are conditionally dependent.

Statistics of independence those can be used are

S1,n = sup
(C1,C2)∈C1×C2

|ν̂n(C1, C2, x)|, (1.8)

S2,n = sup
(C1,C2)∈C1×C2

|ν̆n(C1, C2, x)|. (1.9)

A combination of Theorem 17 with continuous mapping theorem we obtain the following
result.

Theorem 5. We have under condition of Theorem 17, as n→∞,

S1,n → sup
(C1,C2)∈C1×C2

|ν̂(C1, C2, x)|, (1.10)

S2,n → sup
(C1,C2)∈C1×C2

|ν̆(C1, C2, x)|. (1.11)
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Ergodic data

Theorem 6. [Uniform Consistency] Suppose that the hypotheses (H1)-(H7) hold. Let C

be a class of measurable sets for which

N (ε,C ,G (· | x)) <∞,

for any ε > 0. Suppose further that ∀C ∈ C

|G(C, y)f(y)−G(C, x)f(x)| −→ 0, as y → x.

If nφ(hn)→∞ and hn → 0 as n→∞, then

sup
C∈C
|Gn(C, x)− IE (Gn(C, x))| P−→ 0.

Theorem 7 (Asymptotic normality). Let (H1)-(H7) hold. Then as n→∞, for m ≥ 1
and C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m}
D−→ N (0,Σ),

where Σ = σij(x), i, j = 1, . . . ,m and

σij(x) = C2
C2

1f1(x)W2(x),

whenever f1(x) > 0 and

C1 = k(1)−
∫ 1

0
K ′(u)τ0(u)d(u), C2 = K2(1)−

∫ 1

0
(K2)′(u)τ0(u)du.

Theorem 8. Suppose that (H1)-(H7) hold. For each σ2 > 0, let Cσ ⊂ C be a class of
measurable sets with

sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (5.3) with γ ≥ 0. Further, we assume that φ(hn) → 0 and
nφ(hn)→ +∞ as n→ +∞, such that

nφ(hn) ≤
(
Λγ(σ2, n)

)2
,

and as n→ +∞, we have

nφ

(
σ2 log

( 1
σ2

))1+γ

log(n) →∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to be replaced by
σ2 ≥ φ(hn) log

( 1
φ(hn)

)
, then under conditions of Theorem 20 we have the process:

{ν̃n(C, x) : C ∈ C } ,
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converges in law to a Gaussian process {ν̃(C, x) : C ∈ C } , that admits a version with uni-
formly bounded and uniformly continuous paths with respect to ‖ · ‖2−norm with covariance
σij(x) given in Theorem 20.

The hypotheses and the proofs and details of the conditions imposed of the results will be
given in chapter 4 and 5

21



1.3. BRIEF PRESENTATION OF RESULTS

22



CHAPTER 2

ON THE NONPARAMETRIC
ESTIMATION OF REGRESSION

FUNCTION

2.1 Introduction

Estimation theory is one of the most basic branches of statistics. This theory is usually
divided into two main components, namely, parametric estimation and non-parametric
estimation. The problem of nonparametric estimation consists, in most of the cases, in
estimating, from observations, an unknown function, element of a certain functional class.
Remember that a non-parametric procedure is defined regardless of the distribution or
law of the sample of observations. More specifically, we talk about estimation method
non-parametric when this is not reduced to the estimation of a finite number of real
parameters associated with the law of the sample. Central problems in statistics is that
of the estimation of functional characteristics associated with the law of observations, for
example, the density function or the regression function (in a multivariate model). One
of the most frequently encountered models in parametric or non-parametric statistics is
the regression model, a description of which is given below. We have a sample, composed
of n independent pairs of random variables (X1, Y1), ..., (Xn, Yn) copier of (X,Y )a generic
element of this sample in the non-parametric regression model, we typically assume the
existence of a function r(.) which expresses the mean value of the response variable Y as a
function of the input variable X:

Yi = r(Xi) + εi for 1 ≤ i ≤ n and εi
d= ε ∼ N (µ, σ2). (2.1)

The error made is, in the classic case, modeled by a Gaussian random variable, which
will generally be chosen independent of the observations{Xi : 1 ≤ i ≤ n} and of mean µ
zero. This last hypothesis considerably simplifies the calculations and the expression of
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asymptotic properties linked to the estimation of the regression function, under such a
simplified model, will not be considered in our work. We consider the more delicate problem
posed by the estimation of the regression function, without assumption particular on the
law of the couple (X,Y ) other than that of the existence of r(·) (supposed sufficiently
regular), and superior moments of suitable order of X and Y There are two main cases for
the model (2.1) depending on the probabilistic nature of the data {(Xi, Yi) : 1 ≤ i ≤ n}.
The first case is the simplest, and is called a device experimental fixed effects (or “fixed
design”) It corresponds to the situation where the Xi = xi are fixed (i.e. constants p.s., or,
equivalently, deterministic or degenerate).

Example 1. The regular experimental system we assume Xi = xi = i/n and r(.) a function
of [0, 1] in R such as

Yi = r(i/n) + εi, for 1 ≤ i ≤ n.

The second case, called an experimental device with random effects (or “random design”)
denotes the model where the data {Xi : 1 ≤ i ≤ n} are strictly random (or non degenerate).
We will essentially study this latter model, which is clearly more general. Note also that
only models with independent observations will be analyzed, the study of the dependency
case adding only technical difficulties.
We will now present the regression function more explicitly, in the framework of the
univariate random model. Let (X,Y ) be a couple of real random variables admitting an
attached density on R2 denoted fX,Y and a marginal density fx. the variable Y is assumed
to be integrable i.e. E(|Y |) <∞ We can then properly define the regression function or
conditional expectation of Y knowing X = x, by

r(x) = E(Y | X = x) =

∫
R
yfX,Y (x, y)dy∫

R
fX,Y (x, y)dy

= m(x)
fX(x) (2.2)

when the density fX(x) is different than zero the problem of estimating r(·) is of the non-
parametric type, i.e. the regression function belongs to a nonparametric (infinidimensional)
set. For example, we can assume that r(·) belongs to the function class F consisting
of continuous functions on [0,1] (cf. example 1 above), when the density support is the
interval [0,1]. For the study of the minimax properties of the regression function estimators,
the nonparametric classes of functions encountered are of the Hölder, Sobolev or Besov
type The regression function r(x) defined above in(2.2) realizes (for all x fixed) the best
approximation of Y knowing X = x, in the least squares sense, assuming Y of an integrable
square. In this first chapter, we will discuss some methods of constructing estimators of
regression by the kernel method. Then, we will focus our work on the statistical properties
of estimators (convergence, speed of convergence) as well as their optimality The estimators
we consider belong to the large class of estimators linear (i.e. linear as a function of
observations Yi):
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Definition 2.1.1. the estimator r̂n(x) of rn(x) is said to be a linear estimator of the
nonparametric regression if

r̂n(x) =
n∑
i=1

YiWni(x);

where the weight function Wni(.) does not depend on the observations Yi. The class of
linear estimators groups the majority of the regression estimators, i.e. estimators by spline
functions, by projection or orthogonal series, by wavelets, and by the kernel method. In
the next section, we will present the famous kernel estimator of regression introduced by
Nadaraya (1964) and Watson (1964) and some of its essential properties. We will then be
interested in the asymptotic optimality of this estimator, then in the locally polynomial
estimation of the regression, which is one of the most effective approaches today. For a
bibliographic review of older work on non-parametric regression, we cite the articles by
Collomb (1981) and Stone (1977).

Definition 2.1.2. A kernel function K(u) : IR→ IR is any function which satisfies:
∫ +∞

−∞
k(u)du = 1

Some examples

(a) Box kernel:k(u) = 1
21[−1,+1](u);

(b) Triangle kernel :k(u) = (u+ 1)1[−1,0](u) + (1− u)1[0,+1](u);

(c) Quadratic kernel:k(u) = 3
4(1− u2)1[−1,+1](u);

(d) Gaussian kernel:k(u) 1√
2π exp

(
−u2

2

)
;

2.1.1 Dependency measure

Mixture

The notion of strong mixing has been introduced by Rosenblatt (1956) as a dependency
structure and was used in that paper in the proof of a central limit theorem. This mixing
condition has two advantages. First, it is the least restrictive among the various mixing
conditions existing in classical literature (see Doukhan (1994),ch11). Then the likely
knowledge about this type of dependance is sufficient pushes (see Rio (2000)) to allow us
to carry out the study of non parametric forecast which is our main concern.

Definition 1. For the sequence {(Xt, Yt)} we define the α mixing coefficient by

α(j) = sup sup
A∈F0

−∞,B∈F
−∞
j

{|P(AB)− P(A)P(B)|} ,

where F ts denotes σ-algebra generated by {(Xt, Yt) , s ≤ i ≤ t}.

The sequence is called strong mixing if the coefficient α verify lim
n→∞

α(n) = 0
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Definition 2.1.3. The sequence {(Xt, Yt)} is called geometrically strong mixing if: α(j) ≤
aj−β for some a > 0 and β > 1, and exponentially strong mixing if: α(k) ≤ bγk for some
b > 0 and 0 < γ < 1.

Comments on limit theory under α-mixing: Under α-mixing and other similar
conditions (including ones reviewed below), there has been a vast development of limit
theory — for example, CLTs, weak invariance principles, laws of the iterated logarithm,
almost sure invariance principles, and rates of convergence in the strong law of large numbers.
For example, the CLT in Rosenblatt (1956) evolved through subsequent refinements by
several researchers into the following "canonical" form. (For its history and a generously
detailed presentation of its proof, see e.g. [ Bradley (2007), v1, Theorems 1.19 and 10.2].
Several other classic strong mixing conditions:
As indicated above, the terms "α-mixing" and "strong mixing condition" (singular) both
refer to the condition α(n)→ 0. (A little caution is in order; in ergodic theory, the term
"strong mixing" is often used to refer to the condition of "mixing in the ergodic-theoretic
sense", which is weaker than α-mixing as noted earlier.) The term "strong mixing conditions"
(plural) can reasonably be thought of as referring to all conditions that are at least as
strong as (i.e. that imply) α-mixing. In the classical theory, five strong mixing conditions
(again, plural) have emerged as the most prominent ones: α-mixing itself and four others
that will be defined here. Recall our probability space (Ω,F ,P). For any two σ-fields A
and B ⊂ F , define the following four "measures of dependence":

φ(A,B) = sup
A∈A,B∈A,P(A)>0

|P(B | A)− P(B)|; (2.3)

ψ(A,B) = sup
A∈A,B∈A,P(A)>0,P(B)>0

|P(B ∩A)/(AA)− 1|; (2.4)

ρ(A,B) = sup
f∈L2(A),g∈L2(B)

|Corr(f, g)|; (2.5)

β(A,B) = sup(1/2)
I∑
i=1

J∑
j=1
|P(Ai ∩Bj)− P(Ai)P(Bj)| (2.6)

where the latter supremum is taken over all pairs of finite partitions (A1, A2, . . . , AI) and
(B1, B2, . . . , BJ) of Ω such that Ai ∈ A for each i and Bj ∈ B for each j. In (2.5), for a
given σ-field D ⊂ F , the notation L2(D) refers to the space of (equivalence classes of)
square-integrable,D-measurable random variables.
Now suppose X := (Xk, k ∈ Z) is a strictly stationary sequence of random variables on
(Ω,F ,P). For any positive integer n, define the dependence coefficient

φ(n) = φ(X,n) := φ(F0
−∞,F∞0 ) (2.7)

And define analogously the dependence coefficients ψ(n), ρ(n), and β(n). Each of these
four sequences of dependence coefficients is trivially nonincreasing. The (strictly stationary)
sequence X is said to be:
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"φ-mixing" if φ(n)→ 0 as n→∞;
"ψ-mixing" if ψ(n)→ 0 as n→∞;
"ρ-mixing" if ρ(n)→ 0 as n→∞; and
"absolutely regular", or "β-mixing", if β(n)→ 0 as n→∞. one has the following well

known inequalities:
2α(A,B) ≤ φ(A,B) ≤ (1/2)ψ(A,B);

4α(A,B) ≤ ρ(α(A,B)) ≤ ψ(A,B)

and
ρ(α(A,B)) ≤ 2 (φ(A,B))1/2 (2φ(B,A))1/2 ≤ 2 (φ(A,B))1/2

For a history and proof of these inequalities, see e.g. [Bradley (2007), v1, Theorem 3.11].
As a consequence of these inequalities and some well known examples, one has the following
"hierarchy" of the five strong mixing conditions here:

(i) ψ-mixing implies φ-mixing.

(ii) φ-mixing implies both ρ-mixing and β-mixing (absolute regularity).

(iii) ρ-mixing and β-mixing each imply α-mixing(strong mixing)

(iv) Aside from “transitivity”, there are in general no other implications between these
five mixing conditions. In particular, neither of the conditions ρ-mixing and β-mixing
implies the other.

For all of these mixing conditions, the "mixing rates" can be essentially arbitrary, and in
particular, arbitrarily slow.

Remark 1. the α mixing coefficient such that 0 ≤ α ≤ 1
4 this coefficient is notably weaker

than other noted mixing coefficient β, φ, ρ and ψ (see Doukhan (1994) and Rio (2000)).
the results obtained in the case α mixing will therefore concern a wider class of processes.

2.2 Nadaraya-Watson estimator

Suppose we have an n-sample (X1, Y1), ..., (Xn, Yn) random variables with real values,
same law as the couple (X,Y). We propose to build an estimator r̂n(x) of the regression
function from pairs of observations {(X1, Y1), ..., (Xn, Yn)} The first estimator encountered
in the literature is the Nadaraya-Watson kernel estimator (Nadaraya (1964) and Watson
(1964)),noted [NW] estimator it is built from a kernel function K(.) and a bandwidth h,
analogously to the kernel estimator of the density function fX(.) introduced by Parzen
(1962) and Rosenblatt (1956) noted [PR] We recall the definition of the estimator [PR],

f̂X,n(x) = 1
nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R (2.8)

First, we designate a window or bandwidth hn : n ≥ 1 (possibly strictly positive numbers
verifying
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hn −→ 0, when n −→∞

the bandwidth h = hn denotes a sequence indexed by n=1,2,....but dependence on n does
will not always be specified in order to lighten the ratings. The kernel function K:R→ R
will be assumed to be measurable and satisfying certain basic hypotheses among those set
out below:

(K.1) K is bounded ie : sup
u∈R
|K(u)| <∞ ;

(K.2) lim
|u|→∞

|u|k(u) = 0;

(K.3) k(.) ∈ L1(R) i.e.
∫
|K(u)|du <∞;

(K.4)
∫
R
K(u)du = 1.

The estimator [NW] is presented as a weighted local average of the values Yi and is defined
by

r̂NWn (x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) × 1
{

n∑
i=1

K

(
x−Xi

h

)
6= 0

}
, (2.9)

where 1{} = 1{} designates the indicator function. Remember that for any event A
Borel-measurable,

1(A) =
{

1, if A is checked ;
0, otherwise.

(2.10)

Similarly, we can define the estimator [NW] by,

r̂NWn (x) =



n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) , when
n∑
i=1

K

(
x−Xi

h

)
6= 0

1
n

n∑
i=1

Yi, otherwise.

(2.11)

The kernel K determines the shape of the neighborhood around the point x and the window
h controls the size of this neighborhood, i.e. the number of observations taken to local
average . Intuitively, it is natural that the window h is preponderant for the consistency
of the estimator [NW]. This observation will be confirmed in the next section and in the
following paragraph .
Posing

m̂n(x) = 1
nh

n∑
i=1

YiK

(
x−Xi

h

)
Kernel estimator of m(x) (2.12)

we notice that the estimator [NW] can be written r̂NWn (x) = m̂n(x)/f̂X,n(x). This last
formulation is common in the literature and consists of a good first approach to the
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estimator [NW]. De facto, we will treat the random numerator and denominator separately
in order to obtain the usual asymptotic properties of the estimator [NW], because it is
difficult to work directly with a random quotient. The method consists then to linearize the
deviation r̂NWn (x)− r(x) in terms of f̂X,n(x)− fX(x) and m̂n(x)−m(x). This technique
is central (even systematic) in nonparametric regression,
First comments on the estimator [NW]
The estimator [NW] (2.9) is linear in the sense of the definition 2.1.1 with as function
weight WNW

ni (.) defined by

WNW
ni (x) =

K
(
x−Xi
h

)
n∑
i=1

K

(
x−Xi

h

)1
{

n∑
i=1

K

(
x−Xi

h

)
6= 0

}
.

Remark 2. For a more general discussion of the weight function in the non-parametric
regression framework and an exposure of certain conditions necessary for its consistency,
we will cite the pioneering article of Stone (1977)Also note that, by restricting our study to
positive kernels (i.e., such as K ≥ 0), the indicator function presented in (2.9) disappears.

Among the two parameters K (functional) and h (numeric) to be selected, the window h
determines the degree of smoothing of the estimator [NW].Suppose the estimator is only
evaluated at observation points {Xi : 1 ≤ i ≤ n} then, when K is at compact support we
get

lim
h→0

r̂NWn (Xi) = K(0)Yi/K(0) = Yi

Specifically, we have

lim
h→0

r̂NWn (Xi) =
{
Yi, when x = Xi, ∀1 ≤ i ≤ n,
0, otherwise.

When h tends to zero, the estimator [NW] therefore tends to reproduce the data, the curve
obtained is close to an interpolation of the points{(Xi, Yi) : 1 ≤ i ≤ n} It’s a phenomenon
of under-smoothing, the variance of the estimator is too large. On the other side

lim
h→0

r̂NWn (Xi) =

n∑
i=1

K(0)Yi
n∑
i=1

K(0)
= 1
n

n∑
i=1

Yi

When h tends to infinity, we have a phenomenon of highlighting, the estimator r̂NWn (x)

tends to n−1
n∑
i=1

Yi which is a function independent of x. The deterministic error or bias is

too big. This observation indicates that the statistical properties of the estimator [NW]
depend on the window or smoothing parameter h, which we will have to choose in order to
balance the bias and the variance.
Now, we will discuss one of the many ways to build the estimator of the regression function
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introduced by Nadaraya and Watson. For an intuitive justification of the estimator [NW],
let’s recall the definition of the bivariate density kernel estimator, natural extension of
(2.8),

f̂X,Y,n(x, y) = 1
nh2

n∑
i=1

K

(
x−Xi

h

)
K

(
y − Yi
h

)
, (2.13)

By replacing in (2.2) the joint density fX,Y and the marginal density fXby their respective
kernel estimators [PR], we find the estimator [NW] defined in (2.9) or (2.11). The following
proposition follows

Proposition 2.2.1. If the kernel K is symmetrical (or of order 1), we obtain the following
equalities

r̂NWn (x) =

∫
R
yf̂X,Y,n(x, y)dy∫

R
f̂X,Y,n(x, y)dy

=
∫
R
yf̂X,Y,n(x, y)dy/f̂X,n(x) (2.14)

from (2.13) We have

∫
R
f̂X,Y,n(x, y)dy = 1

nh2

n∑
i=1

K

(
x−Xi

h

)∫
R
K

(
y − Yi
h

)
dy

= 1
nh

n∑
i=1

K

(
x−Xi

h

)
×
∫
R
K(u)du = f̂X,n(x).

similar∫
R
yf̂X,Y,n(x, y)dy = 1

nh2

n∑
i=1

K

(
x−Xi

h

)∫
R
yK

(
x−Xi

h

)
dy

= 1
nh

n∑
i=1

K

(
x−Xi

h

)
×
{∫

R

(
y − Yi
h

)
k

(
y − Yi
h

)
dy + Yi

h
×
∫
R
k

(
y − Yi
h

)
dy

}

= 1
nh

n∑
i=1

K

(
x−Xi

h

)
×
{
h

∫
R
uK(u)du+ Yi

∫
R
k(u)du

}

= 1
nh

n∑
i=1

K

(
x−Xi

h

)
Yi = m̂n(x)

which demonstrates (2.14).
The definition (2.13) leads us to introduce the estimator [NW] in the multivariate framework
When the explanatory or predictive variable X has values RP , for a certain p ∈ N fixed,
The estimators [PR] and [NW] are defined by:

f̂X,n(x) = 1
nhp

n∑
i=1

K

(
x−Xi

h

)
, x ∈ Rp (2.15)

and

r̂NWn (x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) × 1
{

n∑
i=1

K

(
x−Xi

h

)
6= 0

}
, (2.16)
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Above K : Rp → R denotes a multivariate function defined as the product of univariate
kernels Kj (possibly identical for 1,...,j,) such as

K(u) = K (u1, ...., up) =
p∏
j=1

Kj(uj), u ∈ Rp.

Remark 3.
H = h = (h1, ..., hp) : min

1≤j≤p
hj > 0,

a subset of R corresponding to the space of all possible windows. The definition (2.15) of
the density estimator [PR] is a special case of the estimator following:

1
n

n∑
i=1

Kh(x−Xi),

with
Kh(X) =

p∏
j=1

Kj(
xj

hj

)

It is possible to present the multivariate [PR] estimator in an even more general context .
Let H be a non-singular p× p matrix (i.e. not admitting an eigenvalue null and therefore
invertible) belonging to the space of square matricesMp(R) we use the multivariate kernel
K : Rp → R which satisfies the following conditions:

(K.1)
∫
R
K(u)du = 1,

(K.2)
∫
R
uK(u)du = 0 property of symmetry

So the kernel density estimator is defined, in its most general form, by

f̂X,n(x) = 1
n|H|

n∑
i=1

K(H−1(x−Xi)), x ∈ Rp (2.17)

where |H| denotes the determinant of the matrix H By taking up the above notations
in the definitions (2.15) and (2.16) the window matrix is the form H = hIp where Ip
designates the matrix p× p identity. In other words, we have chosen in each direction the
same window h = hi, i = 1, ..., p The kernel K can also be spherical, that is to say as

K(u) = W (‖U‖p),

where W denote a univariate kernel with compact support and‖.‖p is the Euclidean norm
on Rp However, when we base ourselves on the definition (2.15)the kernel support is rather
rectangular, reference is made to Scott (1992) p. 152-155, for more details on density and
regression estimation in the multivariate framework
Alternative estimators
The random denominator in (2.9) is a major drawback, especially for the study derivatives
of the estimator [NW]. Within the framework of the experimental device where the variables
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Xi are ordered, Gasser and Müller (1979) proposed the following estimator:

r̂GMn (x) =
n∑
i=1

{∫ si

si−1
K

(
x− t
h

)
dt× Yi

}
, (2.18)

with si = (Xi +Xi+1)/2, X0 = −∞ and Xn+1 = +∞ This estimator is linear at meaning
of definition 2.1.1, with a weight function without denominator and summable from (2.18),
the weight function is defined by

WGM
ni (x) =

∫ si

si−1
K

(
x− t
h

)
dt

Gasser and Müller’s [GM] estimator is a modification of an earlier version developed by
Priestley and Chao (1972) . For a complete study of the estimator [GM], we cite the work
of Müller (1988).
When the marginal density function fX is known, there is a slightly different from the
estimator [NW], proposed by (cf.Johnston (1979) and Johnston (1982)),

r̂Jn(x) = 1
nh

n∑
i=1

fX(Xi)−1YiK

(
x−Xi

h

)
/fX(x) (2.19)

The estimator r̂Jn(.)also refers to the experimental device with fixed effects because the
density function fX is known. The bias of the estimator is close to the estimator [NW] .
Following Wand and Jones (1995) , p. 152, we present the estimator

r̂∗n(x) = 1
nh

n∑
i=1

fX(Xi)−1YiK

(
x−Xi

h

)
, (2.20)

which has a better bias than the estimator [NW] or the estimator r̂Jn(x).The bias of the
estimator defined in (2.20) is equivalent to that of the locally linear estimator the restriction
of our presentation of regression estimators to the kernel method may be excused by the
following remark: two other important classes of estimators, the splines and the nearest
neighbors correspond to estimators with kernel constructed with particular windows, of the
form f−αX , 0 ≤ α ≤ 1(cf.Jennen-Steinmetz and Gasser (1988), for appropriate references).

2.3 Consistency of The Nadaraya Watson Estimator

The kernel regression estimator is therefore dependent on the choice of two parameters, the
window h and kernel K. We will see in the following sections that the crucial parameter
is the window to get good asymptotic properties. However, the kernel should not to be
neglected, it reduces the bias of our estimator by relying on the regularity properties of
the regression curve. In this section we will determine the conditions on the window and
the kernel necessary for the consistency of the estimator [NW]. We obtain the consistency
of the estimators of the type [NW], via the following biasvariance decomposition:

E
[(
r̂NWn (x)− r(x)

)2
]

= V ar
[
r̂NWn (x)

]
+
(
E
(
r̂NWn (x)− r(x)

))2
(2.21)
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We denote by L2→ respectively P→ norm convergence L2(respectively in probability) when
(2.21) tends to zero, it follows

r̂NWn (x)L2→r(x) which implies r̂NWn (x) P→r(x) (2.22)

In view of (2.22), a simple study of the criteria of convergence towards zero of the bias and
the variance above will specify the conditions necessary for the consistency of the estimator
[NW]. We also note that the loss characterized above is a very measure practice of the
performance of our estimator, it will be used to determine the asymptotically optimal
parameters.

2.3.1 Variance calculation

We begin the study of the estimator [NW] by calculating its variance and its expression
asymptotic see Blondin (2004). The kernel K is supposed to verify the hypotheses (K.1–4).
We note that (K.1) and (K.3) imply that K(·) is twice integrable . We ask, for convenience

σ2(x) = V ar(Y | X = x) = 1
fX(x)

∫
y2fX,Y (x, y)dy − (r(x))2

when this expression is well defined.

Proposition 2.3.1. we suppose E(Y 2) < ∞ At each point of continuity of functions
r(x),fX(x) and σ2(x) such as fX(x) > 0,

V ar
(
r̂NWn (x)

)
= 1
nh
×
(
σ2(x)
fX(x)

∫
R
K2(u)du

)
(1 + o(1)) (2.23)

where the term o(1) tend to 0 when h→ 0

Using Bochner’s lemma , we obtain easily

V ar
(
f̂X,n(x)

)
= 1

nh2

(
E
(
K2

(
x−Xi

h

))
− E

(
K

(
x−Xi

h

))2
)

= 1
nh

(∫
R
K2(u)fX(x− hu)− h

(∫
R
K(u)fX(x− hu)

)2
)

= 1
nh
fX(x)

∫
R
K2(u)du(1 + o(1)),

when h→ 0 let the function s(x) =
∫
y2fX,Y (x, y)dy we have

V ar (m̂n(x)) = 1
nh2

(
E
(
Y 2K2

(
x−Xi

h

))
− E

(
Y K

(
x−Xi

h

))2
)

= 1
nh

(∫
R
K2(u)s(x− hu)− h

(∫
R
K(u)r(x− hu)

)2
)

= 1
nh
s(x)

∫
R
K2(u)du(1 + o(1)),
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Similarly

IE
[(
f̂X,n(x)− E(f̂X,n(x))

)
(m̂n(x)− E(m̂n(x)))

]
= 1
nh
m(x)

∫
R
K2(u)du(1 + o(1)).

Let be the vector

An(x) =
(
f̂X,n(x)
m̂n(x)

)

and ∑(An(x)) its covariance variance matrix. It follows

∑
(An(x)) = 1

nh

(
fX(x) r(x)
m(x) s(x)

)∫
R
K2(u)du(1 + o(1))

Noting that

(
−m(x)

(fX(x))2
1

fx(x)

)( fX(x) r(x)
m(x) s(x)

) −m(x)
(fX(x))2

1
fx(x)

 = −s(x)
(fX(x))2 −

(m(x))2

(fX(x))3

We get

V ar (r̂n(x)) = 1
nh

(
−s(x)

(fX(x))2 −
(m(x))2

(fX(x))3

)∫
R
K2(u)du(1 + o(1)

= 1
nh
×
(
σ2(x)
fX(x)

∫
R
K2(u)du

)
(1 + o(1)).

Remark 4. In the asymptotic expression of the terms of variance of kernels estimators ,
we invariably find the quantity: ∫

R
K2(u)du = ‖K‖22. (2.24)

To ensure the finiteness of this integral, we can choose the kernel function K (·) with
boundary variation on R and compact support, noting that the latter assumptions clearly
imply (K.1–3)For asymptotic optimality, the variance minimal will be obtained by min-
imizing (2.24) along K in a certain class of kernels fixed In conclusion, if the window
hn satisfies the conditions hn −→ 0 and nhn −→ ∞ when n → ∞ the variance of the
estimator [NW] tends to zero.

Multidimensional extension
Let x and u be vectors of Rp The asymptotic variance has an expression similar to univariate
case. We recall that

r̂NWn (x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) × 1
{

n∑
i=1

K

(
x−Xi

h

)
6= 0

}
,

Where K : Rp → R the kernel function product of univariate kernel verifying (K.1–4).
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Proposition 2.3.2. Blondin (2004) We suppose IE(Y 2) <∞.so at each point of continuity
of functions m(x),fX(x) and σ2(x) such as fX(x) > 0, we have

V ar (r̂n(x)) = 1
nhp
×
(
σ2(x)
fX(x)

∫
R
K2(u)du

)
(1 + o(1)) (2.25)

Where the term o(1) tend to 0 when h→ 0 We obtain,

V ar
(
f̂X,n(x)

)
= 1
nh

[
fX(x)

∫
R
K2(u)du

]
(1 + o(1))

V ar (m̂n(x)) = 1
nh

[
s(x)

∫
R
K2(u)du

]
(1 + o(1))

The rest of the demonstration is similar to the univariate framework and will not be
presented by conciseness if the window hnsatisfies the conditions hn −→ 0 and nhpn −→∞
when n→∞ the variance of the multivariate estimator [NW] tends to zero.

2.3.2 Calculation of bias

Blondin (2004)
The treatment of bias is purely analytical and is essentially based on Taylor’s development
we must assume certain regularity conditions on the functions r(x) and fX(.) which will
determine the order of asymptotic bias as a function of the parameter smoothing h. The
estimator [NW] is in the form of a random quotient, it is why we generally use the following
approximation as a centering term

Ẽ(r̂NWn (x)) = E (m̂n(x))
E
(
f̂X,n(x)

) (2.26)

The formula (2.26) is easier to handle and allows in particular the linearization of the
deviation

d̃n(x) = r̂NWn (x)− Ẽ(r̂NWn (x))

we obtain

d̃n(x) = [m̂n(x)− E(m̂n(x))]× 1
E
(
f̂X,n(x)

) − (f̂X,n(x)− E(f̂X,n(x))
)
× m̂n(x)f̂X,n(x)

E
(
f̂X,n(x)

)
The proposition below demonstrated by Nadaraya (1989) (cf. p. 116-117, ) justifies the
choice of the centering term (2.26)

Proposition 2.3.3. When Y is bounded and nhn −→∞,

E(r̂NWn (x)) = Ẽ(r̂NWn (x)) +O((nh)−1) (2.27)

when E(Y 2) <∞ and nh2
n −→∞

E(r̂NWn (x)) = Ẽ(r̂NWn (x)) +O((n1/2h)−1) (2.28)
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We use the following identity

1
f̂X,n(x)

= 1
E
(
f̂X,n(x)

) − f̂X,n(x)− E
(
f̂X,n(x)

)
(f̂X,n(x))2

+

(
f̂X,n(x)− E

(
f̂X,n(x)

))2

f̂X,n(x)
(
E
(
f̂X,n(x)

))2

We multiply by mn(x) on both sides, then we pass to the expectation

E(r̂NWn (x)) = Ẽ(r̂NWn (x))−

[
[m̂n(x)− E(m̂n(x))]

[
f̂X,n(x)− E(f̂X,n(x))

]]
(
E
(
f̂X,n(x)

))2

+ E

m̂n(x)
[
f̂X,n(x)− E(f̂X,n(x))

]2
f̂X,n(x)

(
E
(
f̂X,n(x)

))2


= Ẽ(r̂NWn (x)) + an(x) + bn(x)(

E
(
f̂X,n(x)

))2

let s(x) =
∫
R
y2fX,Y (x, y)dy We calculate the asymptotic variance of m̂n(x) then f̂X,n(x)via

Bochn’s lemma

V ar(m̂n(x)) = 1
nh

∫
R
K2(u)s(x− uh)du− 1

n

(∫
R
K(u)r(x− uh)

)2

≈ 1
nh
s(x)

∫
R
K2(u)du.

V ar(f̂X,n(x)) = 1
nh

∫
R
K2(u)fX(x− uh)du− 1

n

(∫
R
K(u)fX(x− uh)

)2

≈ 1
nh
fX(x)

∫
R
K2(u)du.

Using the Cauchy-Schwarz inequality combined with the above formulas, we obtain

an(x) = O
( 1
nh

)
(2.29)

When the variable Y is bounded i.e |Y | ≤M for a certain constant M fixed, we note that
the estimator [NW] is also naturally bounded,

m̂n(x)
f̂X,n(x)

=

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) ≤

n∑
i=1

M ×K
(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) = M (2.30)

This last inequality (2.30) makes it possible to bounded bn(x),
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bn(x) ≤ M × IE
([
f̂X,n(x)− E(f̂X,n(x))

]2)
≈ M

nh
fX(x)

∫
R
K2(u)du = O

( 1
nh

)
(2.31)

The relations (2.29) and (2.31) entail (2.27). when E(Y 2) <∞ we have

bn(x) ≤ IE
(

max
1≤i≤n

|Yi|
[
f̂X,n(x)− E(f̂X,n(x))

]2)

≤
(

n∑
i=1

Y 2
i

)1/2

×
(
E
[(
f̂X,n(x)− E(f̂X,n(x))

)4
])1/2

=
√
n
(
E(Y 2)

)1/2
×O

( 1
nh

)
= O

( 1
n1/2h

)
(2.32)

The relations (2.29) and (2.32) imply (2.28), the demonstration is completed
We are now ready to state the asymptotic bias of the estimator [NW]. We will assume
the bounded variable Y, so that (2.27) is satisfied. We will see than the estimator bias
[NW], according to the regularity properties of the curve regression, is a functional of the
derivatives of regression.

Proposition 2.3.4. suppose that r(.) and fX(.) are C2(R) class and that the kernel K is
order 2 i.e. such that∫

R
K(u)du = 1,

∫
R
uK(u)du = 0 and

∫
R
u2K(u)du <∞

we have,when h −→ 0 and nh −→∞,

E(r̂NWn (x))− r(x) = h2

2 ×
[(
m′′(x) + 2m′(x)f

′
X(x)
fX(x)

∫
R
u2K(u)du

)]
(1 + o(1)) (2.33)

Remark 5. we note that the term o(1) in (2.33) above decompose as follows
(
O(h) +O((nh)−1)

)
from (2.27)

E(r̂NWn (x))− r(x) = (E [K((x−X)/h)])−1

×
(∫ 1

h
K

(
x− t
h

)
m(t)dt−m(x) +m(x)− r(x)

∫ 1
h
K

(
x− t
h

)
fX(t)dt

)
≈ h2

2 × (fX(x))−1 ×
(
m′′(x)− r(x)f ′′X(x)

)
×
∫
R
u2K(u)du

= h2

2

(
r′′(x) + 2r′′(x)f

′
X(x)
fX(x)

)
×
∫
R
u2K(u)du (2.34)

The sign ≈ above denotes an error of the order O(h) or o(1) from to the lemma of Bochner.
Proposition 2.3.3 and (2.34) imply (2.33). The term asymptotic bias reveals the derivative
of the functions m(x) and fX(.). This is due to the fact that the estimator [NW] performs
a least squares approximation locally constant values Yi . The estimator [NW] therefore
suffers from a high bias in the region where the derivative of the true regression function is
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large. The bias can also be large when f ′X/fX(x) is large. In comparison, under assumptions
similar to those of Proposition 2.3.4, the estimator [GM] has a better bias:

E(r̂NWn (x))− r(x) = h2

2 ×
[(
m′′(x)×

∫
R
u2K(u)du

)]
(1 + o(1)) (2.35)

The form of the above asymptotic bias is preferable from a statistical point of view, because
it does not depend on the density fX and its derivative. For example, if the curve of
regression is a straight line, the main bias term disappears whatever the form of the
marginal density fX . When the regression function admits additional regularity conditions,
it is possible to reduce the asymptotic bias of the estimator [NW] using a kernel superior
order. Let q be a fixed natural integer

Definition 2.3.5. The kernel K is called kernel of order q if it satisfies the following
conditions∫

R
K(u)du = 1,

∫
R
ujK(u)du = 0 j=1,...,q-1, and

∫
R
upK(u)du <∞

To illustrate the usefulness of higher order kernels, we consider the simple example density
estimation. The density kernel bias is written

E
(
f̂X,n(x)

)
− fX(x) =

∫
(fX(x− hu)− fX(x))K(u)du

Now suppose that the density fX(x) admits bounded derivatives up to the order q in the
vicinity of point x. So we get, via Taylor development,

E
(
f̂X,n(x)

)
− fX(x) =

q−1∑
k=1

(
hk

(−1)k
k! f

(k)
X (x)

∫
ukK(u)du

)
+O(hq) (2.36)

The formula (2.36) above clearly shows the importance of the nuclei of which the first
moments are zero: a kernel of order q reduces the bias to order O(hq) modulo some
regularity assumptions. In the multivariate framework, we have the following orthogonality
conditions,

∫
Rp

(
n∏
i=1

)
×K(u1, ...., up)du1....dup = 0 when

n∑
i=1

si = 1, 2, ..., q − 1 (2.37)

If (2.37) is verified and
∫
Rp
‖u‖q|K(u)|du <∞,

The multivariate kernel K(·) is called the multivariate kernel of order q, that is, all of its
moments up to the order q-1 are zero.
for convenience, we denote by [µj(K)] the moment of order k associated with the kernel
function K (·), when j ∈ N.

Proposition 2.3.6. [Blondin (2004)] suppose that r(.) and fX(.) are Cq(R) class and
that the kernel K is order 2 i.e. such that [µ0(K)] = 1 ,[µj(K)] = 0, 1 ≤ j ≤ q − 1, and
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[µj(K)] <∞ ,when h −→ 0 and nh −→∞, we have

E(r̂NWn (x))− r(x) = hq

q! ×
[(
r(q)(x) + q × rq−1(x)f

′
X(x)
fX(x)

)
[µj(K)]

]
(1 + o(1)) (2.38)

First, we consider the expectation of m̂n:

E (m̂n(x)) =
∫
R

∫
R
yK

(
x− t
h

fX,Y (t, y)dtdy
)

=
∫
R

∫
R
K

(
x− t
h

)
r(t)dt

=
∫
R
K(u)r(x− hu)du = r(x) + hq

q! r
(q)(x)× [µj(K)](1 + o(1))

then
E(f̂X,n(x)) = fX(x) + hq

q! f
(q)
X (x)× [µj(K)](1 + o(1))

The rest of the demonstration is similar to the demonstration of the proposition 2.3.4
Multidimensional extension : X ∈ R
We specify some notations necessary for the presentation of asymptotic bias in the multi-
variate frame. let f : Rp → Rany multivariate function. We designate by Q the operator
on f defined by,

Q [f ] (x) =
∫
Rp

[
uT (∇2f(x))u

]
K(u)du

where ∇2f(x) denotes the Hessian matrix of partial derivatives of order 2 of the function
f(·) at point x.

Proposition 2.3.7. when Y is boundary and nhp −→∞,

E(r̂NWn (x)) = Ẽ(r̂NWn (x)) +O((nhp)−1) (2.39)

suppose that r(.) and fX(.) are C2(Rp) class and that the kernel K is order 2 we have
h→ 0 and nhp −→∞,

E(r̂NWn (x))− r(x) = h2

2

(Q [m] (x)− r(x)Q [fX ] (x)
fX(x)

)
(1 + o(1)) (2.40)

We can also formulate the asymptotic bias (2.40) more explicitly but less compact

h2

2

 p∑
j=1

(
∂2

∂xj
m(x) + 2

(
∂

∂xj
m(x)

)(
∂

∂xj
fX(x)

)
1

fX(x)

)∫
Rp
u2
jK(u)du

 (2.41)

2.4 Asymptotic optimality and choice of parameters

In last section, we have established the necessary and sufficient conditions on the window
hn to get the consistency of the estimator [NW] hn −→ 0 and nhn −→∞ when n→∞We
now propose to determine the optimal window, within the meaning of a certain criterion
asymptotic efficacy. We will look for the window that minimizes the L2 loss associated with
the estimator [NW] by fixing the kernel K in a certain class. Then, we will be interested in
the optimality of the kernel. We denote by K[q] the class of kernels of order q with compact
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and bounded support. We suppose, throughout this section, that the kernel K ∈ K[q].
The bounded K hypothesis and with compact support is very classic in non-parametric
regression, it implies in particular the integrability of the various moments of the kernel
function K(·). Under the hypotheses of proposition 2.3.6, we have,

E(r̂NWn (x))− r(x) = hq

q! ×
[(
r(q)(x) + q × rq−1(x)f

′
X(x)
fX(x)

)
[µj(K)]

]
(1 + o(1))

= hq

q! × [b(x; q)] (1 + o(1)) (2.42)

Under the hypotheses of proposition 2.3.1, via (2.23), it follows

V ar(r̂NWn (x)) = 1
nh
×
(
σ2(x)
fX(x) [µ0(K2)]

)
(1 + o(1))

= 1
nh
× [υ2(x)](1 + o(1)). (2.43)

These asymptotic developments are recurrent in asymptotic optimization, because the
optimal window equilibrate bias and variance. There are basically two types of procedures
for the selection of the smoothing parameter: the local approach and the overall. In view
of punctual or uniform results, we will choose the appropriate procedure, that is to say
the local approach for results of the point convergence type and the global approach for
uniform convergence type results.
Local selection criteria: AMSE
We consider as efficiency criterion the famous mean square error or MSE (“mean
squared error”). From formulas (2.42) and (2.43), we can present the theorem specifying
the exact asymptotic behavior of the quadratic risk of the estimator [NW] r̂NWn (x) at point
x.

Theorem 9. Blondin (2004) Under the hypotheses of propositions 2.3.6 and 2.3.1, we
obtain,

[MSE]
(
r̂NWn (x)

)
= E

[(
(r̂NWn (x))− r(x)

)2
]

=
(
h2q

(q!)2 × [b(x; q)]2 + 1
nh
× [υ2(x)]

)
(1 + o(1)) (2.44)

from (2.42) and (2.43)

[MSE]
(
r̂NWn (x)

)
=

(
E
[(

(r̂NWn (x))− r(x)
)2
])2

+ V ar
(
(r̂NWn (x))

)
= h2q

(q!)2 × [b(x; q)]2 (1 + o(1)) + 1
nh
× [υ2(x)](1 + o(1)). (2.45)

From theorem 9 and formula (2.44), we get the expression of the error asymptotic quadratic
mean or AMSE (“asymptotic mean squared error”):

[MSE]
(
r̂NWn (x)

)
= h2q

(q!)2 × [b(x; q)]2 + 1
nh
× [υ2(x)] = [AMSE](h,K) (2.46)
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Note that the asymptotic quadratic risk (2.46) depends on the kernel K and the window
h associated with the estimator [NW]. We first assume the kernel K fixed.The optimal
window, within the meaning of the local criterion for minimizing the AEMS at point x, is
then obtained by minimizing From h the quantity (2.46), that is to say

hMSE
n,opt (x) = hMSE(K) = arg min

h
[AMSE](h,K)

the bandwidth hMSE(K) is solution of the following equation:

h2q

(q!)2h
2q−1 × [b(x; q)]2 + 1

nh2 × [υ2(x)] = 0

when [b(x; q)] 6= 0 we obtain

hMSE(K) = n−1/(2q+1)
(

(q!)2[υ2(x)]
2q ([b(x; q)])2

)1/(2q+1)

= n−1/(2q+1)

 q!(q − 1)!
(
σ2(x)
fX(x) [µ0(K2)]

)
2
(
r(q)(x) + q ×m(q−1)(x)f

′
X(x)
fX(x)

)2
[µq(K)]2


1/(2q+1)

(2.47)

the bandwidth hMSE(K) therefore asymptotically minimizes the MSE of the estimator
[NW] to point x (local criterion). After calculations, it follows

min
h

[AMSE](h,K) =
(

(q!)−2(q+1)/2q+1
((q − 1)!

2

)2q/2q+1
+
(
q!(q − 1)!

2

)−1/2q+1)
×

(
[υ2(x)]

)2q/2q+1
| [b(x; q)] |2/2q+1 n−2q/2q+1

To simplify our writing, we can consider the special case q=2, which corresponds to the
study frame where the nucleus is positive or of order 2 from (2.47), when q=2

hMSE(K) = n−1/5


(
σ2(x)
fX(x) [µ0(K2)]

)
(
m′′(x) + 2×m′(x)f

′
X(x)
fX(x)

)2
[µ2(K)]2


1/5

We get, as a result:

min
h

[AMSE](h,K) = 5
4

(
σ2(x)
fX(x)

)4/5 ∣∣∣∣m′′(x) + 2×m′(x)f
′
X(x)
fX(x)

∣∣∣∣2/5 [µ0(K2)]4/5[µ2(K)]2/5n4/5

For convenience, we introduce the notations:

G[q] =
(

(q!)−2(q+1)/2q+1
((q − 1)!

2

)2q/2q+1
+
(
q!(q − 1)!

2

)−1/2q+1)

C[K, q] = [µ0(K2)]2q/(2q+1)[µq(K)]2/(2q+1)

Corollary 1. We assume the hypotheses of Theorem 9 verified. We have, if r̂NWn (x) is
built with the window h = hMSE(K) (oracle estimator)
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lim
n→∞

n2q/2q+1E
[(

(r̂NWn (x))− r(x)
)2
]

= G[q]
∣∣∣∣m(q)(x) + q ×m(q−1)(x)f

′
X(x)
fX(x)

∣∣∣∣2/2q+1

×
(
σ2(x)
fX(x)

)2q/2q+1

C[K, q]

Remark 6. the random function r̂NWn (x) define in (2.11) with the window hMSE(K)is
not an estimator, stricto sensu, because it depends on the regression function at to estimate.
This type of function is called pseudo-estimator or oracle estimator in the literature. The
corollary above therefore has no interest in practice because it does not allow to build an
estimator. It is however possible to replace the unknown quantities by consistent preliminary
estimators.

The optimal bandwidth hMSE(K) allows to determine the optimal speed of convergence of
the quadratic risk (close to 1/n) when the kernel is fixed in the function class K[q] We are
now interested in the optimality of the kernel on K[q] It should be noted that the choice
of the kernel only has an impact on the limit constant, via C[K,q]. The problem of the
optimal choice of the K core is summarized as follows:

KMSE
opt = argminK∈K[q]

{
[µ0(K2)]2q/(2q+1)[µq(K)]2/(2q+1)

}
(2.48)

Note that the Epanechnikov kernel is a solution of the problem (2.48) when q=2 and the
support of the kernel [−1, 1]. We recall the definition of the Epanechnikov kernel

KE(u) = 3
4
(
1− u2

)
1{|u| ≤ 1}

which provides the minimum value C[KE , 2] = 34/55−6/5 We can then give the expression
of the corresponding optimal window:

hMSE(KE) = n−1/5

 15 σ
2(x)

fX(x)(
m′′(x) + 2×m′(x)f

′
X(x)
fX(x)

)


1/5

Global selection criterion: AMISE
Now, we are interested in the estimation of the regression function on an interval I ⊆ R
and the overall risk of the estimator [NW] over this interval. We introduce for this the
error mean integrated squared error (MISE),

[MISE]
(
r̂NWn (x)

)
= E

(∫
I

(
r̂NWn (x)− r(x)

)2
dx

)
=

∫
I
[MSE]

(
r̂NWn (x)

)
dx

=
∫
I
E
(
(r̂NWn (x)− r(x))2

)
dx

from Tonelli-Fubini theorem
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Theorem 10. Blondin (2004) Suppose the hypotheses of propositions 2.3.6 and 2.3.1

[MISE]
(
r̂NWn (x)

)
= n−1/(2q+1)

(
h2q

(q!)2

∫
I

([b(x, q)])2 dx+ 1
nh

[υ2(x)]dx
)

(1+o(1)) (2.49)

The optimal window, within the meaning of the overall criteria for minimizing AMISE
("asymptotic mean integrated squared error ”) over the interval I, is given by

hMISE
n,opt (x) = n−1/(2q+1)

(
q!(q − 1)!

∫
I [υ2(x)]dx

2
∫
I ([b(x, q)])2 dx

)1/(2q+1)

(2.50)

Again, the optimal window depends on unknown parameters and therefore cannot be
used in practice. It is proposed to remedy this obstacle via a reference method, the cross
validation, presented in the next section.

2.5 The cross validation

In this section, we assume the kernel K fixed, and we are only interested in the choice of
window h. We observed in the previous paragraphs that the efficiency of the estimator [N
W] is linked to the smoothing parameter, the window h. Choose the window in order to
equilibrate a stochastic term (the variance) and a deterministic term (the bias), if possible
independently of the regularity properties of the regression curve. In the previous section,
the optimal window which minimizes the integrated quadratic risk (MISE) is obtained
under specific regularity assumptions and then depends on quantities unknown, functional
of the distribution of the couple (X, Y). In order to build a non-oracle estimator that
minimizes the quadratic error, other methods must be used the most common of which
is called the cross-validation procedure. The main idea of cross validation consists in
minimizing, with respect to h, the estimate of a measurement of the MISE. The window h
is then not be deterministic, it depends on the observations, like plug-in methods which we
will talk about in the next paragraph.

Let (X,Y ), (X1, Y1), (X2, Y2),. . ., random variables i.i.d. with values Rp×R. We consider
kernel estimators, with random window (or “data-driven bandwidth ”) of the form,

ĥ = ĥn = hn {(X1, Y1), ..., (Xn, Yn), x} ∈ Hn, x ∈ Rp

When Hn denotes a subset of Rn+ (i.e., the area of variation ĥ ), let d(.,.) a certain
distance, used to define the risk, which will be used to measure the effectiveness of a some
m estimator of the regression function. In order to simplify the exposure of the cross
validation procedure, we will work with the regression estimator [NW], which will be noted
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r̂h to emphasize its dependence on h,

r̂h(x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) when
n∑
i=1

K

(
x−Xi

h

)
6= 0,

The window selection method is said to be asymptotically optimal by relative to the
distance d when we have

lim
n→∞

 d(r̂k, r)
inf
h∈Hn

d(r̂k, r)

 a.s= 1 (2.51)

Where the notation a.s= 1 indicates almost sure equality. Thereafter, we designate by ω(ů) a
positive and arbitrary weight function. The different distances considered in this section
are:
Quadratic Mean Error:

dM = (r̂, r) = 1
n

n∑
i=1

(r̂(Xi)− r(Xi))2 ω(Xi);

Integrated Quadratic Error

dI = (r̂, r) =
∫
Rp

(r̂(Xi)− r(Xi))2 ω(Xi)fX(x)dx;

Conditional Average Integrated Quadratic Error:

dC = (r̂, r) = IE (dI(r̂, r) | X1, ...., Xn) ;

Remark 7. Each of these dM , dI or dC error measures is decompose into one bias squared
term and variance term.

Now, we will present the procedure for selecting the random window ĥ for the distance dI .
We can decompose dI = (r̂, r) as follows

dI = (r̂, r) =
∫
Rp

(
r̂(X) − r(Xi)

)2
ω(Xi)fX(x)dx

=
∫
Rp
r̂2
h(x)fX(x)d(x)− 2

∫
Rp
r̂h(x)r(x)ω(X)fX(x)d(x)

+
∫
Rp
r2(x)ω(X)fX(x)d(x)

As the last integral is independent of h, to minimize the loss associated with the distance
dI as a function of h, it suffices to minimize∫

Rp
r̂2
h(x)fX(x)d(x)− 2

∫
Rp
r̂h(x)r(x)ω(X)fX(x)d(x) (2.52)

However, this is not practical in practice because the latter quantity depends on unknown
functions r(.) and fX(.). The classic method to get around this difficulty consists in
replacing these terms by their empirical versions. We notice that the second term of the
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integral ∫
Rp
r̂h(x)r(x)ω(X)fX(x)d(x) = E (r̂h(x)Y ω(X))

It follows as a natural estimator

1
n

n∑
i=1

(r̂i(x)Yiω(Xi))

where r̂i Is the estimator called “leave-one-out”, defined by

r̂i(x) =

∑
j 6=i

YjK

(
x−Xj

h

)
∑
j 6=i

K

(
x−Xj

h

)

The leave-one-out estimator is simply the [N-W] estimator built with the (n-1) random
couples (X1, Y1), ..., (Xi−1, Yi−1), (Xi+1, Yi+1), ..., (Xn, Yn) Likewise, it is possible to approx-
imate the first integral term of (2.52) by

1
n

n∑
i=1

(
r̂2
i (Xi)ω(Xi)

)
In short, it seems reasonable to choose the window h which minimizes the empirical version
of (2.52), ie h which minimizes:

1
n

n∑
i=1

(
r̂2
i (Xi)ω(Xi)

)
− 2
n

n∑
i=1

(r̂i(Xi)Yiω(Xi))

This last quantity is equal to

1
n

n∑
i=1

(
r̂2
i (Xi)− Yi

)2
ω(Xi)−

1
n

n∑
i=1

(Yi)2ω(Xi)

where the second term does not depend on h and therefore does not intervene in minimiza-
tion. The window selection criterion is reduced to: choose ĥ which minimizes

CV (h) = 1
n

n∑
i=1

(Yi − r̂i(Xi))2 ω(Xi). (2.53)

This method is well known in the statistical literature and is called a cross-validation
procedure. concerning the estimate non-parametric regression. The cross-validation
procedure can be interpreted as the best choice of h which makes r̂i(Xi) an efficient
estimator of Yi at meaning of (2.53). Under the assumptions (A.1–6), p. 1467-1468,Härdle
(1985), we have the theorem following

Theorem 11. The cross-validation procedure, choosing ĥ which minimizes CV(h), is
asymptotically optimal, in the sense of (2.51),with respect to the distances dM , dI and dC .
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2.6 Asymptotic normality

The first demonstration of the asymptotic normality of the estimator [NW] is due to
Schuster (1972) . We also refer to Theorems 1.3 and 1.4 p. 117-120 of Nadaraya (1989)
and to Theorem 4.2.1 p. 99 de Härdle (1990) , who propose other demonstration methods.
The kernel K is supposed to be bounded, compact and orderly 2. The window hn is chosen

Theorem 12. Suppose Y bounded or admitting a moment of order l > 2. The functions
fX(.) and r(x) are assumed to be twice continuously differentiable over R At each point of
continuity of σ2(x) such as fX(x) > 0,

(nh)1/2
(
r̂NWn (x)− r(x)

) L−→ N
(
B(x), υ2(x)

)
(2.54)

with
υ2(x) = σ2(x)

fX(x)

∫
R
K2(u)du (asymptotic variance),

and with

B(x) =
(
r′′(x) + 2r′(x)f

′
X(x)
fX(x)

)∫
R
u2K(u)du (asymptotic bias)

For a number d of points x1, ...., xd of continuity, we have,
{

(nh)1/2
(
r̂NWn (xi)− r(xi)

υ(xi)

)}d
i=1

L−→ Nd
(
B(xi)di=1, Id

)
Where Id denotes the d-dimensional identity matrix.

Multidimensional extension: X ∈ Rp

In order to properly state the theorem concerning asymptotic normality, we recapitulate
some essential hypotheses, related to the control of bias and variance in the multivariate
framework.
Let Vx be a neighborhood of point x. We assume the following conditions on the distribution
of the couple (X,Y):

(H1) All partial derivatives of order 2 of r(x) exist on Vx;

(H2) All partial derivatives of order 2 of fX(.) exist and are continuous on Vx furthermore
fX(u) > 0 for all u ∈ Vx;

(H3) the joint density fX,Y (u, y) is continuous on Vx×R , and all partial order derivatives
2 with respect to the components of the vector u exist and are continuous on Vx × R

(H4) In the multivariate framework, the kernel function K:Rp → R satisfied
K has a compact support such that

∫
Rp
K2(u)du <∞

K is order 2
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the window h = hn verify h→ 0 and nhp →∞ More precisely, for a bias-variance
equilibrate , we choose h of the order n−1/(4+p) We recall the expression of variance
and asymptotic bias of the estimator r̂NWn (x) via (2.25)

1
nhp
×
(
V ar(Y | X = x)

fX(x)

∫
Rp
K2(u)du

)
= 1
nhp

υ2(x)

from(2.40),
h2

2

(
Q[m](x)− r(x)Q[fX ](x)

fX(x)

)
= h2B(x)

Assuming the above hypotheses verified, it follows asymptotic normality in the multivariate
framework.

Theorem 13. Müller and Song (1993)

(nhp)1/2
(
r̂NWn (x)− r(x)

) L−→ N
(
B(x), υ2(x)

)

2.7 Estimation of regression by local polynomial method

The estimation of the regression function by the local polynomial method is based on a
simple generalization of the estimator [NW]. The main thrust of the approach locally poly-
nomial is to consider the problem of regression from the angle of least squares. Intuitively,
this approach is full of common sense, denoting that the regression function m(.) is itself a
solution to a least squares problem. Through convenience, we recall the definition of the
estimator [NW]: when K ≥ 0

m̂NW
N (x) =

n∑
i=1

YiK

(
x−Xi

h

)
n∑
i=1

K

(
x−Xi

h

) = r̂n(x)
f̂X;n(x)

We have, when K ≥ 0,
{r̂n(x)− m̂NW

N (x)f̂X;n(x)} = 0

The regression estimator m̂NW
N (x) can therefore be regarded as the solution of the following

weighted least squares problem:

arg min
θ∈R

n∑
i=1

(Yi − θ)2K

(
x−Xi

h

)
(2.55)

In other words, the estimator m̂NW
N (x) is obtained by a least approximation locally

constant squares. The principle of locally polynomial estimation consists by the local fit of
a polynomial of degree p to the data {(Xi, Yi) : 1 ≤ i ≤ n}. The aim of this section is to
present the locally polynomial estimators as well as their fundamental statistical properties.
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2.7.1 Construction and definition of the local polynomial estimator

Let p be a fixed natural number. We are looking to fit the polynomial

β0 + β1(.− x) + β2(.− x)2 + ...+ βp(.− x)p

to the data (Xi, Yi), via the weighted least squares method. First, we assume the existence
of the (p + 1)-th derivative of the regression function m(.) at point x. This assumption,
although difficult to verify in practice, is essential to theoretically validate the construction
of the locally polynomial estimator. We can approximate the regression function m(x) by
the locally a polynomial order p. It follows, via the Taylor expansion around point x,

m(z) ≈ m(x) +m′(x)(z − x) + m′′(x)
2 (z − x)2 + ...+ m(p)(x)

p! (z − x)p

≈
p∑
j=0

m(j)(x)
j! (z − x)j =

p∑
j=0

βj(z − x)j , (2.56)

when z is located in a neighborhood of point x. Now we locally fit the polynomial (2.56)
to the data {(Xi, Yi) : 1 ≤ i ≤ n}by the weighted least squares method with the weight
function K

(
.−x
hn

)
we must minimize with respect to the vectorβ = (β0, ..., βp)T ∈ Rp+1the

following quantity
n∑
i=1

Yi − p∑
j=0

βj(Xi − x)

2

K

(
Xi − x
hn

)
(2.57)

As with the estimator [NW], the parameters K and hn determine the shape and size of the
neighborhood around point x. be β̂ = (β̂0, ..., β̂p)T ∈ Rp+1the vector which minimizes the
expression (2.57)From the equality in (2.56)the k-th derivative m(k)(x) can therefore be
estimate by β̂k × k! ; for k = 0, 1, ....., p The following definition follows:

Definition 2. The statistics

m̂(k)
n (x; p) = β̂k × k!, 0 ≤ k ≤ p (2.58)

is the locally polynomial estimator of order p of the k-th derivative of the regression
m(k)(x),and noted estimator [LP](p) of m(k)(x).

When k=p=0, we find the estimator [NW], m̂n(x; 0) = m(k)(x) A particularly interesting
example is the case p=1 and k=0. The estimator m̂n(x; 1) of the regression function is
called the locally linear estimator and noted m̂LL

n (x). From to (2.57)and (2.58)it is
equal to β̂0 when β̂ = (β̂0, β̂1) designates the solution vector of the following least squares
equation:

arg min
β0,β1

n∑
i=1

(Yi − β0 − β1(Xi − x))2K

(
Xi − x
hn

)
More explicitly, the estimator [LL] is defined by:

m̂LL
n (x) = r̂n,0(x)f̂n,2(x)− r̂n,1(x)f̂n,1(x)

f̂n,0(x)f̂n,2(x)− f̂n,1(x)f̂n,1(x)
(2.59)
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where
f̂n,j(x) = 1

nhn

n∑
i=1

K

(
Xi − x
hn

)j
K

(
Xi − x
hn

)
, j = 0, 1, 2,

r̂n,j(x) = 1
nhn

n∑
i=1

YiK

(
Xi − x
hn

)j
K

(
Xi − x
hn

)
, j = 0, 1.

We will see, subsequently, that the estimators [LP] are greater than the estimators with
[NW] (2.9) and [GM] (2.18) nuclei in the framework of the random experimental set-up.
From to (Fan (1992)) [45], the estimator [LL] or [LP](1) has a better bias than the estimator
[NW] and better variance than the estimator [GM]. In addition, the estimator [LL] has
good minimax properties, it is the best estimator on the class of functions of bounded
second derivative regression we refer to the works of (Fan and Gijbels (1996)) for a complete
exposition of the properties of estimators [LP] with many statistical applications.

2.7.2 Bias and variance Calculation

Locally polynomial estimators arise from a least squares problem see Blondin (2004) It is
preferable to adopt a matrix notation in this context. Let Xx be the matrix associated
with our experimental device:

Xx = X =


1 (X1 − x) . . . (X1 − x)p

. . . . . .

. . . . . .

1 (Xn − x) . . . (Xn − x)p


n×(p+1)

We put

y =


Y1

.

.

Yn


n×1

and β =


β0

.

.

βp


(p+1)×1

denotes the transposition, for a vector or a matrix. We now assume the invertibility of the
square matrix, we denote by Wx the diagonal matrix n× n of weight:

Wx = W = diag

(
K

(
Xi − x
hn

))
The least squares problem (2.57) can be summarized as follows:

min
β∈Rp+1

(y −Xβ)TW (y −Xβ)

where the signT denotes the transposition, for a vector or a matrix we now assume the
invertibility of the matrix XTWX ∈Mp+1(R).

Remark 8. More generally, if the matrix XTWX ∈ Mp+1(R) is definite positive the
estimator [LP](p) belongs to the class of linear estimators (LL) below
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According to least squares theory, the solution vector is given by

β̂ = (XTWX)−1XTWy (2.60)

This last equality (2.60) allows you to easily formulate the conditional bias and variance of
the estimator β̂
We recall the definition of the vector β

β =
(
m(x), ..., m

(p)(x)
p!

)T
according to (2.56) we have X the set of variables Xi, 1 ≤ i ≤ n.we define
m = (m(X1, ...,m(Xn))T and r = m−Xβ the residual vector. It follows, according
to (2.60)

E
(
β̂ | X

)
= (XTWX)−1XTWm

= β + (XTWX)−1XTWr (2.61)

we have ∑
= diag

(
K2

(
Xi − x
hn

))
σ2(Xi) ∈Mn(R),

where σ2(Xi) = V ar
(
β̂ | X

)
The conditional variance-covariance matrix is

V ar
(
β̂ | X

)
= (XTWX)−1(XTΣX)(XTWX)−1 (2.62)

the expressions (2.61) and (2.62) are not directly usable, because they depend on unknown
quantities: the vector of residuals r and the matrix Σ Ruppert and Wand (1994) obtained
asymptotic expansions for the bias and variance of the locally polynomial estimator
m̂

(k)
n (x; p) defined in (2.58).

Before stating the theorem, we recall some useful notations. The moments of K and K2

are denoted by [µj(K)] =
∫
R
ujK(u)du and [µj(K2)] =

∫
R
ujK2(u)du with j ∈ N

S = ([µj+l(K)])0≤j,l≤p ∈Mp+1(R)

S̃ = ([µj+l+1(K)])0≤j,l≤p ∈Mp+1(R)

S̄ =
(
[µj+l+1(K2)]

)
0≤j,l≤p

∈Mp+1(Rp+1)

cp = ([µp+l(K)], ....., [µ2p+1(K)])T ∈ Rp+1

c̃p = ([µp+l(K)], ....., [µ2p+1(K)])T ∈ Rp+1

We designate by ek+1 = (0, ..., 0, 1, 0, ..., 0)T the (k+1)-th vector unit in Rp+1.

Theorem 2.7.1 (Ruppert and Wand (1994)). the reader can see also Blondin (2004)
P-30 We suppose fX(x) > 0 and the functions fX(.), mp+1(.) and σ2(.) continue in a
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neighborhood of point x. Window h satisfies h→ 0 and nh→∞. So we get

V ar
(
m̂(k)
n (x; p) | X

)
= (k!)2 × eTk+1S

−1S̄S−1 σ2(x)
nh1+2kfX(x) + oP

( 1
nh1+2k

)
(2.63)

When p-k is odd,

Biais
(
m̂(k)
n (x; p) | X

)
= (k!)2 × eTk+1S

−1 cp
(p+ 1)!m

(p+1)(x)hp+1−k + oP
(
hp+1−k

)
(2.64)

When p-k is even, assuming f ′X(x) > 0 and m(p+2) continues in a neighborhood of point x
as well as nh3 →∞. the asymptotic conditional bias is given by,

(k!)2 × eTk+1S̃
−1 c̃p

(p+ 2)!

(
m(p+2)(x) + (p+ 2)mp+1(x)f

′
X(x)
fX(x)

)
hp+2−k + oP

(
hp+2−k

)

From the above theorem, it is clear that there is a difference between the case p− k
even and the odd p− k case. When p− k even, the principal bias term in O(hp+1) vanishes
via the kernel symmetry K. On the other hand, when p-k odd, the asymptotic bias term
has a simple expression where there are no derivative terms such as f ′X(x). We notice that
when p = k = 0, we do indeed find the asymptotic bias of the estimator [NW]. Of a From a
practical and theoretical point of view, we will favor the odd p-k case (cf. the section 3.3 of
Fan and Gijbels (1996)), where the form of the bias is more appreciable from a theoretical
point of view. The best representation of the estimators [LP] is obtained by the method of
"kernels equivalent ", that is to say by rewriting asymptotically the estimators [LP] under
a more classical form close to the estimator [NW]. We introduce the following notation

Sn,j =
n∑
i=1

(Xi − x)jK
(
Xi − x
hn

)
(2.65)

we have Sn = XTWX the square matrix of dimension p+1 also defined by,

Sn = {Sn,j+1}0≤j,l≤p

From (2.60)

β̂k = eTk+1β̂ = eTk+1S
−1
n XTWy

=
n∑
i=1

Wn
k

(
Xi − x
hn

)
Yi (2.66)

We notice that

XTW =



K
(
X1−x
hn

)
. . . K

(
Xn−x
hn

)
. . . . .

. . . . .

. . . . .

(X1 − x)pK
(
X1−x
hn

)
. . . (Xn − x)pK

(
Xn−x
hn

)


(p+1)×n
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It follows

XTWy =



∑n
i=1 YiK

(
Xi−x
hn

)
.

.

.∑n
i=1 Yi(Xi − x)pK

(
Xi−x
hn

)


(p+1)×1

We finally get,

Wn
k

(
Xi − x
hn

)
= eTk+1S

−1
n ×



K
(
Xi−x
hn

)
.

.

.

(Xi − x)pK
(
Xi−x
hn

)


where

Wn
k (t) = eTk+1S

−1
n {1, th, ..., (th)p}TK(t) (2.67)

The estimator β̂k therefore has a conventional form, except that the kernel Wn
k depends

on the Xi points and their location. This intuitively explains why the locally polynomial
estimate adapts to different experimental devices as well as to the across the density
support. We now state a fundamental property estimators [LP](p).

Lemma 2.7.2. The weight function Wn
k (.)satisfies the following condition:

n∑
i=1

(Xi − x)qWn
k

(
Xi − x
hn

)
= δk,q 0 ≤ k, q ≤ p

Above δk,q denotes the Kronecker symbol.

n∑
i=1

(Xi − x)qWn
k

(
Xi − x
hn

)
= eTk+1S

−1
n

n∑
i=1

(Xi − x)q



1
(Xi − x)

.

.

.

(Xi − x)p


K

(
Xi − x
hn

)

= eTk+1S
−1
n eq+1 = eTq+1 × eq+1 = δk,q,

As a consequence of Lemma (2.7.2), the finite distance bias of the estimator β̂k is zero when
the function m(k)(.) to be estimated is a polynomial of degree less than or equal to p. This
property highlights one of the practical advantages of estimation by the local polynomials
for bias reduction, compared to the use of kernels high orders. Indeed, the bias is zero at
fixed n and not asymptotically. In others terms, the estimator [LP](p) has the property of
reproducing polynomials of degree q ≤ p (cf. proposition 1.12, p.32, (Tsybakov (2003))).
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We continue the investigation of the properties of the weight function Wn
k We note

that, when h→ 0 andnh→∞

Sn,j = E(Sn,j) +OP(
√
V ar(Sn,j))

= nhj+1
∫
R
ujK(u)fX(x+ hu)du+OP(

√
V ar(S2

n,j))

= nhj+1
(
fX(x)[µj ](K) + o(1) +OP(1/

√
nh)

)
= nhj+1fX(x)[µj ](K) (1 + oP(1))

via an application of Bochner’s lemma and the law of large numbers. It follows

Sn = nfX(x)HSH (1 + oP(1)) (2.68)

where H = diag1, h, ...., hp By substituting the formula (2.68)in the definition (2.67) of
Wn
k (.) we get

Wn
k (t) = 1

nhk+1fX(x)e
T
k+1S

−11, h, ...., hpK(t) (1 + oP(1))

It follows,

β̂k = 1
nhk+1fX(x)

n∑
i=1

YiK
∗
k

(
Xi − x
hn

)
(1 + oP(1)) (2.69)

with
K∗k(t) = eTk+1S

−11, h, ...., hpK(t) (2.70)

The kernel in (2.70) is called the "equivalent kernel" and is very useful for express the
asymptotic properties of the estimator [LP](p). The kernel (2.70) checks for following
moment conditions ∫

R
uqK∗k(u) = δk,q 0 ≤ k, q ≤ p (2.71)

The kernel equivalent K∗k(u) is therefore simply a kernel of order (k, p + 1) We denote it
accordingly K∗k,p(u) in order to underline the dependence in p. The conditional variance and
bias of the estimator m̂(k)

n (x; p) specified in (2.63) and (2.64) respectively, can be expressed
as a function of the equivalent kernel K∗k,p(.) ,leading us to the following asymptotic
expressions:

V ar
(
m̂(k)
n (x; p) | X

)
=
(

1
nh1+2k ×

σ2(x)
fX(x)

(
(k!)2

∫
R
K∗k,p(u)du

))
(1 + oP(1)) (2.72)

and

Biais
(
m̂(k)
n (x; p) | X

)
=
(
hp+1−k × m(p+1)(x)

(p+ 1)!

(
k!
∫
R
up+1K∗k,p(u)du

))
(1 + oP(1))

(2.73)
These asymptotic expansions are easily obtained by relying on the formulas (2.69) and
(2.71). The optimal window within the meaning of the local AMSE minimization criterion
is obtained at from (2.73) and (2.72)
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hMSE(x) = Ck,p(K)
(

σ2(x)
fX(x)(m(p+1)(x))2

)1/(2p+3)

n−1/(2p+3)

where

Ck,p(K) =
(

((p+ 1)!)2(2k + 1)[µ0({K∗k,p(u)}2)]
2(p+ 1− k)[µp+1({K∗k,p(u)})]

)1/(2p+3)

From these formulas, there are different procedures to choose the optimal window to
from the data are based on the minimization of the conditional MISE, defined by,

MISE
(
m̂(k)
n (x; p) | X

)
= E

[∫
R

(
m̂(k)
n (x; p)−m(x)

)2
fX(x)dx | X

]
The MISE-optimal window therefore has an asymptotic expression, from (2.72) and

(2.73),

hMISE(x) = C0,p(K)
( ∫

R σ
2(x)dx∫

R fX(x)(m(p+1)(x))2

)1/(2p+3)

n−1/(2p+3) (2.74)

Remember that plug-in type strategies are based on the replacement in (2.74) integrals
unknown by consistent estimators.
Finally, for a comparative state of the art of the various techniques for estimating the
regression function by the kernel method, we cite(Chu and Marron (1991)) and (Hastie
and Loader (1993)).
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CHAPTER 3

BASIC TOOLS OF EMPIRICAL
PROCESS AND FUNCTIONAL

VARIABLES

3.1 Basic Tools of Empirical Process

The theory of empirical processes is very useful because many statistics can be expressed
as functionals of the empirical distribution function noted Fn.
Let{Xi : i ≥ 1} a sequence of random variables i.i.d with values on X = R defined on a
probability space (Ω,A,P)More precisely, we can see the variable Xi as an application such
as Xi : Ω→ X for each i ≥ 1. The function of empirical distribution based on X1, ..., Xn

is defined by

Fn(t) = 1
n
]{Xi ≤ t : 1 ≤ i ≤ n} = 1

n

n∑
i=1
1 {Xi ≤ t} , t ∈ Rp

To insist on the fact that the function Fn is random, i.e. dependent on ω ∈ Ω , we can use
the following script:

Fn(t, ω) = 1
n

n∑
i=1
1 {Xi(ω) ≤ t} , t ∈ Rp

The theory on the empirical distribution function was primarily developed for p=1, i.e. for
real random variables. Reference is made to the article by Gänssler and Stute (1979) and
to the book by Shorack and Wellner (1986) for a complete exposition of the properties of
Fn in the univariate framework. We notice, first of all, that Fn is the distribution function
associated with the empirical measurement of the n-sample Xi : 1 ≤ i ≤ n, defined by

Pn = 1
n

n∑
i=1

δXi ,
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3.2. EMPIRICAL PROCESS INDEXED BY SETS

where δXi denote the Dirac measure at point x ∈ R. When we look at Fn as a discrete
random measure, it follows, for a given score function ϕ,

∫
Rp
ϕ(t)Fn(dt) = 1

n

n∑
i=1

ϕ(Xi)

Thus, for ϕ integrable, we clearly obtain,∫
Rp
ϕ(t)Fn(dt)→

∫
Rp
ϕ(t)F (dt) = E (ϕ(Y )) almost surely

Example 2. For the particular choice ofϕ(.) = h−pK(X−.h ) we find the multivariate kernel
estimator [PR] of the density

∫
Rp
ϕ(t)Fn(dt) =

n∑
i=1

K

(
x−Xi

h

)
.

The empirical process is defined by:

νn(t) =
√
n (Fn(t)− F (t)) (3.1)

3.2 Empirical process indexed by sets

Let U1, U2, ......a sequence of independent and uniformly distributed random vectors in
[0, 1]d. Let C the class Borelian on [0, 1]d. and let C any subclass of C We then introduce
the uniform empirical process indexed by the set C

νn(C) =
√
n (λn(C)− λ(C)) , C ∈ C

where λ denotes the Lebesgue measure on IRd and λn is the uniform empirical measure
indexed by C such as

λn(C) = n−1
n∑
i=1
1{Ui ∈ C} C ∈ C ,

3.3 weak convergence

Definition 3.3.1. Let (D, d) be a metric space, and let Pn and P be Borel probability
measures on (D,D), where D is the Borel σ-field on D , the smallest σ-field containing all
the open sets. Then the sequence Pn converges weakly to P, if and only if:∫

D
fdPn −→

∫
D
fdP

for all f ∈ Cb(D) Here Cb(D) denotes the set of all bounded, continuous, real functions on
D .

Theorem 3.3.2. Glivenko (1933) and Cantelli (1933)
If X1, X2, .... are i.i.d random variables with distribution F then: ‖Fn − F‖∞ → 0 almost
surly.
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Theorem 3.3.3. Donsker (1952)
If X1, X2, .... are i.i.d random variables with distribution F then:

√
n (Fn − F ) converge in

distribution to standard Brownian bridge G.1

3.4 Glivenko-Cantelli and Donsker classes

It is necessary to impose conditions on our functions classes if we wish to obtain uniform
convergence results. Here we being interested in at find the necessary conditions why a
functions class is either Glivenko-Cantelli or Donsker
For any probability measure ν and for p > 0, f ∈ F we note ‖f‖p,ν =

∫
|f(ω)|pdν(ω) the

norm LP (ν) and we recall also the function Φ is the envelope for the functions class if
|f(ω)| ≤ Φ(ω) almost surly for all element f ∈ F .
We use the condition in the brackets the class function will be Glivenko-Cantelli if

N[ ](ε,F , L1(ν)) <∞.

With the covering numbers 3.5.6 the condition sufficient so that F Glivenko-Cantelli is

sup
ν:‖Φ‖ν,1<∞

N(ε‖Φ‖ν,1 <∞,F , L1(ν)) <∞.

In the same way the condition sufficient so that F Donsker is∫ ∞
0

√
logN[ ](ε,F , L1(ν))dε <∞.

By the way so that F Donsker is∫ ∞
0

sup
ν:‖Φ‖ν,2<∞

√
logN[ ](ε,F , L2(ν))dε <∞.

Vapnik Červonenkis classes

Definition 3.4.1. Let C be a subset of X and {x1, ..., xn} be n points in the same space.
We say C ∈ C picks out Y ⊆ {x1, ..., xn} if C ∩ {x1, ..., xn} = Y We say that C shatters
points {x1, ..., xn} if every subset of {x1, ..., xn} is picked out by some set C ∈ C:

{{x1, ..., xn} ∩ C : C ∈ C} = 2{x1,...,xn}.

If exists some fnite n such that C shatters no set of size n, then we say C is a VC-class of
sets.The smallest such n is called the VC-index of C, denoted by V(C).

The interest of these classes in the following result it gives us an exponential boundary of
the covering number see(Van der Vaart and Wellner (1996)) for the VC-classes of functions

1A standard Brownian bridge is a continuous stochastic process (G(t) : 0 ≤ t ≤ 1) such that G(t) =
B(t)− tB(1) where B is a standard Brownian motion.
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F an envelope Φ we have for all probability measures ν any p ≥ 0

sup
ν:‖Φ‖ν,p<∞

N(ε‖Φ‖ν,1 <∞,F , Lp(ν)) < KV (F )(16e)V (F )ε−p(V (F ))−1,

where K is constant universal and 0 < ε < 1.
So if Φ integrable the VC-class will be also Glivenko-Cantelli class while if Φ integrable
square VC-class will be Donsker moreover the VC function classes has many very useful
stability properties, we return the reader to Van der Vaart and Wellner (1996) for more
details on VC-class and entropy conditions.

3.5 Basic Tools of functional variables

In this section we give some principal definitions and tools that we used to solve our
problems related by functional variables.

3.5.1 Introduction

There is a close connection to traditional statistics where usually the properties of a
random variable or a multivariate random variable is studied. During the last three decades
Functional data analysis (FDA) became a popular tool to handle data entities that are
random functions. Usually, discrete and noisy versions of them are observed. Oftentimes,
these entities are highdimensional spatial objects,It should also be mentioned that the
progress made in the functional data processes have made it possible to offer the possibility
to statisticians to have more and more often observations of so called functional variables,
i.e. curves These data are modeled as being realizations of a random variable taking its
values abstract space or possibly infinite dimension.

3.5.2 Functional variables

Nonparametric statistics have been developed intensively where the variable takes values
in an infinite dimensional space which is called functional variable has received increasing
interests in recent literature this type of variable is found in different fields, such meteorology,
quantitative chemistry, biometrics, econometrics, nonparametric statistics in the functional
context took a lot of attention currently in fact hundreds of Books and papers have been
published in this framework last decade.

Definition 3.5.1. A random variable X is called functional variable (f.v.) if it takes values
in an infinite dimensional space (or functional space ) An observation x of X is called
functional data.

3.5.3 Nonparametric Statistics for Functional Data

Traditional statistical methods fail as soon as we deal with functional data. Indeed, if for
instance we consider a sample of finely discretized curves, two crucial statistical problems
appear. The first comes from the ratio between the size of the sample and the number of
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variables (each real variable corresponding to one discretized point). The second, is due to
the existence of strong correlations between the variables and becomes an ill-conditioned
problem in the context of multivariate linear model. So, there is a real necessity to
develop statistical methods/models in order to take into account the functional structure
of this kind of data. Most of existing statistical methods dealing with functional data
use linear modelling for the object to be estimated. Key references on methodological
aspects are those by Ramsay et Silverman (1997) and Ramsay and Silverman (2005a) ,
while applied issues are discussed by Ramsay et Silverman (2002) and implementations
are provided by Clarksonet al (2005). Note also that, for some more specific problem,
some theoretical support can be found in Bosq (2000). On the other hand, nonparametric
statistics have been developped intensively. Indeed, since the beginning of the sixties,
a lot of attention has been paid to free-modelling (both in a free-distribution and in a
free-parameter meaning) statistical models and/or methods. The functional feature of
these methods comes from the nature of the object to be estimated (such as for instance a
density function, a regression function, ...) which is not assumed to be parametrizable by a
finite number of real quantities. In this setting, one is usually speaking of Nonparametric
Statistics for which there is an abundant literature. For instance, the reader will find in
Härdle (1990) a previous monograph for applied nonparametric regression, while Schimek
(2000) and Akritas and Politis (2003) present the state of the art in these fields. It
appears clearly that these techniques concern only classical framework, namely real or
multidimensional data. However, recent advances are mixing nonparametric free-modelling
ideas with functional data throughout a double infinite dimensional framework see Ferraty
and Vieu (2003), Demongeot et al. (2017),Naceri (2016),Lian (2011), Yanget al. (2014)
among other.

Definition 3.5.2. Let Z a random variable valued in some infinite dimensional space F
and let φ be a mapping defined on F and depending on the distribution of Z. A model for
the estimation of φ consist in introducing some constraint of the from

φ ∈ C

the model is called a functional parametric model for estimation of φ if C is indexed by
finite number of elements of F.Otherwise, the model is called a functional nonparametric
model.

3.5.4 Functional data

One never observes an integral function over its entire trajectory. This would require
a measuring instrument with an in- ternal recording speed. Even the fastest quotes on
the fully computerized financial markets are spanned by a few milliseconds. When the
functional data arrive they are for these reasons always in vector form. Thus we shall
not observe, for example X(t) ∀ t but we shall have [X(t1), X(t2), ..., X(tp)] where the tj
constitute a discretization grid. From the phenomenon studied p can vary between several
units and several million. This type of data is not new and has been studied for a long
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time using multivariate techniques (seeing X as a random vector in Rp to continue the
previous example). But there are two problems.
-If the frequency of discretization of the curves is high (i.e. if p is large) we can find
ourselves in situations where the size of X is of the order or even greater than the size of
the sample itself. This situation can pose prohibitive problems both from the theoretical
point of view and from the numerical aspects. This problem is common with that of many
problems of statistics in large dimensions.
-By treating X as a vector, we completely lose its true nature, that of process in continuous
time or more generally of function. The derivation operation, for example, does not make
sense in this context. It is logical then to ask the question of alternative methods in which,
by failing to grasp X (t) ∀ t, one could be satisfied with an approximation X̃ which would
be a real function.

Some examples of functional data

The statistic for functional data or functional data analysis studies observations which are
not real or vector variables but random curves.
Examples:

• The temperature curve recorded at a given point on the globe is a completely random
continuous process. If the temperature is observed during N days it may be interesting
to cut out the starting curve on N curves which plot the temperature for each of the
observation days. Each of these daily curves can then be seen as an element of a
sample of size N constituted of functional data

• Currently, experiments are carried out on the INRA campus to study the growth of
maize plants from different varieties and subjected to explicit conditions, Different
errors. For each maize plant the measuring instruments collect a function which is
indeed random (it depends on the varietal of maize, experimental conditions and
other Fluctuations ...)

In the two preceding examples the random curves depend on time but the situation
may be different. The spectrometric analysis of the materials (which aims to deduce
physicochemical properties by examining a light spectrum from the material).Also produces
random curves indexed by a wavelength (and more by time).

Functional Datasets

Since the middle of the nineties, the increasing number of situations when functional
variables can be observed has motivated different statistical developments, that we could
quickly name as Statistics for Functional Variables (or Data). We are determinedly part
of this statistical area since we will propose several methods involving statistical functional
sample X1, ...,Xn Let us start with a precise definition of a functional dataset.

Definition 3.5.3. A functional dataset χ1, ..., χn is the observation of n functional variables
X1, ...,Xn identically distributed as X .
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This definition covers many situations, the most popular being curves datasets. We will not
investigate the question of how these functional data have been collected, which is linked
with the discretization problems. According to the kind of the data, a preliminary stage
consists in presenting them in a way which is well adapted to functional processing. If the
grid of the measurements is fine enough, this first important stage involves usual numerical
approximation techniques (see for instance the case of spectrometric data presented in
Ferraty and Vieu (2006) . In other standard cases, classical smoothing methods can be
invoked (see for instance the phonemes data and the electrical consumption curves discussed
inFerraty and Vieu (2006). There exist some other situations which need more sophisticated
smoothing techniques, for instance when the repeated measures per subjects are very few
(sparse data) and/or with irregular grid. This is obviously a parallel and complementary
field of research but this is far from our main purpose which is nonparametric statistical
treatments of functional data. From now on, we will assume that we have at hand a sample
of functional data.

Some Fields for application of functional data:

In terms of applications (in imagery, agro-industry, geology, econometrics, ...), We present
below some concrete examples:
Study of the El Niño phenomenon
It is a data set from the study of a Quite important climatological phenomenon. This
phenomenon is commonly called El Niño It is a great sea current which occurs in an
exceptional way.(on average one Twice a decade) along the Peruvian coast at the end
of winter. This current causes global climatic disruption. The data set is consisting of
monthly ocean surface temperature readings 1950 in an area in the north of Peru (co-
ordinates 0 − 10◦ South, 80 − 90◦ West) in which the El Niño sea current can appear.
These data and their are available on the web site of the American climate forecast center:
http: //www.cpc.ncep.noaa.gov/data/indices/. It should be noted that the evolution of
temperatures over time is actually a continuous phenomenon. The number of measurements
allows to take into consideration the functional nature of the data (cf. Figure 3.1 ). From
these data, we can be interested in the prediction of the evolution of the phenomenon from
data collected in previous years.

In animal Biology :
studies on the laying of Mediterranean flies have been carried out and summarized by
curves giving, for each fly, the quantity of eggs laid as a function of time (cf. Figure 3.2)
In Biology:
for the study of variations in growth curves (cf. Rao, 1958 and Figure 3.3), and more
recently, for the study of variations in the angle of the knee during walking (cf.Ramsay et
Silverman (2002)). Note that a huge amount of functional data is product and asks only
to have the adequate methodology for its treatment, in particular mass spectrometric data
(cf. for cancer Figure 3.4).
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Figure 3.1: The curves corresponding to the current El Niño

Figure 3.2: A curve of the number of daily eggs laid by flies
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Figure 3.3: Curves growth

Figure 3.4: Mass spectrometric curves on cancer cells
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3.5.5 Semi-metric space and Small Ball Probabilities

Semi-metric space

To study data it is often to have a notion of distance between them. Its well known that in
finite dimension all metrics are equivalent this in no longer the case in infinite dimension,
which is why the chose of the metric (and therefore of associated topology ) is even more
crucial for the study of functional random variables than it is in multivariate statistics.In
addition to available metrics, it is often interesting to consider semi-metrics

Definition 3.5.4. d is a semi-metric on some space F as soon as:

1. ∀x ∈ F, d(x, x) = 0.

2. ∀(x, y, z) ∈ F × F × F, d(x, y) ≤ d(x, z) + d(z, y).

Allowing a wider range of possible topologies that can be chosen depending on the nature
of the data and the problem under consideration. this is why we have chosen in thesis
to consider and study functional variable defined as random variables with values in
semi-metric space (E , d) of infinite dimension. A part from allowing the modeling of more
general phenomena, another interest of using a semi-metric rather than a metric is that
it can constitute an alternative to the problems posed by large data dimension.Indeed,
We can take a semi-metric defined from a projection of our functional data in space of
smaller size than by performing in functional principal component analysis of our data
(Besse and Ramsay (1986),Yao and Lee (2006)) or by projecting them on a finite basis
(wavelets,spline .......)this reduce the size of the data and increase the speed of convergence
of the methods used while preserving the functional nature of the data .We can choose the
basis on which we project based on the knowledge we have of nature of functional variable.
For example wa can choose the fourier basis if we assume that the functional variable
observed is periodic we can refer to Ramsay et Silverman (1997), Ramsay and Silverman
(2005a) for more complete discussion of the value of using different approximation methods
by projection of functional data. Further discussion of the value of using different types
of semi-metric is made in Ferraty and Vieu (2006) especially in Section (3.4).It can be
remember that the choice of the semi-metric makes it possible both to take account of
more varied situation and to be able to circumvent the scourge of the dimension.This
choice,however;should not be made lightly but taking into account the nature of the data
the and problem under study .

Small Ball Probabilities

The curse of dimensionality is well known phenomenon in nonparametric regression on
multivariate variable see Stone (1982), in multivariate nonparametric regression,convergence
rates (for the dispersion part) are expressed in terms of hdn.In the functional case we adopt
more general concentration notations called small probabilities and express our asymptotic
results in function of these quantities, small ball probabilities are defined by:

φ(hn) = P(X ∈ B(x, h)) (3.2)
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the way they decrease to zero have a great influence on the convergence rate of the kernel
estimator. In the case of finite dimension spaces, that is E = Rd it can be seen that
φ(hn) = C(d)hdl(x) + o(hd),where C(d)is the volume of the unit ball in Rd.Furthermore,
in infinite dimensions there exist many examples fulfilling the decomposition above. we
quote the following (which can be found in Ferraty et al. (2007) ):

1. φ(hn) = l(x)hυ for some υ > 0 with τx(s) = sυ;

2. φ(hn) = l(x)hυ exp(−Ch−p) for some υ > 0 and p > 0 with τx(s) is the Dirac’s
function;

3. φ(hn) = l(x) |ln(h)|−1 with τx(s) = 1]0,1](s) the indicator function in ]0, 1].

This notion of small ball probabilities will play a major role both from theoretical and
practical points of view. Because the notion of ball is strongly linked with the semi-metric
d, the choice of this semi-metric will become an important stage. Note that the rates of
convergence of our nonparametric functional estimates will be systematically linked with d
through the behaviour, around 0, of the small ball probability function φ(hn) .It exists
in the literature a fairly large number of probabilistic results that study the way where
these probabilities of small balls tend to 0 when d is a norm (see for example, Li and Shao
(2001), Lifshits et al. (2006) and Gao et Li (2007)). We can also refer to the work of
Dereich (2003) ( Chapter 7) which is devoted to the behavior of probabilities of small balls
whose centers are random. Through this work we can see, for example, that in the case of
non-smooth processes such as motion Brownian or the Ornstein-Uhlenbeck process, these
probabilities of small balls are exponential form (with respect to hn)and that consequently
the speed of convergence of our estimators is in power of ln (n) (Ferraty et al. (2006),
paragraph 5 and Ferraty and Vieu (2006a), paragraph 13.3.2, for further discussion on
this topic) Moreover the choice of the semi-metric is expected to be a crucial point as long
as we focus on the applied aspects.

3.5.6 Kernel functions

We will consider only two kinds of kernels for functional variables

Definition 3.5.5.

i) A function K from R into R+ such that
∫
K = 1 is called a kernel of type I if there exist

two real constants 0 < C1 < C2 <∞ such that:

C11[0,1] ≤ K ≤ C21[0,1].

ii)A function K from R into R+ such that
∫
K = 1 is called a kernel of type II if

its support is [0, 1] and if its derivative K ′exists on [0, 1] and satisfies for two real
constants −∞ < C2 < C1 < 0:
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C2 ≤ K ′ ≤ C1.

3.5.7 Topological considerations

Entropy

Definition 3.5.6. Let (H, d) be a semimetric space then the ε-covering number N(ε,H, d)is
defined as the smallest number of balls of radius ε required to cover H. The ε-entropy
number is H(ε,H, d) = logN(ε,H, d).

Definition 3.5.7. Let (H, d) be a semimetric space.If l,u ∈ H,then the bracket [l, u] =
{f ∈ H : l(x) ≤ f(x) ≤ u(x)∀x}defines a subset of functions squeezed pointwise between
l and u. We call d(l, u) the size of the bracket.The ε-bracketing number NB(ε,H, d) is
defined as the smallest number of brackets of size at most ε required to cover H i.e.

NB(ε,H, d) = inf
{
n : ∃l1, u1, ..., ln, un s.t.

n⋃
i=1

[li, ui] = H and d(ln, un) ≤ ε
}

The ε-

bracketing entropy number is HB(ε,H, d) = logNB(ε,H, d).

The purpose of this section is to emphasize the topological components of our study.
Indeed,as indicated in Ferraty and Vieu (2006), all the asymptotic results in nonparametric
statistics for functional variables are closely related to the concentration properties of
the probability measure of the functional variable X. Here,we have moreover to take into
account the uniformity aspect. To this end,let SF be a fixed subset of H ; we consider the
following assumption:

∀x ∈ SF , 0 < CFx(h) ≤ P(X ∈ B(x, h)) ≤ C′Fx(h) <∞

We can say that the first contribution of the topological structure of the functional space
an beviewed through the function Fx controlling the concentration of the measure of
probability of the functional variable on a small ball. Moreover, for the uniform consistency,
where the main tool is to cover a subset SF with a finite number of balls, one introduces
an other topological concept defined as follows:

Some examples

Kolmogorov’s entropy

Definition 3.5.8. Let SF be a subset of a semi-metric space H, and let ε > 0 be given. A
finite set of points x1, x2, ..., xN in F is called an ε-net for SF if SF ⊂

⋃N
k=1 B(xk, ε)

The quantity ψSF = log(Nε(SF )) , where Nε(SF ) is the minimal number of open balls in
F of radius ε wich is necessary to cover SF ,is called the Kolmogorov’s ε-entropy of the set
SF

This concept was introduced by Kolmogorov in the mid-1950’s see (Kolmogorov and
Tikhomirov (1959)) and it represents a measure of the complexity of a set, in sense that,
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high entropy means that much information is needed to describe an element with an
accuracy ε. Therefore, the choice of the topological structure (with other words, the choice
of the semi-metric) will play a crucial role when one is looking at uniform (over some subset
SF ) of F asymptotic results. More precisely, we will see thereafter that a good semi-metric
can increase the concentration of the probability measure of the functional variable X as
well as minimize the ε-entropy of the subset SF . In an earlier contribution (see, Ferraty
et al. (2006)) we highlighted the phenomenon of concentration of the probability measure
of the functional variable by computing the small ball probabilities in various standard
situations. We will devote Section 3.5.7 to discuss the behaviour of the Kolmogorov’s
ε-entropy in these standard situations. Finally, we invite the readers interested in these
two concepts (entropy and small ball probabilities) or/and the use of the Kolmogorov’s
ε-entropy in dimensionality reduction problems to refer to respectively, Kuelbs and Li
(1993) or/and Theodoros and Yannis (1997). We will start Example 3 by recalling how
this notion behaves in unfunctional case (that is when F = RP ). More interestingly (from
statistical point of view) is Example 4 since it allows to construct, in any case, a semi-metric
with reasonably "small" entropy.

Example 3. (Compact subset in finite dimensional space) :
A standard theorem of topology guaranties that for each compact subset SF of RP and for
each ε > 0 there is a finite ε-net and we have for any ε > 0,

ψSF (ε) ≤ Cp log(1/ε).

More precisely, Chate and Courbage (1997) have shown that, for any ε > 0 the regular
polyhedron in RP with length r can be covered by ([2r√p/ε] + 1) balls, where [m] is the
largest integer which is less than or equal to m. Thus, the Kolmogorov’s ε-entropy of a
polyhedron Pr in RP with length r is

∀ε > 0, ψPr(ε) ∼ p log([2r√p/ε] + 1).

Example 4. (Compact subset in a Hilbert space with a projection semimetric):
The projection-based semi-metrics are constructed in the following way. Assume that
H is a separable Hilbert space, with inner product < ., . > and with orthonormal basis
{e1, ..., ej , ...}, and let k be a fixed integer, k > 0. As shown in Lemma (13.6) of Ferraty
and Vieu (2006), a semi-metric dk on H can be defined as follows

dk(x, x′) =

√√√√ k∑
i=1

< x− x′, ej >2. (3.3)

Let χ be the operator defined from H into Rk by

χ(x) = (< x, e1 >, ..., < x, ek >),

and let deucl be the euclidian distance on Rk, and let us denote by Beucl(., .) an open ball
of Rk for the associated topology. Similarly, let us note by Bk(., .) an open ball of H for
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the semi-metric dk. Because is a continuous map from (H, dk) into (Rk, deucl), we have
that for any compact subset S of (H, dk), χ(S) is a compact subset of Rk. Therefore, for
each ε > 0 we can cover χ(S) with balls of centers zi ∈ Rk:

χ(S) ⊂
d⋃
i=1

Beucl(zi, r), with drk = C for some C > 0 (3.4)

For i = 1, ..., d, let xi be an element of H such that χ(xi) = zi. The solution of the equation
χ(x) = zi is not unique in general, but just take xi to be one of these solutions. Because of
(3.3), we have that

Mχ−1(Beucl(zi, r)) = Bk(xi, r) (3.5)

Finally, (3.4) and (3.5) are enough to show that the Kolmogorov’s ε-entropy of S is

ψS(ε) ≈ Ck log
(1
ε

)
.

3.5.8 Some Models Conditional In Non-parametric Statistics Functional

Let (X,Y ) a copies (Xi, Yi)i=1,...,n couples with the same law of random variables with
values in E ×R , where E the functional space equipped by semi-metric dE(., .), defines the
regression function of ψ(Y ) given X = x by:

G(x) = IE(ψ(Y ) | X = x) (3.6)

whereψ a known measurable function (see Ferraty and Vieu (2006)),
The Kernel estimator of the regression function G proposed by Nadaraya (1964) and
Watson (1964) is :

Gn(ψ(Y ), x) =

n∑
i=1

ψ(Y )K
(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) ,

Here K(.) is the kernel function values R and hn is the smoothing parameter.
The first results in nonparametric functional statistics were developed by Ferraty and Vieu
(2000)concern the estimation of the function regression with explanatory variable of fractal
dimension. They established the almost complete convergence of a kernel estimator of this
model non parametric in the i.i.d. case Drawing inspiration from recent developments of
the theory of probability of small balls,Ferraty and Vieu (2004) have generalized these
last results to the α-mixing case and they exploited the importance of non-parametric
modeling of functional data in applying their study to curve discrimination and forecasting.
In the framework of α-mixing functional observations, Masry (2005) showed the asymptotic
normality of the estimator of Ferraty and Vieu (2004) for the regression function. Note
that the function( 3.6) can group several non-parametric models.
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By choosing ψ(Y ) = 1{Y ∈C}

G(x) = E
(
1{Y ∈C} | X = x

)
= P

(
1{Y ∈C} | X = x

)
. (3.7)

The Nadaraya-Watson Estimator of The Conditional Distribution Function G(C, x) where
C measurable set in the collection subsets C by:

Gn(x) =

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (3.8)

where K(.) is a real-valued kernel function on IR and hn is a smoothing parameter The
estimation of the conditional distribution function in a functional framework was introduced
by Ferraty et al. (2006) . They constructed a double kernel estimator for the conditional
distribution function and specified the almost complete convergence rate of this estimator
when the observations are independent and identically distributed, The case of α-mixing
observations was studied by Ferratyet al. (2005).
The Estimator of the Conditional Density Function f given by

f̂n(x) = 1
nφ(hn)

n∑
i=1

K

(
dE(x,Xi)

hn

)
(3.9)

where K(.) is a real-valued kernel function on IR and hn is a smoothing parameter. The
estimation of the conditional density function and its derivatives, in functional statistics,
was introduced by Ferraty et al. (2006). These authors have obtained almost complete
convergence in the case i.i.d. Since this article, an abundant literature has developed on
the estimation of conditional density and its derivatives, in particular to use it to estimate
the conditional mode. Indeed, by considering α-mixing observations, Ferraty et al. (2005)
established the almost complete convergence of a kernel estimator of the conditional mode
defined by the maximizing random variable conditional density.
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CHAPTER 4

SOME ASYMPTOTIC PROPERTIES OF
THE CONDITIONAL SET-INDEXED
EMPIRICAL PROCESS BASED ON
DEPENDENT FUNCTIONAL DATA

This chapter is the subject of publication to appear in :International journal of
mathematics and statistics.

The purpose of this chapter is to establish the invariance principle for the conditional set-indexed
empirical process formed by strong mixing random variables when the covariates are functional.
We establish our results under some assumptions on the richness of the index class C of sets in
terms of metric entropy with bracketing. We apply our main result for testing the conditional
independence, that is, testing whether two random vectors Y1 and Y2 are independent, given X.

The theoretical results of the present paper are (or will be) key tools for many further
developments in functional data analysis.

4.1 Introduction

The theory of empirical processes is one of the major continuing themes in the historical
development of mathematical statistics and it has many applications ranging from pa-
rameter estimation to hypothesis testing, its history theory dates back to the 1930’s and
1940’s there has been a great deal research works. The asymptotic properties of empirical
processes indexed by functions have been intensively studied during the past decades (see,
e.g., Van der Vaart and Wellner (1996) or Dudley (1999) for self-contained, comprehensive
books on the topic with various statistical applications). Vapnik and Červonenkis (1971)
characterize, modulo measurability, the classes C of sets for which the Glivenko-Cantelli

71



4.1. INTRODUCTION

theorem holds, in the independent framework. In this setting many papers were published,
we cite among many others Dudley (1978), Giné and Zinn (1984), Le Cam (1983), Pollard
(1982) and Bass and Pyke (1984). Dudley (1978) studied the empirical process indexed
by a class of measurable sets, that is, he considered F = {1A(·) : A ∈ A}, where A is a
suitable subset of the Borel σ-algebra. He obtained several very useful results that go far
beyond Donsker’s theorem, more precisely, he stated different assumptions under which
weak convergence to a Gaussian process holds, including a so-called metric entropy with
inclusion. Generalizing this idea, Ossiander (1987) introduced L2-brackets to approximate
the elements of F . These brackets allow to study larger classes of functions as long as
a metric entropy integrability condition is satisfied, see Ossiander (1987), Theorem 3.1.
To deal with random variables such as time series that are dependent, one naturally asks
whether results obtained under the independence assumption remain valid. However, a
bracketing condition under strong mixing was stated by Andrews and Pollard (1994).
Doukhan (1995) studied the function-indexed empirical process for β-mixing sequences.
The case of Gaussian long-range dependent random vectors was already handled by Arcones
(1994), Theorem 9. The assumption on the bracketing number therein is very restrictive and
was considerably improved later. In this lines of research in different type of mixing, we may
cite Eberlein (1984), Nobel and Dembo (1993) and Yu (1994). The extension of the above
exploration to conditional empirical processes is practically useful and technically more
challenging, we may refer to Stute (1986a), Stute (1986b), Horváth and Yandell (1988) for
the case of independent observations, other authors were interested to the dependent case,
for example Yoshihara (1990) established the asymptotic normality when the sequences are
φ-mixing. Polonik and Yao (2002) have established uniform convergence and asymptotic
normality of set-indexed conditional empirical process in a strictly stationary and strong
mixing framework. The results of Polonik and Yao (2002) were extended by Poryvăı
(2005). In the present paper, we are interested in the limiting behavior of he conditional
set-indexed empirical process when the covariates are functional. Functional data analysis
is a field that has been really popularized with the book by Ramsay and Silverman (2005a)
and that received a lot of attention in the last 20 years with a general aim of adapting
existing multivariate ideas to the functional framework. For good sources of references
to research literature in this area along with statistical applications consult Ramsay and
Silverman (2005a), Bosq (2000), Ramsay and Silverman (2005b), Ferraty and Vieu (2006),
Bosq and Blanke (2007), Shi and Choi (2011), Horváth and Kokoszka (2012), Zhang (2014),
Bongiorno et al. (2014), Hsing and Eubank (2015) and Aneiros et al. (2017). Dimensionality
effects have tended to slow down the development of nonparametric modelling ideas in
infinite-dimensional setting. However, this field has been investigated many years ago by
Ferraty and Vieu (2006) and caused up considerable interest since several hundreds of
papers have been published in the last decade. More precisely, dimensionality problem
links with probability theory in infinite-dimensional space by means of the small ball
probability function of the underlying process and with the topological structure on the
infinite-dimensional space. More precisely the interest of using a semi-metric-type topology
are discussed in details in the book of Ferraty and Vieu (2006), we may refer for recent
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references to Bouzebda (2020); Bouzebda and Nezzal (2021).

This paper extends asymptotic results for multivariate statistics of set-indexed conditional
empirical process to the context of functional statistical samples. We establish the uniform
convergence and asymptotic normality when the observations assumed are strong mixing
tacking its values in semi-metric space. It should be noted that even for i.i.d. functional
data, no weak convergence has so far been established. To the best of our knowledge, the
results presented here, respond to a problem that has not been studied systematically up
to the present, which was the basic motivation of the paper.
The remainder of this paper is organized as follows. Section 5.2, we present the notation
and definitions together with the conditional empirical process. Section 5.2.1, we give our
main results. An application of our main result to the test of the conditional independence
is given in Section 5.4. Some concluding remarks and possible future developments are
relegated to Section 5.5. To prevent from interrupting the flow of the presentation, all
proofs are gathered in Section 5.6.

4.2 The set indexed conditional empirical process

We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn) copies of (X,Y ) that takes
its value in a space E ×Rd. The functional space E is equipped with a semi-metric dE(·, ·)1.
We aim to study the links between X and Y , by estimating functional operators associated
to the conditional distribution of Y given X such as the regression operator, for some
measurable set C in a class of sets C ,

G(C | x) = E
(
1{Y ∈C} | X = x

)
.

This regression relationship suggests to consider the following Nadaraya Watson-type
(Nadaraya (1964) and Watson (1964)) conditional empirical distribution:

Gn(C, x) =

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (4.1)

where K(·) is a real-valued kernel function from [0,∞) into [0,∞) and hn is a smoothing
parameter satisfying hn → 0 as n → ∞, C is a measurable set, and x ∈ E . By choosing
C = (−∞, z], z ∈ Rd, it reduces to the conditional empirical distribution function Fn(z|x) =
Gn((−∞, z], x), refer to Stute (1986a), Stute (1986b), Horváth and Yandell (1988). However,
the corresponding class C =

{
(−∞, z], z ∈ Rd

}
. Concerning the semi-metric topology

defined on E , we will use the notation

B(x, t) = {x1 ∈ E : dE(x1, x) ≤ t},
1A semi-metric (sometimes called pseudo-metric) d(·, ·) is a metric which allows d(x1, x2) = 0 for some

x1 6= x2.
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for the ball in E with center x and radius t. We denote

F (t;x) = P(dE(x,Xi) ≤ t) = P(Xi ∈ B(x, t)) = P(Di ≤ t),

which is usually called in the literature the small ball probability function when t is
decreasing to zero. One is interested in the behavior of F (u;x) as u → 0. Gasser et al.
(1998) assume that F (h;x) = φ(hn)f1(x) as h → 0 and refer to f1(x) as the probability
density (functional). When H = Rm, then F (h;x) = P [‖x−Xi‖ 6 h] and it can be seen
that in this case φ(hn) = C(m)hm (C(m) is the volume of a unit ball in Rm ) and f1(x) is
the probability density of the random variable X1. Indeed, it can be shown directly that
limh→0 (1/hm)F (h;x) = C(m)f1(x). Motivated by the work of Gasser et al. (1998) and
the above argument we make the assumption (H4)(i)-(ii), refer to this discussion and
details to Masry (2005).

Often statistical observations are not independent but are not far from being inde-
pendent. If not taken into account, dependence can have disastrous effects on statistical
inference. The notion of mixing quantifies how close to independence a sequence of random
variables is, and it can help us to extend classical results for independent sequences to
weakly dependent or mixing sequences, refer to Bradley (2007) for more details. Let us
specify the dependence that we will consider in the present paper.

Definition 3. A sequence {ζk, k ≥ 1} is said to be α-mixing if the αmixing coefficient

α(n) def= sup
k≥1

sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ F∞n+k, B ∈ F k

1

}
converges to zero as n → ∞, where Fm

l = σ {ζl, ζl+1, . . . , ζm} denotes the σ-algebra
generated by ζl, ζl+1, . . . , ζm with l ≤ m. We use the term geometrically strong mixing if,
for some a > 0 and β > 1,

α(j) ≤ aj−β,

and exponentially strong mixing if, for some b > 0 and 0 < γ < 1,

α(k) ≤ bγk.

Throughout the sequel, we assume tacitly that sequence of random elements {(Xi, Yi), i =
1, . . . , n} is strongly mixing.

4.2.1 Assumptions and notation

Throughout this paper x is a fixed element of the functional space E . We define metric
entropy with inclusion which provides a measure of richness(or complexity) of class of sets
C . For each ε > 0, the covering number is defined as :

N (ε,C ,G (· | x))

= inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G (Cj \ Ci | x) < ε},
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the quantity log (N (ε,C ,G (· | x))) is called metric entropy with inclusion of C with
respect to G (· | x). Estimates for such covering numbers are known for many classes;
see, e.g., Dudley (1984). We will often assume below that either logN (ε,C ,G (· | x)) or
N (ε,C ,G (· | x)) behave like powers of ε−1. We say that the condition (Rγ) holds if

logN (ε,C ,G (· | x)) ≤ Hγ(ε), for all ε > 0, (4.2)

where

Hγ(ε) =
{

log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As in Polonik and Yao (2002), it is worth noticing that
the condition (5.3), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes
which are constructed from the above by performing set operations union, intersection
and complement finitely many times. The classes of convex sets in Rd (d ≥ 2) fulfil the
condition (5.3), γ = (d− 1)/2. This and other classes of sets satisfying (5.3) with γ > 0,
can be found in Dudley (1984). In this section, we establish the weak convergence of the
process {ν̃n(C, x) : C ∈ C } defined by

ν̃n(C, x) :=
√
nφ(hn) (Gn(C, x)− IEGn(C, x)) . (4.3)

In our analysis, we will make use of the following assumptions.

(H1) For all t > 0, we have φ(t) > 0. For all t ∈ (0, 1), τ0(t) exists, where

τ0(t) = lim
r→0

φ(rt)
φ(r) = lim

r→0
P(dE(x,X) ≤ rt) | (P(dE(x,X) ≤ t)) <∞;

(H2) There exist β > 0 and η1 > 0, such that for all x1, x2 ∈ Nx, a neighborhood of x, we
have

|G(C | x1)−G(C | x2)| ≤ η1d
β
E(x1, x2);

(i) Let g2(u) = Var
(
1{Yj∈C} | Xj = u

)
for u ∈ E . Assume that g2(u) is independent

of j and is continuous in some neighborhood of x, as h→ 0,

sup
{u:d(x,u)≤h}

|g2(u)− g2(x)| = o(1),

Assume
gν(u) = IE(|1{Yi∈C} −G(C | x)|ν | Xi = u), u ∈ E ,

is continuous in some neighborhood of x,

(ii) Define, for i 6= j, u, v ∈ E ,

g(u, v;x) = IE((1{Yi∈C} −G(C | x))(1{Yj∈C} −G(C | x)) | Xi = u,Xj = v).

Assume that g(u, v;x) does not depend on i, j and is continuous in some neigh-
borhood of (x, x);
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(H3) There exist m ≥ 2 and η2 > 0, such that, we have, almost surely

IE(|Y |m|X) ≤ η2 <∞;

(H4) For all i ≥ 1,

0 < c5φ(hn)f1(x) ≤ P(Xi ∈ B(x, h)) = F (h;x) ≤ c6φ(hn)f1(x),

where φ(hn)→ 0 as h→ 0 and f1(x) is a nonnegative functional in x ∈ E ,

(H5) For all (y1, y2) ∈ IR2d and constants b3 > 0, η4 > 0, we have for the conditional
density f(·) of Y given X = x the following

|f(y1)− f(y2) |≤ η4‖ y1 − y2‖b3 ;

(i) F (u;x) = φ(u)f1(x) as u→ 0, where φ(0) = 0 and φ(u) is absolutely continuous in a
neighborhood of the origin,

(ii) We have
sup
i 6=j

P (Di ≤ u,Dj ≤ u) ≤ ψ(u)f2(x),

as u → 0, where ψ(u) → 0 as u → 0. We assume that the ratio ψ(h)/φ2(h) is
bounded;

(H6) The kernel function K(·) is supported within (0, 1/2) and has a continuous first
derivative on (0, 1/2). Moreover, there exist constants 0 < η5 ≤ η6 <∞ such that:

0 < η51(0,1/2)(·) ≤ K(·) ≤ η61(0,1/2)(·),

and

K(1/2)−
∫ 1/2

0
K
′(s)τ0(s)ds > 0, K2(1/2)−

∫ 1/2

0
(K2)′(s)τ0(s)ds > 0;

(H7) Assume the class of sets C satisfies the condition (5.3);

(H8) (Mixing): for some v > 2 and δ > 1− 2
v , we have

∞∑
`=1

`δ[α(`)]1−
2
v <∞;

(H9) The smoothing parameter (hn) satisfies:

logn
nmin(an, φ(hn)) −→ 0,

(i) Let hn → 0 and nφ(hn)→∞ as n→∞.
Let υn be a sequence of positive integers satisfying υn → ∞ such that υn =
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o((nφ(hn))1/2) and
(n/φ(hn))1/2α(υn)→ 0 as n→∞.

4.2.2 Comments on the assumptions

The Condition (H1) is related to the small ball probabilities, which plays a major role
both from theoretical and practical points of view, because the notion of ball is strongly
linked with the semi-metric d(·, ·), the choice of this semi-metric will become an important
stage when the data are tacking its values in some infinite dimensional space. The second
part of (H1) will be used to control the bias of nonparametric estimators, one needs to
have some information on the variability of the small-ball probability. Indeed, in many
examples, the small ball probability function can be written approximately as the product
of two independent functions in terms of x and h, as in the following examples, which can
be found in Proposition 1 of Ferraty et al. (2007):

1. φ(hn) = Chυn for some υ > 0 with τ0(s) = sυ;

2. φ(hn) = Chυn exp(−Ch−pn ) for some υ > 0 and p > 0 with τ0(s) is the Dirac’s
function;

3. φ(hn) = C |ln(hn)|−1 with τ0(s) =]0,1] (s) the indicator function in ]0, 1].

The conditions (H2)-(H3) are classical in the nonparametric regression estimation. (H4)
is similar to those in Masry (2005). (H5): About the conditions on the density f(·) is
classical Lipschitz-type nonparametric functional model. The conditions on the kernel are
not very restrictive. The first part of condition (H6) appears in many kernel functional
studies and is easily satisfied for wide classes of kernel functions, the interested reader can
refer to H4 in Ferraty et al. (2007). The second part of this condition, which is added in
this paper as a necessary tool to get uniform results, is linked to the function τ0(·) and is
also rather general. For example, when τ0(·) is identified to be the Dirac mass at 1/2, the
second part of τ0(·) is true as long as K ′(s) ≤ 0 and K(1/2) > 0. Other examples can be
derived from Proposition 2 in Ferraty et al. (2007). Condition (H8) rules out too large
or too small bandwidths for which consistency could not be obtained. It is satisfied with
hn = O(logn)−ν1 (for some suitable ν1 > 0) as long as the process X is of the exponential
type (that is when the small-ball probability function is exponentially decaying). It is also
satisfied with hn = O(n/ logn)−ν2 (for some suitable ν2 > 0) for fractal processes (that is,
when the small-ball probability is of polynomial decaying). More details can be found in
Ferraty and Vieu (2006).

4.3 Main results

Below, we write Z D= N (µ, σ2) whenever the random variable Z follows a normal law with
expectation µ and variance σ2, D→ denotes the convergence in distribution and P→ the
convergence in probability.
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Theorem 14. [Uniform Consistency] Suppose that the hypotheses (H1)-(H8) hold and
that (Xt, Yt) is geometrically strong mixing with β > 2. Let C be a class of measurable sets
for which

N (ε,C ,G (· | x)) <∞

for any ε > 0. Suppose further that ∀C ∈ C

|G(C, y)f(y)−G(C, x)f(x)| −→ 0, as y → x.

If nφ(hn)→∞ and hn → 0 as n→∞, then

sup
C∈C
|Gn(C, x)− IE (Gn(C, x))| P−→ 0.

The proof of this theorem is based on the following relations. Remark that, the proof of
Theorem 14 is a direct consequence of the decomposition:

Gn(C, x)− IE (Gn(C, x)) = 1
IE(f̂n(x))

[
F̂n(C, x)− IE

(
F̂n(C, x)

)]
−Gn(C, x)
IE(f̂n(x))

[
f̂n(x)− IE(f̂n(x))

]
,

where

F̂n(C, x) = 1
nφ(hn)

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
,

f̂n(x) = 1
nφ(hn)

n∑
i=1

K

(
dE(x,Xi)

hn

)
,

and of the Lemmas 1 and 2 below, for which the proofs are given in the Appendix.

Lemma 1. Suppose that the hypotheses (H1)-(H8) hold and for every fixed C ∈ C as
n→∞ we have :

sup
C∈C

∣∣∣F̂n(C, x)− IE
(
F̂n(C, x)

)∣∣∣ = oP(1)

Lemma 2. Suppose that the hypotheses (H1)-(H8) hold and for every fixed NE neighbor-
hood of x in the functional space E as n→∞, we have

sup
x∈NE

∣∣∣f̂n(x)− IE
(
f̂n(x)

)∣∣∣ = oP(1).

Before to establishing the asymptotic normality define the “bias” term by

Bn(x) =
IE
(
f̂n(x)

)
−Gn(C, x)IE

(
F̂n(C, x)

)
IE
(
F̂n(C, x)

) .

By stationarity of order one of the (Xi)’s, we have

IE(f̂n(x)) = 1.
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The following result give the weak convergence of our estimators. Keep in mind that f1(x)
is given in (H5).

Theorem 15 (Asymptotic normality). Let (H2)-(H5)(i)(ii)-(H6)-(H8)-(H9)(i) hold
and (Xi, Yj) is geometrically strong mixing with β > 2, then nφ(hn)→∞ as n→∞. For
m ≥ 1 and C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m}
D−→ N (0,Σ),

where Σ = σij(x), i, j = 1, . . . ,m and

σij(x) = C2
C2

1f1(x)
(
E(1{Y ∈Ci∩Cj} | X = x)− E(1{Y ∈Ci} | X = x)E(1{Y ∈Cj} | X = x)

)
,

whenever f1(x) > 0 and

C1 = K(1/2)−
∫ 1/2

0
K
′(s)τ0(s)ds, C2 = K2(1/2)−

∫ 1/2

0
(K2)′(s)τ0(s)ds.

To establish the density of the process, we need to introduce the following function which
provides the information on the asymptotic behaviour of the modulus of continuity

Λγ(σ2, n) =


√
σ2 log 1

σ2 , if γ = 0;
max

(
(σ2)(1−γ)/2, nφ(hn)(3γ−1)/(2(3γ+1))

)
, if γ > 0.

Theorem 16. Suppose that (H1)-(H9) hold and the process (Xi, Yi) is exponentially
strong mixing for each σ2 > 0, let Cσ ⊂ C be a class of measurable sets with

sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (Rγ) with γ ≥ 0. Further, we assume that φ(hn) → 0 and
nφ(hn)→ +∞ as n→ +∞, such that

nφ(hn) ≤
(
Λγ(σ2, n)

)2
,

and as n→ +∞, we have

nφ

(
σ2 log

( 1
σ2

))1+γ

log(n) →∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to be replaced by
σ2 ≥ φ(hn) log

( 1
φ(hn)

)
then for every ε > 0 there exist a constant M > 0 such that

P
(

sup
C∈Cσ

|ν̃n(C, x)| ≥MΛγ(σ2, n)
)
≤ ε,

for all sufficiently large n.

By combining Theorem 15 and Theorem 16 we have the following result.
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Theorem 17. Under conditions of Theorem 15 and Theorem 16, then the process:

{ν̃n(C, x) : C ∈ C } ,

converges in law to a Gaussian process {ν̃(C, x) : C ∈ C } , that admits a version with uni-
formly bounded and uniformly continuous paths with respect to ‖ · ‖2−norm with covariance
σij(x) given in Theorem 15.

Remark 9. Central limit theorems are usually used to establish confidence intervals for the
target to be estimated. In the context of non-parametric estimation the asymptotic variance
Σ := σi,j(x) in the central limit depends on certain functions, including the ones that are
estimated. This situation is classic regardless of whether the data is i.i.d. or dependent.
As a result, only approximate confidence intervals can be obtained in practice, even when Σ
functionally specified. To be more precise let us consider the following particular case of
Theorem 15, where m = 1. In the this situation, Σ is reduced to, for A ∈ C ,

σ2(x) = C2
C2

1f1(x)
(
E(1{Y ∈A} | X = x)− E(1{Y ∈A} | X = x)2

)
= C2
C2

1f1(x)W2(x).

Observe that the limiting variance contains the unknown function f1(·) and that the normal-
ization depends on the function φ(hn) which is not identifiable explicitly. Let us introduce
the following estimate

Fx,n(t) = 1
n

n∑
i=1
1{d(x,Xi)≤t},

One may estimate τ0(·) by
τn(t) = Fx,n(th)

Fx,n(h) .

This can use to give the following estimates

C1,n = K(1/2)−
∫ 1/2

0
K
′(s)τn(s)ds, C2, n = K2(1/2)−

∫ 1/2

0
(K2)′(s)τn(s)ds.

One can estimate W2,n(x) by

W2,n(x) = (Gn(C, x)−G2
n(C, x)),

The use of Theorem 15, in connection with Slutsky’s theorem, gives

C1,n√
C2,n

√
nFx,n(hn)
W2,n(x) (Gn(C, x)−G(C, x)) D−→ N (0, 1).

This result can be used in the construction of the confident interval in the usual way, we
omit the details.
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4.3.1 The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically optimal
ways, bandwidth selection rules for nonparametric kernel estimators especially for Nadaraya-
Watson regression estimator we quote among them Hall (1984), Härdle (1985), Rachdi
and Vieu (2007), Bouzebda and El-hadjali (2020) and Bouzebda (2020). This parameter
has to be selected suitably, either in the standard finite dimensional case, or in the
infinite dimensional framework for insuring good practical performances. Let us define the
leave-out-(Xi, Yi) estimator for regression function

Gn,j(C, x) =

n∑
i=1,i 6=j

1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) . (4.4)

In order to minimize the quadratic loss function, we introduce the following criterion, we
have for some (known) non-negative weight function W(·) :

CV (C, h) := 1
n

n∑
j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
W (Xj) . (4.5)

Following the ideas developed by Rachdi and Vieu (2007), a natural way for choosing the
bandwidth is to minimize the precedent criterion, so let’s choose ĥn ∈ [an, bn] minimizing
among h ∈ [an, bn]:

sup
C∈C

CV (Ψ, h) .

The main interest of our results is the possibility to derive the asymptotic properties of our
estimate even if the bandwidth parameter is a random variable, like in the last equation.
One can replace (5.8) by

CV (C, hn) := 1
n

n∑
j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
Ŵ (Xj , x) . (4.6)

In practice, one takes, for j = 1, . . . , n, the uniform global weights W (Xj) = 1, and the
local weights

Ŵ (Xj , x) =
{

1 if d(Xj , x) ≤ hn,
0 otherwise.

For sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector such
the bandwidth based on Bayesian ideas Shang (2014).

4.4 Testing the independence

Concepts of conditional independence play an important role in unifying many seem-
ingly unrelated ideas of statistical inference, see Dawid (1980). Measuring and testing
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conditional dependence are fundamental problems in statistics, which form the basis of
limit theorems, Markov chain, sufficiency and causality Dawid (1979), among others.
Conditional independence also plays a central role in graphical modeling Koller and Fried-
man (2009), causal inference Pearl (2009) and artificial intelligence Zhang et al. (2011),
refer also to Zhou et al. (2020) for recent references. The idea of treating conditional
independence as an abstract concept with its own calculus was introduced by Dawid
(1979), who showed that many results and theorems concerning statistical concepts such
as ancillarity, sufficiency, causality, etc., are just applications of general properties of
conditional independence-extended to encompass stochastic and non-stochastic variables
together. Let C1,C2 be some classes of sets. In this section, we consider a sample of random
elements (X1, Y1,1, Y1,2), . . . , (Xn, Yn,1, Yn,2) copies of (X,Y1, Y2) that takes its value in a
space E × Rd1 × Rd2 and define, for (C1, C2) ∈ C1 × C2,

Gn(C1 × C2, x) =

n∑
i=1
1{Yi,1∈C1}1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (4.7)

Gn,1(C1, x) =

n∑
i=1
1{Yi,1∈C1}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (4.8)

Gn,2(C2, x) =

n∑
i=1
1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) . (4.9)

We will investigate the following processes, for (C1, C2) ∈ C1 × C2,

ν̂n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x))) , (4.10)

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)−Gn,1(C1, x)Gn,2(C2, x)) . (4.11)

Notice that we have

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x))) .
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Hence we have

ν̆n(C1, C2, x) d=
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)IE(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x)))

= ν̂n(C1, C2, x) + IE(Gn(C2, x))ν̃n(C1, x)− IE(Gn(C1, x)) (4.12)

×ν̃n(C2, x).

One can show that, for (A1, B1), (A2, B2) ∈ C1 × C2,

cov(ν̂n(A1, B1, x), ν̂n(A2, B2, x))

= C2
C2

1f1(x)
(
E(1{Y ∈A1∩A2} | X = x)− E(1{Y ∈A1} | X = x)E(1{Y ∈A2} | X = x)

)
×
(
E(1{Y ∈B1∩B2} | X = x)− E(1{Y ∈B1} | X = x)E(1{Y ∈B2} | X = x)

)
, (4.13)

whenever f1(x) > 0. The decomposition in (5.15) give an idea on the process ν̆n(C1, C2, x)
and its structure, however the calculation of the associated covariance more involved. Let
{ν̂(C1, C2, x) : (C1, C2) ∈ C1 × C2} be a Gaussian process with covariance given in (4.13).
Let us introduce the following limiting process, for (C1, C2) ∈ C1 × C2,

ν̆(C1, C2, x) = ν̂(C1, C2, x) + G(C2, x)ν̃(C1, x)−G(C1, x)ν̃(C2, x).

We would test the following null hypothesis

H0 : Y1 and Y2 are conditionally independent given X = x.

Against the alternative

H1 : Y1 and Y2 are conditionally dependent.

Statistics of independence those can be used are

S1,n = sup
(C1,C2)∈C1×C2

|ν̂n(C1, C2, x)|, (4.14)

S2,n = sup
(C1,C2)∈C1×C2

|ν̆n(C1, C2, x)|. (4.15)

A combination of Theorem 17 with continuous mapping theorem we obtain the following
result.

Theorem 18. We have under condition of Theorem 17, as n→∞,

S1,n → sup
(C1,C2)∈C1×C2

|ν̂(C1, C2, x)|, (4.16)

S2,n → sup
(C1,C2)∈C1×C2

|ν̆(C1, C2, x)|. (4.17)
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Remark 10. It is well known that Theorem 18can be used easily through routine bootstrap
sampling as in Bouzebda (2012), Bouzebda and Cherfi (2012) and Bouzebda et al. (2018),
which we describe briefly as follows. Let N be a large integer. Let S(1)

j,n , . . . , S
(N)
j,n be the

bootstrapped versions of Sj,n, for j = 1, 2. With the convention that large values of Sj,n,
j = 1, 2, lead to the rejection of the null hypothesis H0, under some regularity conditions, a
valid approximation to the P -value for the test based on Sj,n, j = 1, 2, for N large enough,
is given by

1
N

N∑
k=1

1I{S(k)
j,n ≥ Sj,n}.

The investigation of the bootstrap should require a different methodology than that used in
the present paper, and we leave this problem open for future research.

4.5 Concluding remarks

In the present work, we have established the invariance principle for the conditional set-
indexed empirical process formed by strong mixing random variables when the covariates
are functional. Our result results are obtained under assumptions on the richness of the
index class C of sets in terms of metric entropy with bracketing in the framework of mixing
data. An application of testing the conditional independence is proposed. Notice that
mixing is some kind of asymptotic independence assumption which is commonly used
for seek of simplicity but which can be unrealistic in situations where there is strong
dependence between the data. Extending non-parametric functional ideas to general
dependence structure is a rather underdeveloped field. Note that the ergodic framework
avoid the widely used strong mixing condition and its variants to measure the dependency
and the very involved probabilistic calculations that it implies. It would be interesting
to extend our work to the case of the functional ergodic data, which requires non trivial
mathematics, this would go well beyond the scope of the present paper.

4.6 Appendix

This section is devoted to the proofs of our results. The aforementioned notation is also
used in what follows.

Proof of Lemma 3

Use finite metric entropy with inclusion, fix ε > 0 for C ∈ C . Let C∗, C∗ be a bracket for
C, i.e., C∗ ⊂ C ⊂ C∗, such that

G (C∗4C∗ | x) < ε.
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Since for A ⊂ B we have Gn(A, x) ≤ Gn(B, x) and G(A | x) ≤ G(B | x), it follows:

sup
C∈C

[Gn(C, x)− IE (Gn(C, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

+ sup
C∈C

[IE (Gn(C∗, x))− IE (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

+ sup
C∈C

G (C∗4C∗ | x)

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))] + ε. (4.18)

An analogous lower bound holds with C∗ replaced by C∗. Since the first term in the last
line is a supremum over finitely sets (for fixed ε > 0) it follows pointwise consistency of
Gn(·, ·) that the term is oP(1) and hence we finally obtained. �

Proof of Lemmas 4

We shall proof that
P
(∣∣∣f̂n(x)− IE(f̂n)

∣∣∣ > ε
)
→ 0.

For that purpose we apply inequality (1.26) of Bosq (1998) to the random variable

Yin = Kh (dE(x−Xi))− IE (Kh(dE (x−Xi))) .

Note that, for 1 ≤ i ≤ n, we have

| Ytn |≤ ‖K‖∞φ(hn).

By choosing q = qn =
√
nφ (hn), then by using the geometrically strong mixing assumption

and Billingsley inequality (1.11) in Bosq (1998), this implies that

P(|f̂n(x)− IE(f̂n)| > ε) ≤ 4 exp
(
− ε2

8‖K‖∞
qφ(hn)

)

+22
(

1 + 4‖K‖∞φ(hn)
ε

) 1
2
qc0ρ

[
n

2q

]
.

This gives that
P(|f̂n(x)− IE(f̂n)| > ε) ≤ β exp

(
−γ
√
nφ(hn)

)
,

where β = β(ε, k) and γ = (ε, k) are strictly positive. We let

Un = φ(hn)
(logn)2 .
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We finally obtain that
P(|f̂n(x)− IE(f̂n)| > ε) ≤ β

nγ
√
Un
.

Thus the proof is complete. �

Proof of Theorem 20

We will use similar arguments to those used in the paper by Masry (2005). Let

∆i(x) = K

(
dE(x,Xi)

hn

)
.

By conditioning on Xi

µn(x) = IE(G(C | Xi)−G(C | x)∆i(x)) (4.19)

and making use of the first part of (H2), we have

µn(x) ≤ sup
u∈B(x,h)

|r(u)− r(x)|IE(∆1(x)) ≤ const.hβXiIE(∆1(x)). (4.20)

Introduce
Zn,i(x) = (1{Yi∈C} −G(C | x))∆i(x)− µn(x).

With this notation, we have

Qn(x) = 1
n

n∑
i=1

Zn,i.

We have
σ2
n,0(x) = 1

IE2(∆1(x))
var(Zn,1).

By using the first part of condition (H6), we readily infer that

cj1c5f1(x)φ(hn) ≤ IEj(∆1(x)) ≤ cj2c6f1(x)φ(hn), for j = 1, 2. (4.21)

Remark that

nvar(Qn(x)) = 1
IE2 (∆1(x))

var(Zn,i(x))

+ 1
IE2(∆1(x))

n∑
i=1

n∑
j=1

cov (Zn,i(x), Zn,j(x))

= I1 + I2.

Note that I1 = σ2
n,0(x) and using (4.20), we infer that

σ2
n,0(x) = 1

IE2(∆1(x))
IE((1{Y1∈C} −G(x))2∆2

1(x)) +O
(
h2β
n

)
.
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By conditioning on X1, we obtain that

σ2
n,0(x) = 1

IE2(∆1(x))
IE(g2(X1)∆2

1(x)) + IE((G(X1)−G(x))2∆2
1(x))

IE2(∆1(x))
+O

(
h2β
n

)
.

Making use of the condition (H2) we obtain that the second term is O
(
h2β
n

)
. We now

establish the upper and the lower bounds of σ2
n,0(x). We write

IE(g2(X)∆2
1(x)) = g2(x)IE(∆2

1(x)) + IE((g2(X1))− g2(x)∆2
1(x))

= I1,1 + I1,2.

Using assumption (H2)(i), we have

|I1,2| ≤ sup
u:d(x,u)≤h

|g2(u)− g2(x)|IE(∆2
1(x)) = o(1)IE(∆2

1(x)),

whereas
I1,1 = g2(u)IE(∆2

1).

Thus we can see that

IE(g2(x)IE(∆2
1(x))) = g2(1 + o(1))IE(∆2

1(x)).

It follows that we have

σ2
n,0(x) = g2(x)(1 + o(1)) IE(∆2

1(x))
IE2(∆1(x))

+O
(
h2β
n

)
.

By using (4.21), there exist positive constants c8 and c9 in such a way that

c8
g2

f1(x) +O
(
φ(hn)h2β

n

)
≤ φ(hn)σ2

n,0(x) ≤ c9
g2(x)
f1(x) +O

(
φ(hn)h2β

n

)
. (4.22)

Then, we readily infer that

I2 = 1
nIE2(∆1(x))

n∑
i=1,1≤|i−j|≤an

n∑
j=1

cov (Zn,i(x), Zn,j(x))

+
n∑

i=1,|i−j|>an

∑
j=1

cov(Zn,i(x), Zn,j(x))

= I2,1 + I2,2, (4.23)

where an = o(n) at a specified rate specified in the sequel. For I2,1, we have

cov(Zn,i(x), Zn,j(x)) = IE
((
1{Yi∈C} −G(C | x)

) (
1{Yj∈C} −G(C | x)

))
− µ2

n(x).

Conditioning on (Xi, Xj) and using condition (H2)(ii), we obtain that

cov(Zn,i(x), Zn,j(x)) = IE (g(Xi, Xj ;x)∆i(x)∆j(x))− µ2
n(x).
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By combining condition (H6) (upper bound) and (H2)(ii), we show that there exists a
finite constant such that

|cov(Zn,i(x), Zn,j(x))| ≤ const. sup
i 6=j

P ((Xi, Xj) ∈ B(x, h)×B(x, h)) + µ2
n(x).

Making use of the condition (H4)(ii) in combination with (4.20), we readily obtain

|cov(Zn,i(x), Zn,j(x))| ≤ const.f2(x)ψ(hn) +O
(
h2β
n

)
IE2(∆1(x)).

Thus, the use (4.22) implies that

|I2,1| ≤
const.f2(x)ψ(hn) +O

(
h2β
n

)
IE2(∆1(x))

nIE2(∆1(x))

n∑
i=1,1≤|i−j|≤an

n∑
j=1

1 (4.24)

≤ const.f2(x)ψ(hn)an
IE2(∆1(x))

+O
(
h2β
n

)
an. (4.25)

Finally, using the lower bound in (4.21), we obtain

|I2,1| ≤
const.f2(x)ψ(hn)an

f2
1φ

2(hn) +O
(
h2β
n

)
an. (4.26)

It now follows from the lower bound on σ2
n,0 in (4.26) that we have

|I2,1(x)|
σ2
n,0(x) ≤ const.

f2(x)
f1(x)g2(x)

ψ(hn)an
φ(hn) + const.

f1(x)
g2(x)O

(
h2β
n

)
φ(hn)an. (4.27)

We shall subsequently select an to make the right side of (4.27) tend to zero as n→∞. Now
consider the contribution of I2,2 of (4.23). By Davydov’s lemma (Hall (1984), Corollary
A.2), we have

|cov(Zn,i(x), Zn,j(x))| ≤ 8
(
IE|(1{Yi∈C} −G(C | x))∆i(x)|ν

)2/ν
(α(|i− j|))1−2/ν .

By the first part of (H6) (upper bound) and the continuity of gν(·) in condition (H2)(i),
we obtain that

IE|(1Yi∈C)−G(C | x)∆i(x)|ν = IE|gν(Xi)∆i(x)|ν ≤ const.P (Xi ∈ B(x, h)) .

By condition (H3)(i) (upper bound), we obtain

|cov(Zn,i(x), Zn,j(x))| ≤ const.
(
f1(x)φ(hn)2/ν

)
(α(|i− j|))1−2/ν .

It then follows from the last relation that

I2,2 ≤
constf

2/ν
1 (x)(φ(hn))2/ν

nIE2 (∆1(x))

n∑
i=1

n∑
j=1

(α(|i− j|))1−2/ν .
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Using the lower bound (4.21) for IE(∆1(x)) and reducing the double sum above into a
single sum, we find that

I2,2 ≤
const

aδnf
2(1−1/ν)
1 (x)(φ(hn))2(1−1/ν)

∞∑
l=an+1

lδ(α(l))1−2/ν .

Now, using the lower bound on σ2
n,0, we obtain

I22
σ2
n,0
≤ const

aδng2(x)f1−2/ν
1 (x)(φ(hn))(1−2/ν)

∞∑
l=an+1

lδ(α(l))1−2/ν .

Now select an as an = 1
(φ(hn))(1−2/ν)/δ , then by condition (H8), we have, as n→∞,

I2,2
σ2
n,0
→ 0.

Now relation (4.27) can be written as follows

I2,1
σ2
n,0
≤ const. f2(x)

f1(x)g2(x)
ψ(hn)
φ2(hn)φ(hn)an + f1(x)

g2(x)O
(
h2β
n

)
φ(hn)an.

The first term on the right side tends to zero since ψ(h)/φ2(h) is assumed bounded and
φ2(hn)an → 0 with the above choice of an. The second term clearly tends to zero as
n→∞. It is seen from the proof that the dominating term for σ2

n,0 is given by

g2(x) IE(∆2
1(x))

IE2(∆1(x))
.

Recall F (u, x) = P(Di ≤ u). Under the assumption (H1) and (H3)(i), we have, for
j = 1, 2,

1
φ(hn)IE(∆j

1(x)) = 1
φ(hn)

∫ hn

0
Kj(u/hn)dF (u;x)

∼ f1(x) 1
φ(hn)

∫ hn

0
Kj(u/hn)F ′x(hn)du

−→ Cjf1(x).

It finally follows that we have

σ2
n,0(x) −→ C2g2(x)

C2
1f1(x) .

Thus the proof is complete. �

Lemma 4.6.1. Under the present assumptions for each ε > 0 and each integer r ∈ [1, n/2]
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there exist positive constants c, c1, c2 such that for C ∈ Cσ and large enough n

P (|ν̃n(C)| > M) ≤ 4 exp

− ε2

c(σ2 +
√

n
φ(hn)

ε
r )


+ exp

[
−c1

n

r
+ c2

(
log r + (0 ∨ log n

φ(hn)ε2 )
)]

. (4.28)

The reader can see Polonik and Yao (2002) for the proof. �

Lemma 4.6.2. Any class C of set admits a non-increasing upper bound H of the entropy
function IH(C , ·, dp(·)) such that x→ x4H(x) is non nondecreasing and, for every δ ∈ [0, 1],

ψ(δ) =
∫ δ

0

√
1 ∨H(u)d(ut) ≤ 4

∫ δ

0

√
1 ∨ IH((C , u, dp(·)))d(ut).

The reader is referred to Doukhan (1995) for the proof and the notation. �

Proof of Theorem 16

We recall that the family {ν̃n(C) : C ∈ C } is dense in the space (L∞(C ), ‖ · ‖C ) if for every
M > 0, we have

lim
δ→0

lim
n→∞

supP
(

sup
C∈Cδ

|ν̃n(C)| > M

)
= 0,

where
Cσ = {C1, C2 ∈ C : G(C14C2 | X = x) ≤ σ}.

Let B(η) denote a collection of brackets with (finite) minimal number of sets such that
|B(η)| = NI (η,Cσ, F (· | x)). By definition of Hγ we trivially have under R(γ) that

log |B(η)| ≤ Hγ(η).

Now, let δ0 ≥ δ1 ≥ · · · ≥ δN and η0, η1, . . . , ηN be positive real numbers defined below. For
δj , let C1,j , C2,j denote the brackets for C ∈ C at the level δ2

j , which means C1,j ⊂ C ⊂ C2,j

and
G(C1,j4C2,j | X = x) ≤ δ2

j .

Let further ε,M > 0 such that
N∑
j=0

ηj ≤
εM

8 , (4.29)
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then it is easy to see that

P
(

sup
C∈Cδ

|ν̃n(C)| > M

)

≤ |B(η2
0)|P

(
sup
C∈Cδ

|ν̃n(C)| > (1− ε

4)M
)

+
N−1∑
j=0
|B(η2

j )||B(η2
j+1)|P

(
sup
C∈Cδ

|ν̃n(C1,j)− ν̃n(C1,j+1)| > ηj

)

+P
(

sup
C∈Cδ

|ν̃n(C1,N )− ν̃n(C)| > ε

8MηN

)
= (I) + (II) + (III). (4.30)

Expressions (I)-(III) are now estimated separately. As for (I), we choose δ0 to satisfy

Hγ(δ2
0) = 1

2c

 (1− ε
4)2B2

σ2 +
√

n
φ(hn)

(1− ε4 )M
r0

 ,
with r0 = 1

σ2

√
n

φ(hn)(1− ε
4)M such that

Hγ(δ2
0) = (1− ε/4)2M2

2cσ2 .

Using the exponential inequality, with r = r0, leads to

(I)

= 4 exp
[
−

(1− ε
4)2M2

4cσ2

]

+ exp
[

(1− ε
4)2M2

4cσ2 − c1

√
nφ(hn)σ2

(1− ε
4)2M2 + c2

(
logn+

(
0 ∨ log n

φ(hn)(1− ε
4)2M2

))]
.

Since r0 is between 1 and n
2 , we obtain the following two conditions

M ≥ (1− ε/4)−1σ2

√
φ(hn)
n

, (4.31)

M ≤ 1
2σ

2
√
nφ(hn). (4.32)

Now, (4.31) becomes small if B/σ becomes large. We need that for some B > 0, large
enough

M2

σ2 −
√
nφ(hn)σ2

M2 ≤ −B logn.

This is equivalent to the condition

M4 +BM2σ2 logn ≤
√
nφ(hn)σ4. (4.33)
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As for the estimation of (II) define s =
√

cM

4
√
φ(hn)

and with δ0 from above choose N and

δj , j ≥ 1 as follows
δj+1 = s ∨ sup

{
x ≤ δj

2 : Hγ(δ2
j )
}
,

and N = min {j : δj = s} . We only consider the case

s < δ0, (4.34)

such that N ≥ 1. This is the more difficult case the case s > δ0 follows from Alexander
(1984). To make (I) small we take δ0 = η0 using

(I) ≤ 2 exp ((H(t0)) exp(−NI(1− ε/4)M,n, α))

≤ 2 exp (−(1− ε)NI(M,n, α)) .

To handle (III), one can see that

|ν̃n(C)| ≤ 2n1/2‖G(C1,j4C2,j | X = x) ≤ ‖∞ ≤ εM/8.

Hence, we have (III) = 0. We choose for j = 0, . . . , N ,

ηj =
√

20cδj
√
Hγ(δ2

j+1),

with this choice it easy to see that

N∑
j=1

ηj ≤
√

20c23/2
∫ δ0

s

√
Hγ(x2)dx.

Hence, in view of condition (4.29), we require

M ≥ B
∫ δ0

s

√
Hγ(x2)dx, (4.35)

for B ≥ B0 > 0, (4.28) is now applied to each summand of (II) separately. To that end, we
choose quantities rj , j = 0, . . . , N − 1, analogously to r0. Observing that

G (C1,j4C1,j+1 | x) ≤ 2δ2
j+1,

we choose
rj = 1

2δ2
j+1

√
n

φ(hn)ηj . (4.36)

To apply (4.28) with r = rj , we need 1 ≤ rj ≤ n/2, that rj ≥ 1 for large enough n can be
seen easily. Since rj is increasing in j, it remains to assure that 1 ≤ rN ≤ n/2. This leads
to the conditions

M ≥ Hγ(s2)√
φ(hn)

, (4.37)
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M ≤ 1
2n

3
2h−

d
2H(s2). (4.38)

Now plugging the above quantities into (4.28), we obtain

(II) = 4
N−1∑
j=0

exp
[
4Hγ(δ2

j+1 −
η2
j

4cδ2
j+1

)
]

+
N−1∑
j=0

exp

4Hγ(δ2
j+1)− c1

√
φ(hn)δj√
Hγ(δ2

j+1)

+c2

(
logn+ (0 ∨ log n

φ(hn)s2Hγ(s2)

)]

≤ 4
N−1∑
j=0

exp
[
−Hγ(δ2

j+1)
]

+
N−1∑
j=0

exp

4Hγ(δ2
j+1)− c1

√
φ(hn)δj√
Hγ(δ2

j+1)

+c2

(
logn+ (0 ∨ log n

φ(hn)s2Hγ(s2))
)]

. (4.39)

Using the fact that Hγ(δ2
j+1) ≥ 2Hγ(δ2

j ), the term in (4.39) can be shown to be (at least)
of the same order as (4.31). As for the term (4.39) give

log n

φ(hn)s2Hγ(s2) = O(logn).

In order to get (4.39) small, we need that for all j = 0, 1, . . . , N − 1

4Hγ(δ2
j+1)c1

√
nφ(hn)δj√
Hγ(δ2

j+1)
− c1 logn ≤ −Aj(n), (4.40)

for some real valued function Aj such that

N∑
j=1

exp(−Aj(n)) <∞.

Since the left hand side of (4.31) is increasing in j, it suffices to choose AN (n) satisfying
(4.31), which means that we need

4
√
H(s2)

(
H(s2) + c3 logn+AN (n)

)
≤ c1 (nφ(hn))

1
4
√
M, (4.41)

satisfying in addition
N exp (−AN (n)) <∞. (4.42)
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It remains to consider (III). Using Lemma 5.2 of Polonik and Yao (2002) and arguments
as in (5.6), we obtain

ν̃n(C) ≤ ν̃n(C2) +
√
φ(hn) (IE (Gn(C2, x)− IEGn(C1, x)))

≤ φ(hn) ((Gn(C2, x)− IEGn(C2, x))) +O
(√

nφ(hn)h2
n

)
+
√
nφ(hn)f(x)ηn. (4.43)

Analogously we have an estimate of ν̃n(C) from below by replacing C2 by C1 in (4.43) and
(4.43). Hence we obtain

(III) = P
(

sup
C∈Cδ

|ν̃n(C1,N )− ν̃n(C2,N )|

>
ε

8M + ηN −
√
nφ(hn)f(x)δN − c3

√
nφ(hn)h2

)
≤ P

(
sup
C∈Cδ

|ν̃n(C1,N )− ν̃n(C2,N )|

>
ε

8M + ηN − c4

√
nφ(hn)f(x)δN

)
≤ P

(
sup
C∈Cδ

|ν̃n(C1,N )− ν̃n(C2,N )| > ηN

)
. (4.44)

For the second inequality, we used the fact the fact that h2 = O(δN ) or equivalently

M2 ≥ Bnφ(hn)s, (4.45)

for some B > 0. Hence (III) can be treated as (II) above. Now we consider the different
cases of γ and check the above conditions on M below. We frequently use B to denote a
positive constant which has to be chosen appropriately (usually large enough) and which
usually is different at different places. As for γ = 0, we have

∫ δ0

s

√
Hγ(x2)dx = O

(√
δ2

0 log 1
δ2

0

)
.

In view of (4.31) M2 = σ2D(σ2) with D(σ2) → ∞ as σ2 → 0 using (4.35) leads to the
choice

M = B

√
σ2 log 1

σ2 .

Note that here N can be chosen as N = O(log logn), such that AN (n) = logn is a valid
choice. With these choices, condition (4.31) is satisfied automatically for large enough n,
and (4.31) holds if

σ2

log 1
σ2
≥ 4B
φ(hn) .
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Further (4.33) holds for large enough n if
√
φ(hn)

log 1
σ2 logn as n→∞ (4.30) follows automatically,

and (4.37) holds if
φ(hn)σ2 log 1

σ2

(logn)2 > B > 0.

Inequality (4.45) follows from the assumption that√
φ(hn)4 = O

(
Λ0(σ2), n

)
.

Finally (4.41) follows from

φ(hn)σ2 log 1
σ2

(logn)6 as n→∞,

which is the strongest condition. As for γ > 0 a crucial condition again is (4.41). This
condition can be seen to holds if

M ≥ B(φ(hn))
3γ−1

2(3γ+1) .

For 0 < γ < 1, we have ∫ δ0

s

√
Hγ(x2)dx = O(δ1−γ

0 ).

Hence we choose
M = B

(
max

((
σ2
) 1−γ

2 , (φ(hn))
3γ−1

2(3γ+1)

))
. (4.46)

Note further that with this choice of M , we may assume N = O(logn) such that again
AN = logn is a valid choice, satisfying (4.42). With these choices all the above conditions
on M are satisfied under the present assumptions. To see this first assume that

(σ2)
1−γ

2 ≥
(

(nφ(hn))
3γ−1

2(3γ+1)

)
,

such that M = B(σ2)
1−γ

2 . In this case, (4.31) hold automatically for large n, and (4.31)
follows from

σ2 ≥ B(φ(hn))−
1

γ+1 .

Further (4.33) holds if √
nφ(hn)(σ2)2γ ≥ B logn,

the equation (4.37) reads as
M ≥ (nφ(hn))−

1−γ
2(γ+1) ,

which means here
σ2 ≥ B(nφ(hn))−

1
γ+1 ,

equation (4.30) reads as
M ≤ n

3+γ
2(γ+1)h

− d(1−γ)
2(1+γ) ,
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which of course is satisfied here since σ2 ≤ 1. Last but not least, the assumption s ≤ δ0

means,
M ≤ (φ(hn))

γ
2(γ+2) (σ2)

1
γ+2 .

Plug in our choice of M again leads to

σ2 ≥ B (nφ(hn))−
3γ−1

2(3γ+1) .

It remains to consider the case

(σ2)
1−γ

2 < (nφ(hn))
3γ−1

2(3γ+1) , (4.47)

such that
M = B (nφ(hn))

3γ−1
2(3γ+1) .

Here (4.31) holds automatically for large n because σ2 ≤ 1, conditions (4.31) and (4.33)
lead to lower estimates for σ2 which do not conflict with (4.47) and (4.37) and (4.30) are
also seen easily to be satisfied. Finally inequality (4.45) follows for the same reasons as
given above in the case γ = 0. �
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CHAPTER 5

SOME CHARACTERISTICS OF THE
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EMPIRICAL PROCESS INVOLVING
FUNCTIONAL ERGODIC DATA

This chapter is the subject of publication : Bulletin of the Institute of Mathematics,
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DOI: 10.21915/BIMAS.2021405

The purpose of this chapter is to establish the invariance principle for the conditional set-indexed
empirical process formed by functional ergodic random variables. The limit theorems, discussed in

this paper, are key tools for many further developments in functional data analysis involving
empirical process techniques. These results are proved under some standard structural conditions

on the Vapnik-Chervonenkis classes of functions and some mild conditions on the model.

5.1 Introduction

The theory of empirical process is branch of statistics that is play fundamental role in its
various applications especially important in estimation theory there has been a great deal
research works. The asymptotic properties of empirical processes indexed by functions
have been intensively studied during the past decades (see, e.g., Van der Vaart and
Wellner (1996) or Dudley (1999) for self-contained, comprehensive books on the topic with
various statistical applications). Many authors have studied it in the last century in finite
framework, so that it developed rapidly due to its role in solving problems of statistics
,modulo measurability, the classes C of sets for which the Glivenko-Cantelli theorem holds
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characterize by Vapnik and Červonenkis (1971) in the setting of independents variables and
in this framework many results had been obtained we cite Dudley (1978), Giné and Zinn
(1984), Le Cam (1983), Pollard (1982) and Bass and Pyke (1984). Empirical processes
based on dependent data have been studied under various mixing conditions, for example,
Yoshihara (1990) established the asymptotic normality when the sequences are φ-mixing,
in these lines of research in different type of mixing, we may cite Eberlein (1984), Nobel
and Dembo (1993) and Yu (1994). However, a bracketing condition under strong mixing
was stated by Andrews and Pollard (1994). Doukhan (1995) studied the function-indexed
empirical process for β-mixing sequences, where Arcones (1994) was given results the case
of Gaussian long-range dependent random vectors, Polonik and Yao (2002) have established
uniform convergence and asymptotic normality of set-indexed conditional empirical process
in a strictly stationary and strong mixing framework and derived the Bahadur Kiefer
approximations of conditional quantile in this framework Poryvăı (2005) extended the work
of Polonik and Yao (2002). On the other hand, the modelization of functional variables
that taking values in infinite dimensional spaces had received a lot of attention in the
last few years, there are an increasing number of situation coming from different fields of
applied sciences (environment, chemometrics, biometrics, medicine, econometrics,. . . .) in
which the collected data are curves, the study of statistical models adapted to such type
of infinite dimensional data has been the subject of several works in the recent statistical
literature good overviews about this literature can be found in Ramsay and Silverman
(2005a), Bosq (2000), Ramsay and Silverman (2005b), Ferraty and Vieu (2006), Bosq
and Blanke (2007), Shi and Choi (2011), Horváth and Kokoszka (2012), Zhang (2014),
Bongiorno et al. (2014), Hsing and Eubank (2015) and Aneiros et al. (2017) and hundreds
of papers and books have been published in this framework last decade.
However, there are a few results for the empirical process considered functional framework,
we may refer for recent references to Bouzebda (2020,1); Bouzebda and Nezzal (2021),
Bouzebda and Chaouch (2022). Bouzebda et al. (2021) obtained several very useful results
for set-indexed conditional empirical processes in functional setting the strong mixing
dependence. Notice that mixing is some kind of asymptotic independence assumption which
is commonly used for seeking simplicity but which can be unrealistic in situations where
there is strong dependence between the data. Extending non-parametric functional ideas
to general dependence structure is a rather underdeveloped field, the ergodic framework
avoids the widely used strong mixing condition and its variants to measure the dependency
which go far beyond the invariance principle that is the basic motivation of the paper. The
general framework of ergodic functional data has been initiated by Laib and Louani (2010)
who stated consistencies with rates together with the asymptotic normality of the regression
function estimate, for recent paper on the subject we refer to Bouzebda and Chaouch
(2022), where the authors extended the last reference to a more general framework. For
reader convenience, we introduce some details defining the ergodic property of processes
and its link with the mixing one. Let {Xn, n ∈ Z} be a stationary sequence. Consider
the backward field An = σ (Xk : k ≤ n) and the forward field Bm = σ (Xk : k ≥ m). The
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sequence is strongly mixing if, as n→∞,

sup
A∈A0,B∈Bn

|P(A ∩B)− P(A)P(B)| = α(n)→ 0.

The sequence is ergodic if

lim
n→∞

1
n

n−1∑
k=0

∣∣∣P (A ∩ τ−kB)− P(A)P(B)
∣∣∣ = 0,

where τ is the time-evolution or shift transformation. The naming of strong mixing in
the above definition is more stringent than what is ordinarily referred (when using the
vocabulary of measure preserving dynamical systems) as strong mixing, namely to that
limn→∞ P (A ∩ τ−nB) = P(A)P(B) for any two measurable sets A,B, see, for instance
Rosenblatt (1972). Hence, strong mixing implies ergodicity, whereas the inverse is not
always true (see e.g. Remark 2.6 in page 50 in connection with Proposition 2.8 in page 51
in Bradley (2007)). Some motivations to consider ergodic dependence structure in the data
rather than a mixing one are discussed in Laib and Louani (2010); Bouzebda et al. (2015);
Bouzebda and Didi (2017b,a, 2021) where details on the definition of ergodic property of
processes together with illustrating examples of such processes are also given. The aim
of the present paper is to extend asymptotic results for set-indexed conditional empirical
processes to the context of functional ergodic data. We establish uniform convergence
and asymptotic normality when the observations are assumed to be ergodic in nature
taking their values in semi-metric space. This paper responds to a problem that has not
been studied systematically up to the present The remainder of this paper is organized as
follows. Section 5.2, we present the notation and definitions together with the conditional
empirical process. Section 5.3, we give our main results. We discuss the bandwidth
selection procedure in Section 5.3.1. An application of our main result to the test of the
conditional independence is given in Section 5.4. Some concluding remarks and possible
future developments are relegated to Section 5.5. To prevent from interrupting the flow of
the presentation, all proofs are gathered in Section 5.6. Some examples are collected in
Section 5.7.

5.2 The set indexed conditional empirical process

For the sake of clarity, introduce some details defining the ergodic property of processes.
Taking a measurable space (S,J ) denote by SN the space of all functions s : N → S.
If sj is the value the function s takes at j ∈ N, define Hj as the j-th coordinate map,
i.e Hj(s) = sj and consider H−1

j (J ), j ∈ N a random process Z = {Zj : j ∈ N} can be
considered as random variable defined on probability space (Ω,A,P) and taking values
in (SN,J N ). Now a set B ∈ F is called invariant if there exists some set A ∈JN such
that B = {(Zn, Zn+1, . . . .) ∈ A} is true for any n ≥ 1. The process Z is then said ergodic
whenever, for any invariant set B, we have P(B) = 0 or P(Ω | B) = 0 . It is well known
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from the ergodic theorem that, for a stationary ergodic process Z, we have

lim
n→∞

1
n

n∑
i=1

Zi = IE(Z1) almost surely. (5.1)

Therefore, the ergodic property in our setting is formulated on the basis of the statement
(5.1). We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn) copies of (X,Y ) that
takes its value in a space E × Rd. The functional space E is equipped with a semi-metric
dE(·, ·). We aim to study the links between X and Y , by estimating functional operators
associated to the conditional distribution of Y given X such as the regression operator, for
some measurable set C in a class of sets C ,

G(C | x) = E
(
1{Y ∈C} | X = x

)
.

This regression relationship suggests to consider the following Nadaraya Watson-type
(Nadaraya (1964) and Watson (1964)) conditional empirical distribution:

Gn(C, x) =

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (5.2)

where K(·) is a real-valued kernel function from [0,∞) into [0,∞) and hn is a smoothing
parameter satisfying hn → 0 as n → ∞, C is a measurable set, and x ∈ E . By choosing
C = (−∞, z], z ∈ Rd, it reduces to the conditional empirical distribution function Fn(z|x) =
Gn((−∞, z], x), refer to Stute (1986a), Stute (1986b), Horváth and Yandell (1988). However,
the corresponding class C =

{
(−∞, z], z ∈ Rd

}
. Concerning the semi-metric topology

defined on E , we will use the notation

B(x, t) = {x1 ∈ E : dE(x1, x) ≤ t},

for the ball in E with center x and radius t, usually called in the literature the small ball
probability function when t is decreasing to zero. This notion plays a major role both from
theoretical and practical points of view, because the notion of ball is strongly linked with
the semi-metric d(·, ·), the choice of this semi-metric will become an important stage when
the data is taking its values in some infinite dimensional space. Indeed, in many examples,
the small ball probability function can be written approximately as the product of two
independent functions in terms of x and h, as in the following examples, which can be
found in Proposition 1 of Ferraty et al. (2007):

1. φ(hn) = Chυn for some υ > 0 with τ0(s) = sυ;

2. φ(hn) = Chυn exp(−Ch−pn ) for some υ > 0 and p > 0 with τ0(s) is the Dirac’s
function;

3. φ(hn) = C |ln(hn)|−1 with τ0(s) =]0,1] (s) the indicator function in ]0, 1].
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Let Fi be the σ-filed generated by ((X1, Y1), . . . , (Xi, Yi)) and Gi that generated by
((X1, Y1), . . . , (Xi, Yi), Xi+1). Let B(x, u) be a ball centered at x ∈ E with radius u.
Let Di = d(x,Xi) so that Di is a nonnegative real-valued random variables. Working on
the probability space (Ω,A,P), let

Fx(u) = P(Di ≤ u) = P(Xi ∈ B(x, u)),

and F
Fi−1
x = P(Xi ∈ B(x, u) | Fi−1) be the distribution function and the conditional

distribution function, given the σ-filed Fi−1 of (Di)i≥1 respectively. Denote by oa.s(u) a
real random function l such that l(u)/u converges to zero almost surely as u→ 0. Similarly
define Oa.s(u) as a real random function l such that l(u)/u is almost surely bounded.
Throughout the sequel, we assume tacitly that the sequence of random elements {(Xi, Yi), i =
1, . . . , n} is ergodic.

5.2.1 Assumptions and notation

Throughout this paper x is a fixed element of the functional space E . We define the metric
entropy with inclusion which provides a measure of richness (or complexity) of the class of
sets C . For each ε > 0, the covering number is defined as :

N (ε,C ,G (· | x))

= inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and G (Cj \ Ci | x) < ε},

the quantity log (N (ε,C ,G (· | x))) is called metric entropy with inclusion of C with
respect to G (· | x). Estimates for such covering numbers are known for many classes;
see, e.g., Dudley (1984). We will often assume below that either logN (ε,C ,G (· | x)) or
N (ε,C ,G (· | x)) behave like powers of ε−1. We say that the condition (Rγ) holds if

logN (ε,C ,G (· | x)) ≤ Hγ(ε), for all ε > 0, (5.3)

where

Hγ(ε) =
{

log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As in Polonik and Yao (2002), it is worth noticing that
the condition (5.3), γ = 0, holds for intervals, rectangles, balls, ellipsoids, and for classes
which are constructed from the above by performing set operations union, intersection
and complement finitely many times. The classes of convex sets in Rd (d ≥ 2) fulfill the
condition (5.3), γ = (d− 1)/2. This and other classes of sets satisfying (5.3) with γ > 0,
can be found in Dudley (1984).

Example 5. Bouzebda et al. (2016) The set C all indicator functions 1(∞,t] of cells in R
satisfies

N
(
ε, C, d(2)

γ

)
≤ 2
ε2
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for any probability measure γ and ε ≤ 1.Notice that

∫ 1

0

√
log(1

ε
)dε ≤

∫ ∞
0

u1/2 exp(−u)du ≤ 1

For more details and discussion on this example refer to example 2.5.4 in Van der Vaart
and Wellner (1996)

We give now further notation. For j ≥ 1 set

Mj = Kj(1)−
∫ 1

0
(Kj)′(u)τ0(u)du.

In this section, we establish the weak convergence of the process {ν̃n(C, x) : C ∈ C } defined
by

ν̃n(C, x) :=
√
nφ(hn) (Gn(C, x)− IEGn(C, x)) . (5.4)

In our analysis, we will make use of the following assumptions.

(H1) For x ∈ E , there exists a sequence of nonnegative bounded random functionals
(fi,1)i≥1, a sequence of random functions (gi,x)i≥1 a deterministic nonnegative bounded
functional f1 and a nonnegative real function φ where φ(hn)→ 0 as h→ 0 such that

(i) Fx(u) = φ(u)f1(x) + o(φ(u)) as u→ 0.

(ii) For any i ∈ N, F Fi−1
x (u) = φ(u)fi,1(x)+gi,x(u) = oa.s(φ(u)) as u→ 0. gi,x(u)/φ(u)

almost surly bounded and n−1
n∑
i=1

gji,x(u) = oa.s(φj(u)) as n→∞, j = 1, 2.

(iii) n−1
n∑
i=1

f ji,1(x)→ f j1 (x) almost surely asn →∞, for j = 1, 2.

(iv) There exists nondecreasing bounded function τ0(u) such that uniformly for all
u ∈ (0, 1),

τ0(u) + o(1) = φ(ru)
φ(r)

as r ↓ 0 and 1 ≤ j ≤ 2 + δ with δ > 0,
∫ 1

0
(Kj(u))′τ0(u)du <∞.

(H2) (i) There exist β > 0 and η1 > 0, such that for all x1, x2 ∈ Nx, a neighborhood of
x, we have

|G(C | x1)−G(C | x2)| ≤ η1d
β
E(x1, x2).

(H3) There exist m ≥ 2 and η2 > 0, such that, we have, almost surely

IE(|Y |m|X) ≤ η2 <∞;

(i) The conditional mean of 1{Yi∈C} given the σ-field Gi−1 depends only on Xi, i.e.,
for any i ≥ 1,IE

(
1{Y1∈C} | Gi−1

)
= G(Xi) almost surely.

(ii) The conditional mean of 1{Yi∈C} given the σ-field Gi−1 depends only on Xi,

i.e., for any i ≥ 1, IE
((
1{Y1∈C} −G(Xi)

)2
| Gi−1

)
= W2(Xi) almost surely.
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Moreover, the function W2 is continuous in a neighborhood of x, that is,

sup
{u:d(x,u)≤h}

|W2(u)−W2(x)| = o(1) as h→ 0;

(H4) For all (y1, y2) ∈ IR2d and constants b3 > 0, η4 > 0, we have for the conditional
density f(·) of Y given X = x the following

|f(y1)− f(y2) |≤ η4‖ y1 − y2‖b3 ;

(i) F (u;x) = φ(u)f1(x) as u→ 0, where φ(0) = 0 and φ(u) is absolutely continuous
in a neighborhood of the origin,

(H5) The kernel function K(·) is supported within (0, 1) and has a continuous first
derivative on (0, 1) and satisfied the condition K ′(t) < 0 ∀t ∈ (0, 1). Moreover,∣∣∣∣∫ 1

0
(Kj)′(u)du

∣∣∣∣ <∞, for j = 1, 2.

(H6) Assume the class of sets C satisfies the condition (5.3);
(H7) The smoothing parameter (hn) satisfies:

(i) logn
nmin(an,φ(hn)) −→ 0,

(ii) Let hn → 0 and nφ(hn)→∞ as n→∞.

5.2.2 Comments on the assumptions

The condition (H1) plays an important role in the ergodic and functional context of this
paper condition used here share some similarities with that used in Laib and Louani (2010).
Conditions (H2)(i) are classical in the nonparametric regression estimation. (H2)(ii) stand
as regularity conditions that are of usual nature. (H3) is necessary to establish consistency.
The condition (H4) on the density f(·) is a classical Lipschitz-type nonparametric functional
model. (H5) The conditions on the kernel are not very restrictive. (H7) rules out too
large or too small bandwidths without the consistency that could not be obtained.

5.3 Main results

Below, we write Z D= N (µ, σ2) whenever the random variable Z follows a normal law with
expectation µ and variance σ2, D→ denotes the convergence in distribution and P→ the
convergence in probability.

Theorem 19. [Uniform Consistency] Suppose that the hypotheses (H1)-(H7) hold. Let
C be a class of measurable sets for which

N (ε,C ,G (· | x)) <∞,

for any ε > 0. Suppose further that ∀C ∈ C

|G(C, y)f(y)−G(C, x)f(x)| −→ 0, as y → x.

103



5.3. MAIN RESULTS

If nφ(hn)→∞ and hn → 0 as n→∞, then

sup
C∈C
|Gn(C, x)− IE (Gn(C, x))| P−→ 0.

Remark that, the proof of Theorem 19 is a direct consequence of the decomposition

Gn(C, x)− IE (Gn(C, x)) = 1
IE(f̂n(x))

[
F̂n(C, x)− IE

(
F̂n(C, x)

)]
−Gn(C, x)
IE(f̂n(x))

[
f̂n(x)− IE(f̂n(x))

]
,

where

F̂n(C, x) = 1
nφ(hn)

n∑
i=1
1{Yi∈C}K

(
dE(x,Xi)

hn

)
,

f̂n(x) = 1
nφ(hn)

n∑
i=1

K

(
dE(x,Xi)

hn

)
.

Puting ∆i(x) = K

(
dE(x,Xi)

hn

)
. We have

F̂n(C, x) = 1
nφ(hn)

n∑
i=1
1{Yi∈C}∆i(x),

f̂n(x) = 1
nφ(hn)

n∑
i=1

∆i(x).

From now for x ∈ E , set

IE(F̂n(C, x)) = 1
nE(∆1(x))

n∑
i=1

IE
(
1{Yi∈C}∆i(x) | Fi−1

)
,

and
IE(f̂n(x)) = 1

nE(∆1(x))

n∑
i=1

IE(∆i(x) | Fi−1),

where IE(X | F) is the conditional expectation of the random variables X given the σ-field
F . Lemmas 3 and 4 are important steps towards Theorem 19, for which the proofs are
given in the Appendix.

Lemma 3. Suppose that the hypotheses (H1)-(H7) hold and for every fixed C ∈ C as
n→∞ we have :

sup
C∈C

∣∣∣F̂n(C, x)− IE
(
F̂n(C, x)

)∣∣∣ = oP(1).

Lemma 4. Suppose that the hypotheses (H1)-(H7) hold and for every fixed NE neighbor-
hood of x in the functional space E as n→∞, we have

sup
x∈NE

∣∣∣f̂n(x)− IE
(
f̂n(x)

)∣∣∣ = oP(1).
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To establish the asymptotic normality define the “bias” term by

Bn(x) =
IE
(
f̂n(x)

)
−Gn(C, x)IE

(
F̂n(C, x)

)
IE
(
F̂n(C, x)

)
= Mn(x)−Gn(C, x), (5.5)

where

Mn(x) =
IE
(
f̂n(x)

)
IE
(
F̂n(C, x)

) .
By stationarity of order one of the (Xi)’s, we have

IE(f̂n(x)) = 1. (5.6)

The following result gives the weak convergence. Keep in mind that f1(x) is given in (H1).

Theorem 20 (Asymptotic normality). Let (H1)-(H7) hold. Then as n→∞, for m ≥ 1
and C1, . . . , Cm ∈ C ,

{ν̃n(Ci, x)i=1,...,m}
D−→ N (0,Σ),

where Σ = σij(x), i, j = 1, . . . ,m and

σij(x) = C2
C2

1f1(x)W2(x),

whenever f1(x) > 0 and

C1 = k(1)−
∫ 1

0
K ′(u)τ0(u)d(u), C2 = K2(1)−

∫ 1

0
(K2)′(u)τ0(u)du.

To establish the density of the process, we need to introduce the following function which
provides the information on the asymptotic behaviour of the modulus of continuity

Λγ(σ2, n) =


√
σ2 log 1

σ2 , if γ = 0;
max

(
(σ2)(1−γ)/2, nφ(hn)(3γ−1)/(2(3γ+1))

)
, if γ > 0.

Theorem 21. Suppose that (H1)-(H7) hold. For each σ2 > 0, let Cσ ⊂ C be a class of
measurable sets with

sup
C∈Cσ

G(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (5.3) with γ ≥ 0. Further, we assume that φ(hn) → 0 and
nφ(hn)→ +∞ as n→ +∞, such that

nφ(hn) ≤
(
Λγ(σ2, n)

)2
,
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and as n→ +∞, we have

nφ

(
σ2 log

( 1
σ2

))1+γ

log(n) →∞.

Further we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the later has to be replaced by
σ2 ≥ φ(hn) log

( 1
φ(hn)

)
, then under conditions of Theorem 20 we have the process:

{ν̃n(C, x) : C ∈ C } ,

converges in law to a Gaussian process {ν̃(C, x) : C ∈ C } , that admits a version with uni-
formly bounded and uniformly continuous paths with respect to ‖ · ‖2−norm with covariance
σij(x) given in Theorem 20.

Remark 11. Central limit theorems are usually used to establish confidence intervals for
the target to be estimated. In the context of non-parametric estimation the asymptotic
variance Σ(x) := σi,j(x) in the central limit depends on certain functions only approximate
confidence intervals can be obtained in practice, even when Σ(x) functionally specified.
observing now in (20) that the limiting variance contains the unknown function f1 and
that the normalization depends on the function φ(·) which is not identifiable explicitly.
Moreover, we have to estimate the quantities W2 and τ0 the corollary below is a slight
modification of (20) allows to have usable form of our results in practice as usually the
conditional variance W2(x) is estimated by

W2,n =

n∑
i=1

(1{Yi∈C} −Gn(x))2K

(
dE(x,Xi)

h

)
n∑
i=1

K

(
dE(x,Xi)

h

)

=

n∑
i=1

(1{Yi∈C} −Gn(x))2K

(
dE(x,Xi)

h

)
n∑
i=1

K

(
dE(x,Xi)

h

) − (Gn(x))2

= ĝn(x)− (Gn(x))2.

Let us introduce the following estimate

Fx,n(t) = 1
n

n∑
i=1
1{d(x,Xi)≤t}.

Making use the decomposition of τ0(·) in (H1)(i) one may estimate τ0(·) by

τn(t) = Fx,n(th)
Fx,n(h) .

Subsequently, for a given kernel K(·) and the quantities C1 and C2 can be estimated as
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follows

C1,n = K(1)−
∫ 1

0
K
′(s)τn(s)ds, C2,n = K2(1)−

∫ 1

0
(K2)′(s)τn(s)ds.

Introduce now some further conditions needed to state

(H8) (i) The conditional mean of 1{Y 2
i ∈C}

given the σ-field Gi−1 depends only on Xi,
i.e., there exist a function g such that for any i ≥ 1, IE(1{Y 2

i ∈C}
| Gi−1) = g(Xi)

almost surely,

(ii) The conditional variance of 1{Y 2
i ∈C}

given Gi−1 depends only on Xi i.e., for
any i ≥ 1 IE

(
(1{Y 2

i ∈C}
)2 | Gi−1

)
= U(Xi) almost surely, for some function U .

Moreover, the function U is continuous in a neighborhood of x, that is

sup
u:d(x,u)≤h

|U(u)− U(x)| = o(1).

Corollary 5.3.1. Assume that conditions (H1)-(H8) hold true K ′ and (K2)′ are integrable
functions and nFx(h) −→ ∞ and hβ(nFx(h))1/2 −→ 0 as n → ∞. Then, for any x ∈ E
such that f1(x) > 0, we have

C1,n√
C2,n

√
nFx,n(hn)
W2,n(x) (Gn(C, x)−G(C, x)) D−→ N (0, 1).

Using Corollary (5.3.1) the asymptotic 100(1− α)confidence band given by[
Gn(C, x)− cα

C1,n√
C2,n

√
W2,n(x)
nFx,n(h) ,Gn(C, x) + cα

C1,n√
C2,n

√
W2,n(x)
nFx,n(h)

]
.

5.3.1 The bandwidth selection criterion

Many methods have been established and developed to construct, in asymptotically optimal
ways, bandwidth selection rules for nonparametric kernel estimators especially for Nadaraya-
Watson regression estimator we quote among them Hall (1984), Härdle (1985), Rachdi
and Vieu (2007), Dony and Mason (2008), Bouzebda and El-hadjali (2020) and Bouzebda
(2020). This parameter has to be selected suitably, either in the standard finite dimensional
case, or in the infinite dimensional framework for insuring good practical performances.
Let us define the leave-out-(Xi, Yi) estimator for regression function

Gn,j(C, x) =

n∑
i=1,i 6=j

1{Yi∈C}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) . (5.7)
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In order to minimize the quadratic loss function, we introduce the following criterion, we
have for some (known) non-negative weight function W(·) :

CV (C, h) := 1
n

n∑
j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
W (Xj) . (5.8)

Following the ideas developed by Rachdi and Vieu (2007), a natural way for choosing the
bandwidth is to minimize the precedent criterion, so let’s choose ĥn ∈ [an, bn] minimizing
among h ∈ [an, bn]:

sup
C∈C

CV (Ψ, h) .

The main interest of our results is the possibility to derive the asymptotic properties of our
estimate even if the bandwidth parameter is a random variable, like in the last equation.
One can replace (5.8) by

CV (C, hn) := 1
n

n∑
j=1

(
1{Yj∈C} −Gn,j(C,Xj)

)2
Ŵ (Xj , x) . (5.9)

In practice, one takes, for j = 1, . . . , n, the uniform global weights W (Xj) = 1, and the
local weights

Ŵ (Xj , x) =
{

1 if d(Xj , x) ≤ hn,
0 otherwise.

For sake of brevity, we have just considered the most popular method, that is, the cross-
validated selected bandwidth. This may be extended to any other bandwidth selector such
the bandwidth based on Bayesian ideas Shang (2014).

5.4 Testing the independence

we consider a sample of random elements (X1, Y1,1, Y1,2), . . . , (Xn, Yn,1, Yn,2) copies of
(X,Y1, Y2) that takes its value in a space E ×Rd1 ×Rd2 and define, for (C1, C2) ∈ C1 × C2,

Gn(C1 × C2, x) =

n∑
i=1
1{Yi,1∈C1}1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (5.10)

Gn,1(C1, x) =

n∑
i=1
1{Yi,1∈C1}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) , (5.11)
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Gn,2(C2, x) =

n∑
i=1
1{Yi,2∈C2}K

(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) . (5.12)

We will investigate the following processes, for (C1, C2) ∈ C1 × C2,

ν̂n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x))) , (5.13)

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)−Gn,1(C1, x)Gn,2(C2, x)) . (5.14)

Notice that we have

ν̆n(C1, C2, x) =
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x))) .

Hence we have

ν̆n(C1, C2, x) d=
√
nφ(hn) (Gn(C1 × C2, x)− IE(Gn(C1, x))IE(Gn(C2, x)))

+
√
nφ(hn)IE(Gn(C2, x)) (Gn(C1, x)− IE(Gn(C1, x)))

−
√
nφ(hn)IE(Gn(C1, x)) (Gn(C2, x)− IE(Gn(C2, x)))

= ν̂n(C1, C2, x) + IE(Gn(C2, x))ν̃n(C1, x)− IE(Gn(C1, x)) (5.15)

×ν̃n(C2, x).

Let {ν̂(C1, C2, x) : (C1, C2) ∈ C1 × C2} be a Gaussian process. Let us introduce the
following limiting process, for (C1, C2) ∈ C1 × C2,

ν̆(C1, C2, x) = ν̂(C1, C2, x) + G(C2, x)ν̃(C1, x)−G(C1, x)ν̃(C2, x).

We would test the following null hypothesis

H0 : Y1 and Y2 are conditionally independent given X = x.

Against the alternative

H1 : Y1 and Y2 are conditionally dependent.

Statistics of independence those can be used are

S1,n = sup
(C1,C2)∈C1×C2

|ν̂n(C1, C2, x)|, (5.16)

S2,n = sup
(C1,C2)∈C1×C2

|ν̆n(C1, C2, x)|. (5.17)
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A combination of Theorem 21 with continuous mapping theorem we obtain the following
result.

Theorem 22. We have under condition of Theorem 21, as n→∞,

S1,n → sup
(C1,C2)∈C1×C2

|ν̂(C1, C2, x)|, (5.18)

S2,n → sup
(C1,C2)∈C1×C2

|ν̆(C1, C2, x)|. (5.19)

5.5 Concluding remarks

In the present work, we have established the invariance principle for the conditional set-
indexed empirical process formed by ergodic functional data . Our results are obtained
under assumptions on the richness of the index class C of sets in terms of metric entropy
with bracketing in the framework of ergodic variables. This paper extends the dependence
setting to the cases not covered by the usual mixing structures because ideas to general
dependence structure is a rather underdeveloped field. Note that the ergodic framework
avoids the widely used variants to measure the dependency and our work would go well
beyond the scope of the empirical process literature, recall that the theory of empirical
process is useful in many applications and an application Bahadur presentation we will
derive.

5.6 Appendix

This section is devoted to the proof of our results. The aforementioned notation is also
used in what follows.

Proof of Lemma 3

Use finite metric entropy with inclusion, fix ε > 0 for C ∈ C . Let C∗, C∗ be a bracket for
C, i.e., C∗ ⊂ C ⊂ C∗, such that

G (C∗4C∗ | x) < ε.
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Since for A ⊂ B we have Gn(A, x) ≤ Gn(B, x) and G(A | x) ≤ G(B | x), it follows:

sup
C∈C

[Gn(C, x)− IE (Gn(C, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

+ sup
C∈C

[IE (Gn(C∗, x))− IE (Gn(C∗, x))]

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))]

+ sup
C∈C

G (C∗4C∗ | x)

≤ sup
C∈C

[Gn(C∗, x)− IE (Gn(C∗, x))] + ε. (5.20)

An analogous lower bound holds with C∗ replaced by C∗. Since the first term in the last
line is a supremum over finitely sets (for fixed ε > 0) it follows pointwise consistency of
Gn(·, ·) that the term is oP(1) and hence we obtain the desired result. �

Lemma 5.6.1. Assume that condition (H1(i))- (H1(ii))-(H1(iv))-(H5) hold true for any
real numbers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with δ > 0 as n→∞ we have :

(i) 1
φ(h) IE(∆j

i (x) | Fi−1) = Mjfi,1(x) +Oa.s
(
gi,x(h)
φ(h)

)
(ii) 1

φ(h) IE(∆j
1(x)) = Mjf1(x) + o(1)

(iii) 1
φk(h)(IE(∆1(x)))k = Mk

1 f
k
1 (x) + o(1)

The reader is referred to Laib and Louani (2010) for the proof of Lemma 5.6.1. �

Proof of Lemmas 4

We shall proof that
P
(∣∣∣f̂n(x)− IE(f̂n)

∣∣∣ > ε
)
→ 0.

Observe the condition in (5.6) and we use the same proof in Laib and Louani (2010) look
that f̂n(x)− 1 = R1,n(x) +R2,n(x) where

R1,n(x) = 1
nIE(∆1(x))

n∑
i=1

(∆i(x)− IE(∆i(x) | Fi−1))

R2,n(x) = 1
nIE(∆1(x))

n∑
i=1

(IE[∆i(x) | Fi−1]− IE(∆1(x)))

= 1
nIE(∆1(x))

n∑
i=1

IE[∆i(x) | Fi−1]− 1

Combining 5.6.1 with hypothesis (H1)-(ii) and (H1)-(iii) it easy seen that R2,n(x) = oa.s(1)

as n→∞. For the first term observe that R1,n(x) =
n∑
i=1

Lni(x), where Lni(x) is a triangular
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array of martingale differences with respect to the σ-field Fi−1 combining Burkholder Hall
and Heyde (1980) and Jensen inequalities, we obtain for any ε > 0 that exists a constant
C0 such that

P(|R1,n(x)| > ε) ≤ C0
IE(∆2

1(x))
ε2n(IE(∆1(x)))2 = O

( 1
ε2nφ(h) + o(1)

)
,

where the last equality results form (5.6.1). Since nφ(h)→∞ as n→∞ we conclude then
that R1,n(x) = oP(1). Thus the proof is complete. �

Proof of Theorem 20

We will use similar arguments to those used in the paper by Laib and Louani (2010) to
prove the asymptotic normality of the process we shall use the following notation, recall
the decomposition:

Gn(C, x)− IE (Gn(C, x)) = 1
IE(f̂n(x))

[
F̂n(C, x)− IE

(
F̂n(C, x)

)]
−Gn(C, x)
IE(f̂n(x))

[
f̂n(x)− IE(f̂n(x))

]
= Qn(x)

IE(f̂n(x))
,

where
Qn(x) =

[
F̂n(C, x)− IE

(
F̂n(C, x)

)]
−Gn(C, x)

[
f̂n(x)− IE(f̂n(x))

]
.

Lemma 5.6.2. Assume that the hypotheses (H1)-(H7) are satisfied, then we have for
any x ∈ E such that f1(x) > 0, we have :√

nφ(hn)Qn(x) D−→ N (0, σ2(x)), as n→∞.

Proof of Lemma 5.6.2

Let us introduce some notation. Set

ηni =
(
φ(h)
n

)1/2
(1{Yi∈C} −G(x)) ∆i(x)

IE(∆1(x)) , (5.21)

and define ξni = ηni − IE (ηni | Fi−1). It is easily seen that

(nφ(h))1/2Qn(x) =
n∑
i=1

ξni, (5.22)

where for any fixed x ∈ E the summands (5.22) form a triangular array of stationary
martingale differences with respect to the σ-field Fi−1. This allows us to apply the central
limit theorem for discrete-time arrays of real-valued martingales (see, Györfi et al. (1998)
page 23) to establish the asymptotic normality of Qn(x). This can be done if we establish
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the following statements:

(a)
n∑
i=1

IE
(
ξ2
ni | Fi−1

)
−→ σ2(x),

and
(b)nIE

(
ξ2
ni1|ηni|>ε

)
= o(1),

holds for any ε > 0 (Lindeberg condition).
Proof of Part (a). Observe first that∣∣∣∣∣

n∑
i=1

IE
(
η2
ni | Fi−1

)
−

n∑
i=1

IE
(
ξ2
ni | Fi−1

)∣∣∣∣∣ ≤
n∑
i=1

(IE (ηni | Fi−1))2 .

Making use of the condition (H2) and Lemma 5.6.1, one has

IE (ηni | Fi−1) = 1
IE(∆i)

(
φ(h)
n

)1/2
|IE ((G(Xi)−G(x))∆i(x) | Fi−1) |

≤ 1
IE(∆i)

(
φ(h)
n

)1/2
sup

u∈B(x,h)
|G(Xi)−G(x)|IE (∆i(x) | Fi−1)

= O(hβ)
(
φ(h)
n

)1/2 (fi,1(x)
f1(x) +Oa.s

(
gi,x(h)
φ(h)

))
. (5.23)

Thus, by (H1)(ii)–(iii), we have

n∑
i=1

(IE (ηni | Fi−1))2 = O(h2β)
(
φ(h)
n

) n∑
i=1

(
fi,1(x)
f1(x) +Oa.s

(
gi,x(h)
φ(h)

))2

= O(h2βφ(h))
(

1
f2

1 (x)
1
n

n∑
i=1

f2
i,1(x) + oa.s(1)

)
= Oa.s(φ(h)h2β). (5.24)

The statement (a) follows then if we show that

lim
n→∞

n∑
i=1

IE
(
η2
ni | Fi−1

)
= σ2. (5.25)

To prove (5.25), observe that

lim
n→∞

n∑
i=1

IE
(
η2
ni | Fi−1

)
= φ(h)
n(IE(∆1(x)))2

n∑
i=1

IE
[
(1{Yi∈C} −G(x))2∆2

i (x) | Fi−1
]

= J1n+J2n,

where

J1n = φ(h)
n(IE(∆1(x)))2

n∑
i=1

IE
[
∆2
i (x)IE

(
1{Yi∈C} −G(x)

)2
| Gi−1 | Fi−1

]

= φ(h)
n(IE(∆1(x)))2

n∑
i=1

IE
[
W2(Xi)∆2

i (x) | Fi−1
]
, (5.26)
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than, we have

J2n = φ(h)
n(IE(∆1(x)))2

n∑
i=1

IE
[
(G(Xi)−G(X))2∆2

i (x) | Fi−1
]
.

we give now an upper bound for

IE
[
W2(Xi)∆2

i (x) | Fi−1
]
.

Towards this end, we split it up into

In1 + In2,

with
In1 = W2(x)IE(∆2

i (x) | Fi−1)

and
In2 = IE

[
(W2(Xi)−W2(x))∆2

i (x) | Fi−1
]

Making use of (H2)-(ii), one can write

|In2| ≤ sup
u:d(x;u)≤h

|W2(u)−W2(x))|IE
[
∆2
i (x) | Fi−1

]
| = IE

[
∆2
i (x) | Fi−1

]
× o(1)

Thus, in view of 5.6.1 part (i), we have

IE
[
W2(Xi)∆2

i (x) | Fi−1
]

= (o(1) +W2(x))IE
(
∆2
i (x) | Fi−1

)
= (o(1) +W2(x))(M2φ(h)fi,1(x) +Oa.s(gi.x(h))). (5.27)

Combining again 5.6.1 and conditions (H1)(ii)–(iii), it is easily seen that lim
n→∞

J1n =
M2
M2

1

W2(x)
f1(x) almost surely, whenever f1(x) > 0. Consider now the term J2n. Making use of

conditions (H1)(ii)–(iii) and (H2)-(i) and Lemma 5.6.1, one can write

|Jn2| = O(h2β) φ(h)
n(IE(∆1(x)))2

n∑
i=1

IE
(
∆2
i (x) | Fi−1

)
= O(h2β)

(
M2
M2

1

1
f1(x) + oa.s(1)

)
→ 0 almost surely asn→∞. (5.28)

Therefore,

lim
n→∞

n∑
i=1

IE
(
∆2
i (x) | Fi−1

)
= lim

n→∞
(Jn1 + Jn2) = M2

M2
1

W2(x)
f1(x) =: σ2(x) almost surely

whenever f1(x) > 0, this completes the proof of Part (a).

Proof of Part (b). the Lindeberg condition results from Corollary 9.5.2 in (Chow and
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Teicher (1997)) which implies that

nIE(ξ2
ni1(|ξni| > ε)) ≤ 4nIE

(
η2
ni1(|ηni| > ε/2)

)
.

Let a > 1 and b > 1 such that 1
a + 1

b = 1. Making use of Hölder and Markov inequalities
one can write, for all ε > 0.

IE
(
η2
ni1(|ηni| > ε/2)

)
≤ IE|ηni|2a

(ε/2)2a/b ,

taking C0 a positive constant and 2a = 2 + δ (with δ as in (H1)) we obtain

4nIE
(
η2
ni1(|ηni| > ε/2)

)
≤ C0

(
φ(h)
n

)(2+δ)/2 n

(IE(∆1(x)))2+δ IE([|1{Yi∈C} −G(x)|∆i(x)]2+δ)

≤ C0

(
φ(h)
n

)(2+δ)/2 n

(IE(∆1(x)))2+δ IE
(
IE
(
|1{Yi∈C} −G(x)|2+δ(∆i(x))2+δ | Xi

))
≤ C0

(
φ(h)
n

)(2+δ)/2 n

(IE(∆1(x)))2+δ IE
(
(∆i(x))2+δW 2+δ(Xi)

)
≤ C0

(
φ(h)
n

)(2+δ)/2 n

(IE(∆1(x)))2+δ

(
IE
(
(∆i(x))2+δ|W 2+δ(Xi)−W 2+δ(x)

)
+|W 2+δ(x)|IE

[
(∆i(x))2+δ

])
≤ C0

(
φ(h)
n

)(2+δ)/2 nIE
[
(∆1(x))2+δ

]
IE (∆1(x))2+δ

(
|W 2+δ(x)|+ o(1)

)
≤ C0(nφ(h))−δ/2 (M2+δf1(x) + o(1))

(M2+δ
1 f2+δ

1 (x) + o(1))

(
|W 2+δ(x)|+ o(1)

)
= O((nφ(h))−δ/2), (5.29)

where the last equality follows from Lemma 5.6.1. This completes the Proof of part (b),
since nφ(h)→∞ as n→∞. Thus the proof is complete. �

Proof of Theorem 21

Let us recall some facts. Let f(·) = 1{· ∈ C1} and g(·) = 1{· ∈ C2}. Given random
measures µn on (X,X ), we define

d(2)
µn (f, g) :=

[
µn(f − g)2

]1/2
.

Say that a class of functions F has uniformly integrable entropy with respect to L2-norm if

∫ ∞
0

sup
γ∈M(X,F )

[
lnN

(
ε
[
γ
(
F 2
)]1/2

,F , d(2)
γ

)]1/2
dε <∞,

where d(2)
γ (f, g) :=

[∫
X(f − g)2dγ

]1/2. When the class F has uniformly integrable entropy,(
F , d(2)

γ

)
is totally bounded for any measure γ. Let κ be an envelope of F . That is, κ a
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measurable function mapping F to [0,∞) such that

sup
f∈F
|f(t)| ≤ κ(t), for all t ∈ R.

Let M(R, κ) be the set of all measures γ on (R,F ) with

γ(κ) :=
∫
R
κ2dγ <∞, (5.30)

and
d(r)
γ (f, g) :=

[∫
R

(f − g)rdγ
]1/r

.

Given random measures µn on (R,F ), we define

d(2)
µn (f, g) := [µn(f − g)2]1/2.

Let us introduce the uniform entropy integral

J(δ,F , d(2)
γ ) =

∫ δ

0
sup

γ∈(R,F )

[
log

(
N
(
ε[γ(κ2)]1/2,F , d(2)

γ

))]1/2
dε.

We say that F has uniformly integrable entropy with respect to L2-norm if

J
(
∞,F , d(2)

γ

)
<∞. (5.31)

When the class F has uniformly integrable entropy,
(
F , d

(2)
γ

)
is totally bounded for any

measure γ. Let {B(ϕ) : ϕ ∈ F} be a Gaussian process whose sample paths are contained
in

Ub(F , d(2)
γ ) :=

{
f ∈ `∞(F ) : f is uniformly continuous with respect to d(2)

γ

}
.

Let L(•) denote the law of •. Notice that obtaining a uniform CLT essentially means that
we show the following convergence{

L(An,ϕ) : ϕ ∈ F
}
→
{
L(B(ϕ)) : f ∈ F

}
,

where the processes are indexed by F and considered as random elements of the bounded
real-valued functions on F defined by

`∞(F ) :=
{
f : F → R : ‖f‖F := sup

ϕ∈F
|f(ϕ)| <∞

}
, (5.32)

which is a Banach space equipped with the sup norm. In the sequel, we use the weak
convergence in the sense of Hoffmann-Jø rgensen (1991) that we recall in the following
definition. Throughout the paper, E∗ denotes the upper expectation with respect to the
outer probability P∗, we refer to (Van der Vaart and Wellner, 1996, p.6) and (Kosorok,
2008, §6.2, p.88) for further details and discussion.
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Definition 5.6.3. A sequence of `∞(F )-valued random functions {Tn : n ≥ 1} converges
in law to a `∞(F )-valued Borel measurable random function T whose law concentrates on
a separable subset of `∞(F ), denoted Tn  T , if,

Eg(T ) = lim
n→∞

E∗g(Tn), ∀g ∈ C(`∞(F ), ‖ · ‖F ),

where C(`∞(F ), ‖·‖F ) is the set of all bounded ‖·‖F -continuous functions from (`∞(F ), ‖·
‖F ) into R.

We set

ηn;i(f, x) := ηn;i(C1, x) :=
(
φ(h)
n

)1/2 (
1{(Yi∈C1} −G(C, x)

) ∆i(x)
E(∆i(x)) .

with ∆i(x) = K(h−1d(x,Xi)), and define ηn;i(g, x) in a similar way. Let

ξn;i(f, x) := ηn;i(f, x)− E(ηn;i(f, x) | Fi−1).

Let us define
σ2
n(f, g) =

n∑
i=1

(ξn;i(f, x)− ξn;i(g, x))2 .

To prove Theorem 21, using Theorem 2 of Bae et al. (2010), it suffices to show that, for all
constant L > 0, as n tends to infinity, that

P∗
{

sup
f,g∈F

σ2
n(f, g)

(d(2)
µn (f, g))2

> L

}
→ 0, (5.33)

which is implied by the following,

E∗ sup
d(2)(f,g)≤δn

n∑
i=1

E((ξn;i(f, x)− ξn;i(g, x))2 | Fi−1)
(d(2)(f, g))2 → 0, as δn → 0,

where we recall
d(2)(f, g) :=

[∫
R

(f − g)2dP
]1/2

.

In the rest of the proof, denote by βn(x) =
√
φ(h)

E[∆1(x)] , and

ζ(f, x) = ζ(C1, x) :=
(
1{(Yi∈C1} −G(C, x)

)
∆i(x).
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Therefore, we have the following

n∑
i=1

E((ξn;i(f, x)− ξn;i(g, x))2 | Fi−1)
d(2)(f, g)

= β2
n(x)

nd(2)(f, g)

n∑
i=1

E
[(

(ζ(f, x)− ζ(g, x))− E [ζ(f, x)− ζ(g, x) | Fi−1]
)2
| Fi−1

]2

≤ β2
n(x)

nd(2)(f, g)

n∑
i=1

2E
[(
ζ(f, x)− ζ(g, x)

)2
| Fi−1

]
− 2E

{[
E
[(
ζ(f, x)− ζ(g, x)

)
| Fi−1

]]2}
:= T1,n + T2,n.

We first evaluate T1,n. We have

T1,n ≤ 2β2
n(x)

nd(2)(f, g)

n∑
i=1

2E
[
∆2
i (x) (f(Yi)− g(Yi))2 | Fi−1

]
+2E

[
∆2
i (x) (G(C1, x)−G(C2, x))2 | Fi−1

]
:= T1,n,1 + T1,n,2.

Using the fact that E(∆2
1(x)) = O(φ(h)) (in view of Lemma 3), the class of functions F

admits a constant envelope and K(·) is bounded and bounded away from zero, one may
get the following upper bound of the last equation, for some positive constant,

T1,n,1 ≤ C
√
φ(h)

d(2)(f, g)
E [∆1(x) (f(Y1)− g(Y1))]

≤ C
√
φ(h)

d(2)(f, g)
E
[
∆1(x)2

]1/2
E
[
(f(Y1)− g(Y1))2

]1/2
= C

√
φ(h)

G
2(ζ)

E
[
∆1(x)2

]1/2
= O(φ(h)) = o(1).

Making use of similar arguments, we infer that

T1,n,2 = Cφ(h)3/2

d(2)(f, g)
(E [(f(Y )− g(Y ))|X = x])2 = O(φ(h)3/2 = o(1).

We readily obtain that, T1,n = o(1). We have, by similar arguments to those used in the
proof of the preceding statement, T2,n = o(1). Making use of Lindeberg conditions of the
preceding proof and (5.33) combined with Theorem 1 of Bae et al. (2010), we obtain, for
given ε > 0 and γ > 0, there exists η > 0, such that

lim sup
n→∞

P∗
{

sup
d(C1,C2))≤η

|ν̃n(C1, x)− ν̃n(C2, x)| ≥ 5γ
}
≤ 3ε. (5.34)

Now the proof theorem is completed by combining this last equation with Theorem 21. �
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CHAPTER 5. SOME CHARACTERISTICS OF THE CONDITIONAL SET-INDEXED
EMPIRICAL PROCESS INVOLVING FUNCTIONAL ERGODIC DATA

5.7 Examples

Example 6. (Laib and Louani (2010)) On the Hilbert space E equipped with the norm
‖ · ‖ associated to the inner product 〈·, ·〉, consider the Hilbert autoregressive model of order
one defined, for n ≥ 1, by

Xn = ρ(Xn−1) + εn,

where (εn)n≥1 is an i.i.d. sequence of Hilbert random variables such that εn is independent
of Xn−1 and IE(‖εn‖2) < ∞ and ρ is a functional operator on E. For k ∈ N∗ , consider
the semi-metric dk defined for for any (x, y) ∈ E2, by

dk(x, y) =

 k∑
j=1
〈x− y, ej〉2

 1
2

. (5.35)

Taking the semi-metric defined in the statement (5.35), observe that

FFi−1
x (u) = P(dk(x,Xi) ≤ u | Fi−1) = P(dk(x, ρ(Xi) + εi) ≤ u | Fi−1).

Since we can write εi =
∞∑
j=1

εjiej and for any s ∈ E ρ(s) =
∞∑
j=1

(ρ(s))jej, it follows that

FXi|Xi−1=s(u) = P(dk(x, ρ(Xi) + εi) ≤ u | Xi−1 = s)

= P

 k∑
j=1
〈xj − (ρ(s))j + εji , ej〉

2 ≤ u2


= P(‖ε̄i − (ρ̄(s))− x‖Ecld ≤ u) = P(ε̄i ∈ Bk((ρ̄(s))− x, u)),

where ε̄i = (ε1i , . . . ., εki ), ρ̄(s) = ((ρ(s))1, . . . ., (ρ(s))k) and Bk(ρ̄(s)− x, u) is the ball in Rk

of center ρ̄(s)− x and radius u. Denote by g the density function of ε̄i Clearly, we have

FXi|Xi−1=s(u) =
∫
. . .

∫
Bk(ρ̄(s)−x,u)

g(t1, . . . , tk)dt1 . . . dtk

=
∫
. . .

∫
Bk(ρ̄(s)−x,u)

|g(t1, . . . , tk)− g(ρ̄(s)− x)|dt1 . . . dtk + Cukg(ρ̄(s)− x).

When g is assumed to be a Lipschitz function of order 1 with a constant C > 0, we obtain

FXi|Xi−1=s(u) = Cukg(ρ̄(s)− x) + o(uk).

Therefore,
FFi−1
x (u) = FXi|Xi−1=s(u) = Cukg(ρ̄(Xi−1)− x) + o(uk).

Example 7. (Laib and Louani (2010)) Let C be a separate abstract space equipped with
a semi-distance. Consider the autoregressive model of order one defined, for any i ≥ 1,
by Xi = ρ(Xi−1) + εi where εi = ηih with a real random variable ηi independent of Xi−1

and h ∈ C and ρ is a functional operator on C. For (x, y) ∈ C consider the semi-distance
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between x and y given by
d(x, y) =

∣∣∣∣∫ (x(t)− y(t)dt
∣∣∣∣ .

Observe, for any u > 0, that we have

FFi−1
x (u) = P(dk(x,Xi) ≤ u | Fi−1) = P(d(x,Xi) ≤ u | Xi−1).

Consequently, whenever 0 6=
∫
h(t)dt <∞, we have

FXi|Xi−1=s(u) = P(d(x,Xi) ≤ u | Xi−1 = s)

= P

(∣∣∣∣∫ x(t)−Xi(t)dt
∣∣∣∣ ≤ u | Xi−1 = s

)
= P

(∣∣∣∣∫ x(t)− ρ(Xi−1)(t)− ηih(t)dt
∣∣∣∣ ≤ u | Xi−1 = s

)
= P

(∣∣∣∣∫ x(t)− ρ(s)(t)− ηih(t)dt
∣∣∣∣ ≤ u)

= P

(−u+
∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt ≤ ηi ≤
u+

∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)
= Φ

(
u+

∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)
− Φ

(−u+
∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)
,

where Φ is the cumulative distribution function of ηi. Assuming now that 0 <
∫
h(t)dt <∞,

|
∫
x(t)dt| <∞ and |

∫
ρ(s)(t)dt| <∞ for any s ∈ C and tacking Φ as the N (0, 1) cumulative

distribution function, we obtain

FXi|Xi−1=s(u) = u∫
h(t)dt

√
2
π

exp
(
−1

2

(∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)2)
(1 + o(1)).

Thus

FFi−1
x (u) = u∫

h(t)dt

√
2
π

exp
(
−1

2

(∫
x(t)dt−

∫
ρ(s)(t)dt∫

h(t)dt

)2)
(1 + o(1)),

and the condition (H1)(ii) is satisfied with

φ(u) = u∫
h(t)dt

√
2
π
.
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CHAPTER 6

CONCLUSION AND PROSPECTS

6.1 Conclusion

In this thesis we were interested specifically to Nadaraya-Watson conditional empirical
processes model when the covariates are functional, the model studied, concerns the set-
indexed conditional empirical process and we established the asymptotic properties of the
built estimator :

For our model we studied the invariance principle in which we established the weak con-
vergence uniform and asymptotic normality with giving variance formula where we used
same results obtained by Masry (2005) under some assumptions also the density where
we applied the chaining method developed by Doukhan (1995) , and for the problem of
choosing the optimal smoothing parameter we proposed the bandwidth selection criterion
rules, we have just considered the most popular method, that is the cross-validated selected
bandwidth, In addition we applied our main results for testing the conditional independence
we point out that our results are the first in empirical process with functional framework,
the present work extended the results of Polonik and Yao (2002) given functional mixing
approach on note the main difficulty when dealing with functional variables on relies on
the difficulty for choosing some appropriate measures of reference in infinite dimensional
space because for the theory of empirical process many technique have been studies in
the literature but functional framework no results exist, than we extend our work to the
ergodic data where we use paper Laib and Louani (2010) for our contribution.

The theoretical results in this thesis will become principal reference for many further
developments in functional data analysis because this contribution open lot of search work
in the following section we give some prospects.
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6.2. PROSPECTS

6.2 Prospects

Our work in this thesis is the first results given for conditional set-indexed empirical process
when the covarite are functional so this work offers many perspectives to short and long
terms to improve and extend our results in functional framework:
About the model :
One of the next work we can replace the set by an function in the model studied and we
give the same results in this thesis see the model given by Poryvăı (2005) in the multivariate
framework then we propose the following functional one:
We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn) copies of (X,Y ) that takes
its value in a space E × F . The functional space E and F are equipped with a semi-metric
dE(·, ·) and dF (·, ·) respectively, for some measurable function f in a class of functions F ,
We will consider the following Nadaraya Watson-type conditional empirical distribution:

Gn(f, x) =

n∑
i=1

f(Yi)K
(
dE(x,Xi)

hn

)
n∑
i=1

K

(
dE(x,Xi)

hn

) ,

where K(·) is a real-valued kernel function from [0,∞) into [0,∞) and hn is a smoothing
parameter f is a measurable function, and x ∈ E .Concerning the semi-metric topology
defined on E and F we will use the notation

B(x, t) = {x1 ∈ E : dE(x1, x) ≤ t},

for the ball in E with center x and radius t. We denote

φx(t) = P(dE(x,X) ≤ t) = P(X ∈ B(x, t)),

which is the small ball probability function. We defined the conditional empirical process
indexed by class of functions :

νn(f, x) =
√
nφ(hn) (Gn(f(y), x)− IE(Gn(f(y), x))) , for f ∈ F .

About the methods :
The k-nearest neighbour algorithm is among the most popular methods used in statistical
pattern recognition we can apply this method to obtain same results in this thesis.
About the nature of variables:
We can extend our results for the conditional set-indexed empirical process to the case
of the functional ergodic data with missing at random , also weak dependency process
Doukhan and Louhichi (1999)recall also in the case of independents variables no results be
studied.
About the applications :
We can also study the Bahadur representation for the conditional quantile that will extend
the work given by Polonik and Yao (2002).
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«On the weak convergence of local empirical processes»
Abstract : The project of this thesis focuses on the principle of invariance for conditional
empirical processes by introducing the Nadaraya Watson type estimator when the covariates
are functional. We have proposed a conditional empirical process indexed by an ensemble
class where we establish weak consistency and asymptotic normality for the proposed
estimator under certain conditions when the variables are stationary and strongly mixed.
In the following we use our main results to test conditional independence and we extend
our results to ergodic data.
Keywords: Conditional empirical process, Nadaraya Watson, functional covarites, strong
mixing, ergodic.

« Sur la convergence faible des processus empiriques locaux »
Résumé : Le projet de cette thèse se focalise le principe d’invariance pour des processus
empiriques conditionnels en introduisant l’estimateur du type Nadaraya Watson lorsque les
covariables sont fonctionnelles. Nous avons proposé un processus empirique conditionnel
indexé par une classe d’ensemble où nous établissons la consistance faible et la normalité
asymptotique pour l’estimateur proposé sous certaines conditions lorsque les variables sont
stationnaires et fortement mixtes. Dans la suite nous utilisons nos principaux résultats pour
tester l’indépendance conditionnelle et nous étendons nos résultats aux données ergodiques.
Mots clés : Processus empirique conditionnel, Nadaraya Watson , les covariables sont
fonctionnelles, Fort mixtes, ergodiques.
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