Université de Saïda- Dr. Moulay Tahar Faculté des Sciences

N°d'ordre :

Thèse

Présentée pour obtenir le diplôme de

Doctorat de 3^{ième} Cycle

Spécialité : Physique des matériaux

Filière : Physique

Par : BENATIA Mohamed

Thème :

Calculs ab-initio des propriétés des pérovskites BaXO₃ (X : métal de transition)

Thèse soutenue le 22/06/2022 devant le jury composé de :

N°	Nom et prénom	Grade	Etablissement	Qualité
01	DJAAFRI Tayeb	M.C.A	Université de Saïda-Dr. Moulay Tahar	Président
02	ELKEURTI Mohammed	Pr.	Université de Saïda-Dr. Moulay Tahar	Rapporteur
03	ZEMOULI Mostefa	M.C.A	Université de Saïda-Dr. Moulay Tahar	Examinateur
04	BENHALIMA Nadia	M.C.A	Université de Saïda-Dr. Moulay Tahar	Examinateur
05	BOUDIA Keltouma	Pr.	Université De Tissemsilt	Examinateur
06	MOKADDEM Allel	Pr.	Université de Saïda-Dr. Moulay Tahar	Examinateur
07	BOUDALI Abdelkader	Pr.	Université de Saïda-Dr. Moulay Tahar	Examinateur

Dédicace

Grâce à Dieu, le tout puissant, qui m'a guidé sur la bonne voie .Puis c'est grâce à la patience, au soutien et au sacrifice de "Ma mère et mon père que le bon dieu les protège" et ma famille que j'ai pu voir la lumière au bout du tunnel! A mes frères et mes amis qui sont toujours à mes côtés dans le mal et dans le bien. Et mes sœurs et leurs maris .A tout mes amis .

Surtout a celle que j'aime : « ma Femme et mes gousses Anes et Mouath et Kossai »

Remerciement

Je tiens à exprimer ma grande gratitude à mes encadreurs, monsieur Driss Khodja Mohamed et Elkeurti Mohammed, pour leur conseil, leur aide et leur patience avec moi tout au long de mon stage.

Je tiens à remercier vivement monsieur BOUDALI Abdellkader, mes amies et mes frères MARBOUH Nourdinne ,Tabti masseoud, Bekki Belmorsli,Berriah khalifa,Yagoubi Ahmed,Hadji Bagdad, , et Melle SADAOUI Fatiha.

Je tiens à remercier vivement les jury d'examen qui ont acceptés de juger ce travail de doctorat : DJAAFRI Tayeb, BENHALIMA Nadia, BOUDIA Keltouma, MOKADDEM Allel. Ainsi j'adresse mes remerciements à toutes les personnes qui m'ont aidé par leurs conseils et leur encouragement, et tous ce qui sont de près ou de loin. \ll Ab-initio calculations of BaXO3 perovskite properties (X : transition metal) \gg

Abstract

The present study investigates the structural, electronic, elastic, and thermodynamic characteristics of $BaXO_3$ compounds (where X represents (X = Fe, Nb, Mo and Hf)) in their perovskite cubic crystalline phase. The Functional Density Theory is utilized as a component of the **FP-LAPW** method, executed in the code **WIEN2k-14**. They use a functional gradient approximation generalized on the **Perdew2008** function (**GGA-PBEsol**).

The network parameter, the compressibility modulus, and its derivative are calculated. The elastic constants, denoted as $(C_{11}, C_{12} \text{ and } C_{44})$ were calculated to investigate the stability. The anisotropy factor (A), compressibility modulus (B), shear modulus (G), modulus of tetragonal shear (G'), compressibility (β) , **Young's** modulus (E), **Cauchy** pressure (C_P) , Lamé coefficients (λ, μ) , Poisson ratio (σ) , and **Debye** temperature (Θ_D) were determined using calculated monocrystalline elastic constants. For the band structure, the density of states, exchange, and correlation effects were evaluated using the **Tran-Blaha-modified Becke-Johnson** potential to describe the energy gaps accurately. The obtained results were compared with available experimental data and other theoretical calculations.

We utilized the **Debye** quasi-harmonic model, which is implemented in the **GIBBS** program, to compute the thermal properties of our compounds. These

properties include the **Gruneisen** parameter (γ) , the thermal expansion coefficient (α) , the pressure specific heat constant (C_P) , constant volume specific heat (C_V) , isothermal compressibility modulus (B_T) , adiabatic compressibility modulus (B_S) , and the **Debye** temperature (Θ_D) .

Our materials exhibit brittleness, mechanical stability, and elastic anisotropy, characterized by a prevalence of directed bonding. Initial estimations of the elastic and thermodynamic parameters. The materials BaFeO₃, BaNbO₃, and BaMoO₃ lack a gap in the vicinity of the Fermi levels, suggesting that they are metallic. The material BaHfO₃ exhibits an indirect band gap between the R and Γ points, with a value of 5.66 eV. The highest energy level of the valence band is mainly determined by the O-2 p states. In contrast, the lowest energy level of the conduction band is predominantly influenced by the Ba-d and Hf-d_{t2g} states.

Keywords : First-principles, GGA-PBEsol,Band structure, TB-mBJ, Elastic parameters, Thermodynamic properties .

Résumé

La méthode **FP-LAPW** appliquée dans le code **WIEN2k-14** est utilisée pour étudier les propriétés structurelles, électroniques, élastiques et thermodynamiques des composés $BaXO_3$ avec (X = Fe, Nb, Mo and Hf) dans la phase cristalline cubique pérovskite. à l'aide d'une approximation de gradient généralisée basée sur une approximation fonctionnelle de **Perdew2008(GGA-PBEsol)**.

Le module de compressibilité et sa dérivée sont calculés ainsi que les paramètres du réseau. En effet, pour étudier la stabilité, les constantes élastiques $(C_{11}, C_{12} \text{ and } C_{44})$ ont été calculées. De plus, les constantes élastiques monocristallines calées ont été utilisées pour calculer le facteur d'anisotropie (A), le module de compressibilité (B), le module de cisaillement tétragone (G'), la compressibilité (β) , le module de **Young** (E), la pression de **Cauchy** (C_P) , les coefficients de **Lamé** (λ, μ) , le rapport de **Poisson** (σ) et la température de **Debye** (Θ_D) . Le potentiel de **Becke Johnson** modifié par **Tran Blaha** a été utilisé pour traiter la structure de la bande, la densité d'états, les effets d'échange et les corrélations. Cela a permis de fournir une meilleure description des gaps. Les données expérimentales disponibles et d'autres calculs théoriques sont comparés aux résultats obtenus.

Nous avons calculé les propriétés thermiques de nos composées, y compris le paramètre de **Gruneisen** (γ), le coefficient de dilatation thermique (α), la chaleur spécifique à pression constante (C_P), la chaleur spécifique à volume constant (C_V) , le module de compressibilité isotherme (B_T) , et le module de compressibilité adiabatique (B_S) . Nous avons utilisé le modèle quasi-harmonique de **Debye** qui est implémenté dans le programme **GIBBS**.

Nous avons découvert que nos matériaux étaient fragiles, mécaniquement stables et élastiquement anisotropes, avec une liaison directionnelle dominante. Des prédictions initiales pour les paramètres élastiques et thermodynamiques.

L'absence de gap au voisinage des nivaux de fermi des matériaux BaFeO₃, BaNbO₃ et BaMoO₃ indique que ces matériaux sont des métaux.La bande interdite indirecte $R - \Gamma$ de BaHfO₃ est de 5,66; eV. Les états O -2 p contribuent principalement au bas de la bande de conduction, tandis que les états Ba-d et Hf-d_{t2q} contribuent principalement au haut de la bande de valence.

Mots clés : premiers principes , GGA-PBEsol, TB-mBJ, paramètre élastiques , propriétés thermodinamiques ,structure de bandes .

الملخص:

«دراسة المبادئ الأولى لخصائص المركبات BaXO₃ حيث X معادن النقل »

يتم دراسة الخصائص الهيكلية والإلكترونية و المرونية و الديناميكا الحرارية للمركبات BaX(X= Fe, Nb, Mo et Hf) O₃ في مرحلة البلورة المكعبة البيروفسكيت باستخدام طريقة الأمواج المستوية المتزايدة الخطية المنفذة في برنامج المحاكاة Holes تم استخدام تقريب التدرج المعمم (GGA-PBEsol) ل (CGA-PBEsol) لحساب طاقة التبادل و الارتباط . يتم حساب معامل الشبكة ووحدة الانضغاط ومشتقها في الواقع، بحساب الثوابت المرونية (C₁₁, C₁₂ C₄₄) من أجل دراسة ثبات الخواص ، بالإضافة إلى ذلك، عامل التباين (A) معامل الانضغاط (B)، معامل القص (G)، معامل القص الرباعي (G)، الانضغاط ومشتقها في الواقع، بحساب الثوابت المرونية (Bound (B)، معامل القص (C))، معامل القص الرباعي بالإضافة إلى ذلك، عامل التباين (A) معامل الانضغاط (B)، معامل القص (G)، معامل القص الرباعي (G')، الانضغاط (β)، معامل ومناق بالنسبة لهيكل النطاق، تم التعامل مع كثافة الحالة وآثار التبادل والارتباط من خلال إمكانات، Johnson Becke المعدلة بواسطة مع مالك، تعامل مع كثافة الحالة وآثار التبادل والارتباط من خلال إمكانات، Johnson Beck بواليات. المعدلة بواسطة مالية معامات وصف أفضل للنغرات. تقارن النتائج التي تم الحصول عليها بالبيانات التجريبية المتاحة و بحسابات نظرية أخرى.

قمنا بتطبيق نموذج Debye شبه التوافقي، والذي يتم تنفيذه في برنامج GIBBS لحساب الخصائص الحرارية لمركباتنا مثل معامل Gruneisen)(γ معامل التوسع الحراري (alpha) الحرارة المحددة عند ضغط ثابت (CP)، الحرارة المحددة عند حجم ثابت (Cv)، وحدة الانضغاط متساوي الحرارة (B_T)، وحدة الانضغاط الأدياباتيك (B_S) ودرجة حرارة Debye (Θ_D).

وجدنا أن موادنا هشة و مستقرة ميكانيكيًّا ومتباينة الخواص المرونية، مع هيمنة الترابط الاتجاهي. مع التنبؤات الأولى للبارامتر المرن والديناميكي الحراري.

بالنسبة للمواد BaFeO₃, BaNbO₃ et BaMoO₃ فإنه لا توجد فجوة في محيط مستويات fermi مما تشير إلى أن هذه المواد هي معادن. فيما يخص BaHfO₃ فلديه نطاق غير مباشر R – R ب R – G فلديه نطاق غير مباشر IL و 5,66 eV يرجع الجزء العلوي من نطاق التكافؤ أساسًا إلى الحالات O-2 p بينما ينتج الجزء السفلي من نطاق التوصيل بشكل أساسي من الحالات Ba – d و Hf –d_{t2g} .

الكلمات الرئيسية: المبادئ الأولى، TB-mBJ، GGA-PBEsol معلمة المرونة، خصائص الترمودينامية، بنية النطاق.

Table des matières

	Déd	icace .	••••					•				•								•	•	•		i
	Ren	nerciem	ent					•				•	•			•				•		•	•	ii
	Abs	tract .																			•	•		iii
	Rési	ımé .																			•	•		V
			• • • • • •					•				•	•	• •		•	•				•	•	•	vii
Ta	able o	des fig	ures																					xi
	list o	of Figur	es			• •		•				•	•			•	•			•	•	•	•	xii
Ta	ables																							xiii
	list o	of tables	5									•			•	•				•		•		xiv
	Bibl	iograph	nie					•				•	•	• •	•	•	•			•	•	•	•	4
	Intr	roducti	ion géné:	ra	le																			1
1	PR	ESEN'	FATION	I E)ES	5 N	Λ	T	ER	IA	U	x												6
	1.1	Introd	luction .									•			•	•				•	•	•		6
	1.2	Struct	ure crista	alli	ne o	des	pé	érov	vsk	ite	s .	•	•			•				•	•	•		6
		1.2.1	introduc	cti	on.			•				•	•			•				•	•	•		6
		1.2.2	Critère	de	sta	ıbil	ité	de	la	sti	ruc	etu	re	pé	ero	vs	kit	e		•	•	•		8
			1.2.2.1	Ι	oni	cit	é d	es l	liai	soi	ns				•	•				•	•	•		9
			1.2.2.2	ł	Fact	teu	r d	e C	Gol	dso	ehr	nic	lt	• •	•	•	•			•	•	•	•	9
			1.2.2.3	€	effet	t de	e la	ı te	emp	óér	atı	ır€	e et	t d	e j	ore	ess	ior	1	•	•	•	•	12
	1.3	Classi	fication d	les	ma	tér	iau	ıx :	•			•									•	•		13

	1.4	4 Les pérovskites cubiques BaXO ₃ avec						
		(X = I)	$Fe, Nb, Mo et Hf): \ldots \ldots$	14				
		1.4.1	Le $BaFeO_3$:	15				
		1.4.2	Le $BaMoO_3$:	16				
		1.4.3	Le $BaNbO_3$:	16				
		1.4.4	Le $BaHfO_3$:	17				
	Bibli	iograph	ie	18				
2	La t	héorie	de la fonctionnelle de la densité(DFT)	24				
	2.1	Introd	uction	24				
	2.2	Appro	oches ab-initio	26				
	2.3	Equati	ion de Schrödinger	26				
		2.3.1	Approximation adiabatique (Approximation de					
			Born-Oppenheimer 1927)	28				
		2.3.2	Approximation de Hartree (1928)	28				
	2.4	La th	éorie de la fonctionnelle de la densité (DFT)	30				
		2.4.1	Théorèmes de Hohenberg et Khon	30				
			2.4.1.1 Premier théorème	30				
			2.4.1.2 Deuxième théorème	30				
		2.4.2	Les équations de Kohn et Sham	31				
		2.4.3	Résolution des équations de Kohn-Sham	33				
		2.4.4	Approximation de la Densité Locale (LDA)	34				
		2.4.5	Approximation du Gradient Généralisé (GGA) $\ . \ . \ .$.	36				
		2.4.6	Potentiel de Becke et Johnson modifié mBJ	37				
	Bibli	iograph	ie	38				
3	LA	. MÉT	HODE DES ONDES PLANES AUGMENTÉES LI-					
	NÉ	ARISÉ	ES	41				
	3.1	Métho	de des ondes planes augmentées (APW)	41				
	3.2	La mé	thode LAPW	43				
	3.3	la mét	hode FP-LAPW	44				

	3.4	La m	éthode LAPW avec les orbitales locales	
		(LAP	W+LO)	45
	3.5	La m	éthode APW+lo	46
	3.6	Le coo	le Wien 2k :	47
	Bibl	iograph	ie	50
4	Ré	sultats	et discussion	52
	4.1	PROF	PRIETES STRUCTURALES ET ELASTIQUES	52
		4.1.1	Introduction :	52
		4.1.2	Détails de calcul	52
			4.1.2.1 Test de convergence :	53
	4.2	Les P	Propriétés Structurales :	53
	4.3	Propri	iétés élastiques :	58
		4.3.1	Introduction :	58
		4.3.2	Paramètres élastiques monocristallins :	58
		4.3.3	Paramètres élastiques polycristallins :	61
	4.4	PROF	PRIETES ELECTRONIQUES ET THERMODYNAMIQUES	
				63
		4.4.1	Propriétés électroniques :	63
			4.4.1.1 La structure de bande :	63
			4.4.1.2 La densité d'états :	66
		4.4.2	Propretés thermodynamiques :	68
	Bibl	iograph	ie	79

Table des figures

1.1	structure idéalisée de la pérovskite de $SrTiO_3$	8
1.2	Le diagramme de phase du $BaTiO_3$ à des températures et des pres-	
	sions modérées	12
1.3	Diagramme schématique de bande de métal, de semi-conducteur et	
	d'isolant. EF, et Eg sont l'énergie de Fermi et l'écart de bande(Energie	
	de Gap)	13
2.1	Schéma itératif de la procédure auto cohérente destine a résoudre	
	les équations de Kohn-Sham.	33
3.1	Répartition des cellules atomiques unitaires en sphères muffin tin	
	(S)	42
3.2	l'organigramme des programmes du code WIEN2k	49
4.1	L'énergie en fonction de K_{point} pour le Ba (X=Fe, Nb, Mo, Hf)O_3 $% = K_{point}$.	54
4.2	L'énergie en fonction de $R_{mt} \ast K_{point}$ pour le Ba(X=Fe, Nb, Mo, Hf)O ₃	54
4.3	la variation de l'énergie totale en fonction du volume $E = f(V)$	
	pour le $Ba(X=Fe, Nb, Mo, Hf)O_3 \dots \dots$	57
4.4	La structure de bandes du composé $\mbox{ Ba}(X{=}{\rm Fe}, {\rm Nb}, {\rm Mo}, {\rm Hf}){\rm O}_3$	64
4.5	Densités d'état total (TDOS) et partiel (PDOS) du composés ${\rm Ba}({\rm Fe},{\rm N}$	b, Mo) O_3 69
4.6	Densités d'état total (TDOS) et partiel (PDOS) du composé BaH-	
	fO3 en utilisent le GGA PBe et GGA PBe+mBJ. BaHfO3	69
4.7	la variation du paramètre Gruneisen ($\gamma)$ en fonction de la tempé-	
	rature $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O ₃	73

- 4.8 la variation du coefficient de dilatation thermique $\alpha(K^{-1})$ en fonction de la température $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃ 74
- 4.9 la variation de la chaleur spécifique à volume constant (C_V) $(\frac{J}{mol.K})$ en fonction de la température $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃ 75
- 4.10 la variation de la chaleur spécifique à pression constant (C_p) $(\frac{J}{mol.K})$ en fonction de la température $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃ 76
- 4.11 Variation du module de compressibilité B_S et B_T en fonction de la température à différentes pressions du composés BaX(X=Fe, Nb, Mo, Hf)O₃ 77
- 4.12 la variation de la température de Debye $\Theta_D(K^\circ)$ en fonction de la température $T(K^\circ)$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃ . . . 78

Tables

1.1	Evolution des structures cristallines en fonction de la valeur du	
	facteur de tolérance.	11
1.2	Facteurs de Goldschmidt obtenus sur les pérovskites au baryum .	11
4.1	Paramètres structuraux à l'équilibre (paramètre du réseau a_0 (A°),	
	module de compressibilité B_0 et sa dérivé e B_0^\prime (GPa)) calculés par	
	la GGA-PBsol comparés avec d'autres calculs théoriques et don-	
	nées expérimentales pour les composés $BaFeO_3$, $BaNbO_3$, $BaMoO_3$	
	et $BaHfO_3$	55
4.2	table	58
4.3	Paramètres élastiques pour phase polycristalline de $BaXO_3$: le mo-	
	du le de cisaillement de Reuss ${\cal G}_R(GPa)$, le module de cisaillement	
	de Voigt $G_V(GPa)$, le module de cisaillement de Hill $G_H(GPa)$, le	
	module de Kr" oner $G_K(GPa)$, le rapport $\frac{G_H}{B}$, module de Young $E(GPa)$)
	, coefficients de lamé λ,μ et rapport de Poisson σ à $P=0$ et $T=0.$	62
4.4	les paramètres Densité (ρ en $kg.m^{-3}$), vitesse longitudinale (V_l en	
	$(W_t en m.s^{-1})$, vitesse transversale $(V_t en m.s^{-1})$ vitesse moyenne $(V_m en m.s^{-1})$	
	$m.s^{-1}$) et température de Debye θ_D de BaX(X=Fe, Nb, Mo et Hf)O_3,	
	à $P = 0$ et $T = 0$.	63
4.5	Classification de la température de debye Θ_D par les constantes	
	élastiques et le modèle de Debye quasi-harmonique à $T=0K^\circ$ et	
	P = 0GPa.	72

Introduction générale

Le développement de nouveaux matériaux et des techniques de traitement, ainsi que l'avancement de la recherche dans le domaine des matériaux, jouent un rôle important dans le développement technologique qui embrasse les différents secteurs industriels. Par conséquent, les progrès dans les simulations informatiques ont entraîné des recherches intrigantes dans le domaine de la matière condensée.

La science des matériaux est l'un des domaines les plus importants de la physique en général, c'est parce que ces matériaux existent dans la nature ou sont fabriqués dans des laboratoires tels que (métaux, semi-conducteurs, céramiques, composées, etc.), l'homme contemporain ne peut pas les épargner pour leur présence, electronique (ordinateurs, lecteurs de CD et DVD, télévisions, les dispositifs médicaux) et les voitures (moteur, structures automobiles, phares, etc.), l'aviation, les énergies renouvelables (panneaux solaires, etc.), les nanosciences, les nanotechnologies, etc., Là où les scientifiques et les industriels a pu connaître les phénomènes microscopiques (déploiement et l'agencement des atomes, re-cristallisation, l'émergence d'étapes, etc.) pour développer des matériaux avec les propriétés souhaitées et avec les énormes découvertes de scientifiques de matériaux de catégorie matériel aux familles et parmi ces familles il y a une famille appelée les pérovskites.

La structure ABO_3 de l'oxyde de pérovskite est la suivante : **A** est un métal alcalin ou alcalino-terreux et **B** est un métal de transition qui est actuellement une nouvelle classe prometteuse. La littérature sur les propriétés physiques recherchées pour les applications technologiques comprend un certain nombre d'études théoriques et expérimentales. Les pérovskites sont une classe de composés avec des structures liées à celle du minéral. Pérovskite, CaTiO₃, et peut être considéré comme dérivé d'une phase mère de. Formule générale ABX₃.

Ils ont été étudiés intensivement de puis le milieu du XX^{me} siècle en raison de leurs propriétés innées :

La magnétorésistance colossale, la ferroélectricité, la supraconductivité, l'ordre de charge, le transport dépendant du spin, la thermo-power élevée et l'interaction des propriétés structurelles magnétiques et de transport sont des caractéristiques couramment observées dans cette famille. Ces composés sont utilisés comme capteurs et électrodes de catalyseur dans certains types de piles à combustible [1] et sont candidats pour les dispositifs de mémoire et les applications de spin-tronique [2]. dans les convertisseurs catalytiques des véhicules diesel. [3] supraconductivité, la magnétorésistance, la conductivité ionique et une multitude de propriétés diélectriques, qui sont d'une grande importance en microélectronique et en télécommunication.Les pérovskites synthétiques ont été identifiés comme des matériaux de base peu coûteux et potentiels pour les systèmes photovoltaïques commerciaux à haute efficacité [4, 5] que la pérovskite peut générer de la lumière las [6] les pérovskites peuvent être de bons candidats pour une utilisation dans les diodes électroluminescentes (LED). [7] car ils présentent riche phénomènes physiques et chimiques, par exemple, la piézoélectricité, la ferroélectricité, et ferromagnétisme Cela en fait des matériaux attrayants pour les transistors à effet de champ, les mémoires non volatiles, transducteurs piézoélectriques et guides d'ondes optiques [8,9].

Dans le cadre de cette étude nous avons choisi cette quantité de caractéristiques et d'usages et d'intérêt pour étudier ces matériaux surtout au cours des cinquante dernières années, nous avons été curieux d'étudier cette famille ceci est représenté par la formule $BaX(X = Mo, Nb, Hf et Fe)O_3$.et ce travail a été achevé pour ce qui existe et son but est d'effectuer des calculs précis des propriétés structurelles, élastiques, thermodynamiques et électroniques pour cela nous avons utilisé la méthode des ondes planes augmentées linéarités (FP-LAPW) [10] implémentées dans le code WIEN2k [11]. Ce code est basé sur la théorie de la fonctionnelle de la densité (DFT) [12] l'échange et le potentiel de corrélation sont menés par l'approximation de gradient généralisée GGA-PBEsol proposé en 2008 par Perdew et al [13].

Ce manuscrit comporte quatre chapitres. Le premier chapitre présente l'état de l'art sur la structure et les propriétés générales des pérovskites quasi-cubiques et la bibliographie comprend ensuite une synthèse de la littérature relative aux composés $BaFeO_3$, $BaNbO_3$, $BaMoO_3$ et $BaHfO_3$.

Dans le deuxième chapitre, nous définissons les concepts de base de la théorie de la fonctionnelle de la densité DFT.

Le troisième chapitre concerné à la méthode d'ondes planes augmentées linéarisées à potentiel total (full potentiel linearised augmented plane wave FP-LAPW).

Dans le quatrième chapitre, nous présentons les résultats obtenus ainsi que leurs interprétations pour les propriétés structurales et élastiques.

ainsi que des résultats obtenus et leurs interprétations pour les propriétés électroniques et thermodynamiques. Ce manuscrit est terminé par une conclusion générale

Bibliographie

- A. Kulkarni, F. Ciacchi, S. Giddey, C. Munnings, S. Badwal, J. Kimpton, and D. Fini, "Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells," *International journal of hydrogen energy*, vol. 37, no. 24, pp. 19092–19102, 2012.
- [2] J. Coey and M. Viret, "Molnár s v 1999," Adv. Phys, vol. 48, pp. 167–293.
- [3] A. Witze, "Building a cheaper catalyst," Science News, 2010.
- [4] K. Bullis, "A material that could make solar power" dirt cheap," *Retrieved October*, vol. 5, p. 2013, 2013.
- [5] H. Li, S. Li, Y. Wang, H. Sarvari, P. Zhang, M. Wang, and Z. Chen, "A modified sequential deposition method for fabrication of perovskite solar cells," *Solar Energy*, vol. 126, pp. 243–251, 2016.
- [6] P. Dereń, A. Bednarkiewicz, P. Goldner, and O. Guillot-Noël, "Laser action in la al o 3: Nd 3+ single crystal," *Journal of Applied Physics*, vol. 103, no. 4, p. 043102, 2008.
- S. D. Stranks and H. J. Snaith, "Metal-halide perovskites for photovoltaic and light-emitting devices," *Nature nanotechnology*, vol. 10, no. 5, pp. 391–402, 2015.
- [8] I. N. Yakovkin and M. Gutowski, "Srtio 3/ si (001) epitaxial interface : A density functional theory study," *Physical Review B*, vol. 70, no. 16, p. 165319, 2004.
- [9] C. A. Paz De Araujo, L. D. McMillan, B. M. Melnick, J. D. Cuchiaro, and J. F. Scott, "Ferroelectric memories," *Ferroelectrics*, vol. 104, no. 1, pp. 241– 256, 1990.
- [10] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," *Physical review*, vol. 136, no. 3B, p. B864, 1964.

- [11] P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz et al., "wien2k," An augmented plane wave+ local orbitals program for calculating crystal properties, vol. 60, 2001.
- [12] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," *Physical review*, vol. 140, no. 4A, p. A1133, 1965.
- [13] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, "Restoring the density-gradient expansion for exchange in solids and surfaces," *Physical review letters*, vol. 100, no. 13, p. 136406, 2008.

Chapitre 1

PRESENTATION DES MATERIAUX

1.1 Introduction

Le but du premier chapitre est de présenter les généralités des pérovskites pseudocubiques.

Au cours de ces généralités, nous présenterons leurs principales caractéristiques structurales et nous donnons un aperçu de critère de stabilité de la structure pérovskite telle que ionicité des liaisons , Facteur de Goldschmidt et effet de la température et de pression . Puis, nous aborderons une étude bibliographie sur les matériaux pérovskites cubiques $BaXO_3$ avec (X = Fe, Nb, Mo et Hf) ou X est un métal de transition .

1.2 Structure cristalline des pérovskites

1.2.1 introduction

Les pérovskites sont des composés métalliques mélangés représentés par la formule générale ABX_3 , où A et B représentent respectivement un cation de taille grande et moyenne, tandis que X représente un anion [1,2]. Selon l'anion dans la

structure, le composé final pourrait être un oxyde, un sulfure, un hydrure, ou un halogénure. Les anions peuvent également être un mélange d'éléments, les oxynitrides étant les exemples les plus connus.

Le minéral CaTiO₃, décrit pour la première fois en 1839 par Gustav Rose dans l'Oural et nommé pérovskite en l'honneur du minéralogiste russe Lev Alekseïevitch Perovski (1792-1856). [3], est à l'origine de la structure cubique idéale de la pérovskite. le nom de pérovskite désigne un type structural dérivé de celui de CaTiO₃.

Les matériaux à structure pérovskite ont pour formule générale ABX₃ le site A est occupé par un ou des cations alcalino-terreux de rayon ionique élevé (Ca^{+2} , Sr^{2+} , Ba^{2+} , Pb^{2+} , Bi^{3+} B est un cation de petite taille (Ti^{4+} , Zr^{4+} , Fe^{3+} , Sc^{3+} ...).Les anions X sont généralement l'ion oxygène O²⁻ ou fluorure F⁻.

Pérovskite ABO₃ et, plus généralement, familles de perovskite y compris ses variations acceptent un grand nombre d'éléments métalliques de transition de différentes tailles et valence dans les sites B (par exemple, $A^{1+}B^{5+}O_3^{2-}, A^{2+}B^{4+}O_3^{2-},$ et $A^{3+}B^{3+}O_3^{2-}$), de sorte que la variété des oxydes métalliques de transition est illimitée : par exemple cuprites, manganites, ruthénates, nickelâtes, titanates, et récemment iridates [4,5].

Dans sa description classique, sous forme d'empilement de polyèdres, les cations B sont en coordinence 6 et les cations A localisés dans la cavité cuboctaèdrique formée par 8 octaèdres BX_6 [6].

La maille élémentaire d'une pérovskite idéale ABO₃ est cubique, avec un paramètre $a \approx 4A^{\circ}$ et de groupe d'espace Pm3m à température ambiante [6]. La structure de pérovskite idéalisée ou archétype est cubique et est adoptée par $SrTiO_3$ à température ambiante (mais pas à toutes les températures). Il y a deux façons générales de l'inscription les atomes dans la cellule unité cubique. La description cristal-lographique standard place le choix de l'origine à l'atome Sr : SrTiO₃ : cubic ; $a \approx 3.905A^{\circ}$; space group, Pm3m (No.221); Atom positions :

$$\begin{aligned} & \mathrm{Sr}:1\,;\,(0;0;0)\\ & \mathrm{Ti}:1\,;\,(\frac{1}{2};\frac{1}{2};\frac{1}{2})\\ & \mathrm{O}:3;\,(\frac{1}{2};\frac{1}{2};0;\frac{1}{2},0,\frac{1}{2};0,\frac{1}{2},\frac{1}{2}) \end{aligned}$$

Les ions Sr^{2+} se trouvent aux coins de la cellule. Les ions Ti^{4+} se trouvent au centre de la cellule et sont entourés d'un octaèdre régulier d'ions O^{2-} . Figure. 1.1 (a)

FIG. 1.1 : structure idéalisée de la pérovskite de SrTiO₃.

positions atomiques avec Sr^{2+} à l'origine cellulaire; (b) polyèdre de coordination octaédrique TiO₆; (c) positions atomiques avec Ti⁴⁺ à l'origine cellulaire; (d) Cadre de polyèdre octaèdre TiO₆ avec Sr^{2+} à la cellule (e) le centre de la cage cuboctaèdre [7].

Les ions Sr^{2+} se trouvent aux coins de la cellule. Les ions Ti^{4+} se trouvent au centre de la cellule et sont entourés d'un octaèdre régulier d'ions O^{2-} (Figure 1.1(a) et(b)). Pour quelques buts il est utile de traduire l'origine de la cellule aux ions Ti^{4+} : Les grands ions Sr^{2+} sont coordonnés à 12 ions O^{2-} et sont maintenant situés dans la cellule de l'unité (figure 1.1(c)). Pour une analyse des propriétés chimiques et physiques (et d'autres) pérovskites, il est commode de penser à la structure comme construit d'un tableau de partage de coin TiO_6 octaèdre (Figure 1.1(d)). Les grands ions Sr^{2+} sont situés au centre cellulaire de l'unité et sont entourés d'une cage cuboctaèdre d'ions O^{2-} (figure 1.1(e)). Le cadre TiO_6 est régulier et les octaèdres sont parallèles. Toutes les longueurs de liaisons (O^{2-} - Ti^{4+})sont égales et les six liaisons (O^{2-} Ti^{4+} O^{2-})sont linéaires.

1.2.2 Critère de stabilité de la structure pérovskite

Dans le cas de la structure idéale, ou structure prototype, tous les ions sont tangents entre eux. Les octaèdres BX_6 sont donc parfaitement réguliers et forment un réseau tridimensionnel cubique sans déformation. Cependant, le degré de symétrie de la structure pérovskite peut être abaissé en fonction des ions constitutifs. Dans cette étude, l'anion utilisé sera toujours O^{2-} et ce sont donc les cations A et B qui vont avoir un impact sur la symétrie de la structure. En effet, la stabilité de la pérovskite dépend des rayons ioniques ainsi que de la différence d'électronégativité entre les cations et l'anion, ici l'oxygène.

1.2.2.1 Ionicité des liaisons

La structure est d'autant plus stable thermiquement que le caractère ionique des liaisons cation – anion est prononcé. Le caractère ionique moyen de la structure peut être décrit par la formule suivante :

$$\bar{\chi} = \frac{\chi_{\rm A-O} + \chi_{\rm B-O}}{2} \tag{1.1}$$

 $\chi_{\rm A-O} {\rm et} \chi_{\rm B-O}$ sont les différences d'électronégativité entre les cations A et B et les oxygènes associés.

1.2.2.2 Facteur de Goldschmidt

Cette pérovskite cubique idéale n'est pas très courante dans les réservoirs minéraux, parce que même l'espèce minérale a de légères distorsions dans l'ordre atomique dans la structure cubique. L'étude de la structure cristalline de la pérovskite d'abord menée par Goldsmith en 1920 a conduit à proposer divers aspects fondamentaux qui corrèlent la structure cristalline et les paramètres de composition chimique [3,8]

L'un des principes les plus importants proposés était le facteur de tolérance. Le facteur de tolérance est un outil normalement utilisé pour prédire la disposition structurelle et la stabilité d'une composition particulière de pérovskite, ou d'un point de vue chimique et physique. Ce facteur est évalué avant de choisir la voie de traitement appropriée. Pour la préparation de pérovskite Les différences de rayons ioniques produisent les distorsions structurelles sur la structure de la perovskite, comme cela a été déterminé dans les travaux de recherche pionniers menés par Goldschimidt [3, 8, 9].

En considérant les ions comme des sphères rigides, il est possible, dans une structure pérovskite idéale, de relier la longueur d'une arête de la maille aux rayons ioniques des atomes B et O :

$$a = 2(R_O + R_B) \tag{1.2}$$

Ou bien selon la diagonale d'une face à partir des rayons ioniques des atomes A et O (origine en A) :

$$a\sqrt{2} = 2(R_O + R_A) \tag{1.3}$$

Ou encore :

$$\frac{(R_O + R_A)}{\sqrt{2}(R_O + R_B)} = 1 \tag{1.4}$$

Où R_A, R_B et R_O ont respectivement les rayons ioniques des atomes A (en coordinence 12), B (en coordinence 6) etO, donnés par Shanon et Prewitt [10, 11] . Généralement, les rayons des ions A, B et O ne correspondent pas aux dimensions idéales de la structure prototype et un facteur de tolérance τ , nommé facteur de Goldschmidt [12] , a été ajouté tel que :

$$\tau = \frac{(R_O + R_A)}{\sqrt{2}(R_O + R_B)}$$
(1.5)

Chaque distorsion de la structure cubique implique un écart de t par rapport à sa valeur idéale.

Cette relation a un caractère très général, étant applicable aux pérovskites simples ou doubles en fonction de la valeur du facteur de tolérance [13,14] on peut distinguer plusieurs situations, schématisés dans le tableau.1.1 Ce facteur géométrique décrit l'écart à l'idéalité de la pérovskite obtenue et implique alors une déformation de la structure. Ce facteur n'est toute fois qu'un indicateur et ne permet pas avec certitude de savoir si la pérovskite se formera ou non. Pour cela, il est nécessaire de passer par l'expérience, où d'autres influences peuvent intervenir telles que la cinétique et la thermodynamique.

$\tau < 0.75$ ilménite	$0.75 < \tau < 1.06$ pérovskite	$\tau > 1.06$ hexagonal
$0.75 < \tau < 0.99$ distorsion orthorhombique	$0.96 < \tau < 0.99$ distorsion rhomboéd rique	$\begin{array}{c} 0.96 < \tau < 1.06\\ \text{cubique} \end{array}$

TAB. 1.1 : Evolution des structures cristallines en fonction de la valeur du facteur de tolérance.

Le facteur géométrique le plus importent pour définit la stabilité de la structure pérovskite est noté par le facteur de Goldschmidt [8] (facteur de tolérance τ), schématisés dans le tableau :1.2. si la valeur du facteur de Goldschmidt, $\tau = 1,00$

TAB. 1.2 : Facteurs de Goldschmidt obtenus sur les pérovskites au baryum .

Composés	BaFeO_3	BaMoO_3	BaNbO_3	BaHfO_3
Facteur de Goldschmidt τ [15]	1.082	1.047	1.031	1.016
Facteur de Goldschmidt τ [16]	0.977	0.949	0.93	0.922

la structure est idéale . La structure pérovskite est considérée comme stable pour $0,88 \leq \tau \leq 1,05$ expérimentalement. autoriser la diversité du compositions, notamment au niveau des cations utilisés A et B.

Ce n'est pas nécessairement ce composé ayant un facteur de tolérance τ compris dans cet intervalle, adoptera, ou non, une structure pérovskite Si $\tau > 1$, cette instabilité est responsable de la domination des sites B ou AB : le cation A rempli intégralement la cavité cuboctaédrique et le cation B est plus petit que la cavité octaédrique BO₆ Figure : 1.1. Dans ce cas, le cation B se déplace hors du centre de sa cavité, suivant un des axes de symétrie principaux pour réduire certaines distances B–O et diminuer la coordinence de B. Cette situation est généralement favorable à l'apparition d'une structure polaire B et O bougent en sens opposés, engendrant une petite distorsion polaire et ferroélectrique. Si $\tau < 1$, l'instabilité est dominée par le siteA : le cation B remplit intégralement la cavité octaédrique et le cation A est plus petit que la cavité cuboctaédrique. Il en résulte généralement une déformation de cette dernière par la rotation des octaèdres, permettant de minimiser les distances A - O et d'abaisser la coordinence de A.

Le cation peut se déplacer hors du centre de sa cavité, soit de manière polaire soit de manière anti-polaire. Dans les deux cas ($\tau > 1$ et $\tau < 1$), la symétrie de la maille est abaissée (brisée) et une déformation de celle-ci est observée à la structure prototype.

1.2.2.3 effet de la température et de pression

Le diagramme de phase du $BaTiO_3$ à des températures et des pressions modérées illustre les changements de symétrie observés figure : 1.2 . On voit qu'à $300^{\circ}K$ et à la pression ambiante (1atm = 0,000101Gpa), $BaXO_3$ existera comme forme tétragonale. Lorsque la pression appliquée atteint environ 2Gpa, les formes cubique et tétragonale coexistent. Une légère augmentation de la pression ou de la température fera pencher la balance en faveur de la forme cubique, qui existera alors seule.

FIG. 1.2 : Le diagramme de phase du BaTiO₃ à des températures et des pressions modérées..

[7, 17, 17]]

1.3 Classification des matériaux :

La mécanique quantique a été utilisée pour clarifier les propriétés de transport des solides, et maintenant les métaux, les semi-conducteurs et les isolants sont classés selon la théorie de la bande des solides figure : 1.3.

Dans les métaux, Fermi énergie EF est dans la bande de conduction, alors que dans les isolants, EF sépare la bande électronique en une bande inférieure vide et remplie. Par exemple, le quartz est un isolant avec un intervalle de bande Eg 8.9eV, alors que Cu est un métal. Si est aussi un isolant mais a un petit Eg 1.1eV et est donc appelé un semi-conducteur.

Bien que la théorie de bande réussisse décrit la nature conductrice de nombreux matériaux, il ne tient pas compte des comportements de nombreux oxydes métalliques de transition qui ont une séparation relativement étroite entre la conduction et la bande de valence. Beaucoup de matériaux avec des orbites partiellement remplies et un nombre impair d'électrons par site de treillis, qui devraient être des métaux selon la théorie de bande, sont en fait des isolants (par exemple,NiO,V₂O₃, et Fe₃O₄). La théorie des bandes tient compte d'un seul électron et peut donc ne pas tenir compte adéquatement des effets de plusieurs corps comme l'interaction électron-électron qui se produisent dans ces matériaux complexes.

FIG. 1.3 : Diagramme schématique de bande de métal, de semi-conducteur et d'isolant. EF, et Eg sont l'énergie de Fermi et l'écart de bande(Energie de Gap).

Un semi-conducteur est un isolant avec un petit écart d'énergie. Supérieur : bande de conduction (CB) ; inférieur : valence bande (VB) [18].

1.4 Les pérovskites cubiques $BaXO_3$ avec (X = Fe, Nb, Mo et Hf) :

Cette famille se compose de trois éléments ; le baryum est l'élément chimique de numéro atomique 56 , de symboleBa , est un métal alcalino-terreux son emplacement est la ligne 5 et la colonne II dans le tableau périodique des éléments ; il est blanc argenté, brillant, et chimiquement assez réactifs à température et pression ambiantes. Leur configuration électronique contient une sous-couche S saturée avec deux électrons : $[Xe]6s^2$, qu'ils perdent facilement pour former un cation divalent (état d'oxydation +2).

il est cristallisé en système cubique centré , leur point de fusion $727^\circ C$ et Point d'ébullition $1897^\circ C$ [19].

Le fer est l'élément chimique de numéro atomique 26 , de symbole Fe. son emplacement est la ligne 4 et la colonne (VIII) dans le tableau périodique des éléments . le corps simple est le métal et le matériau ferromagnétique le plus courant dans la vie quotidienne, le plus souvent sous forme d'alliages divers.

Le fer pur est un métal de transition ductile. sa configuration électronique est : $[Ar]4s^23d^6$. de point de fusion $1538^{\circ}C$ et de point d'ébullition $2861^{\circ}C$ [20] Le niobium est l'élément chimique de numéro atomique 41, de symbole Nb. son emplacement est la ligne 5 et la colonne (V) dans le tableau périodique des éléments . Le corps simple est un métal de transition , rare , relativement mou et ductile. appartient à la famille des métaux de transition. sa configuration électronique est : $[Kr]5s^14d^4$ de couleur gris métallique et de point de fusion $2477^{\circ}C$ et de point d'ébullition $4744^{\circ}C$ [19].

Le molyb
dène est l'élément chimique de numéro atomique 42 , de symbole Mo son emplacement est la ligne 6 et la colonne
(VI) dans le tableau périodique des éléments n'existe pas à l'état natif. Ses composés naturels ont été confondus jusqu'au
 $(VIII^{eme})$ siècle avec des composés d'autres éléments tels que le carbone ou le plomb. Le molyb
dène est un métal de transition. Le métal pur est d'aspect blanc métallique et il est très dur. Il a été souvent confondu avec du minerai de graphite et de galène.
Il a un module d'élasticité élevé et uniquement du tantale métallique et, qui est plus facilement disponible, a un point de fusion plus élevé. Leur configuration électronique $[Kr]5s^{1}4d^{5}$ de couleur gris métallique , point de fusion 2623°C et point d'ébullition 4639°C [19].

Le Hafnium est l'élément chimique de numéro atomique 72, de symbole Hf. Son emplacement est la ligne 6 et la colonne (IV) dans le tableau périodique des éléments le hafnium ressemble chimiquement au zirconium et on le trouve dans tous les minerais de zirconium. Le corps simple hafnium est un métal de transition tétravalent d'un aspect gris argenté .C'est un métal ductile. il résiste à la corrosion et est chimiquement semblable au zirconium sa configuration électronique est : $[Ar]4s^23d^6$ de point de fusion $2233^{\circ}C$ et de point d'ébullition $4603^{\circ}C$ [19]. L'oxygène est l'élément chimique de numéro atomique 8, de symbole O. Son emplacement est la ligne 2 et la colonne (XVI) dans le tableau périodique des éléments C'est la tête de file du groupe des chalcogènes , c'est un non-métal qui forme très facilement des composés, notamment des oxydes, avec pratiquement tous les autres éléments chimiques.

Leur configuration électronique :[He] $2s^22p^4$, dans les conditions normales de température et de pression, l'oxygène est sous forme de gaz inodore et incolore, le dioxygène, de formule chimique O₂. il est cristallisé en système cubique Point de fusion $-218,79^{\circ}C$, Point d'ébullition $-182,95^{\circ}C$ [19].

1.4.1 Le $BaFeO_3$:

Les oxydes de pérovskite à base de fer ont des propriétés très intéressantes en raison des différents états d'oxydation du Fe, qui donnent lieu à des structures cristallines et à des stœchiométries différentes. Le BaFeO₃ (BFO) est l'un des exemples de les oxydes de pérovskite compris une haute valence inhabituelle de l'ion Fe⁺⁴, il est entouré de six atomes d'oxygène a montré des propriétés physiques très intéressantes, telles que le magnétisme hélicoïdal et la transition métal-isolant avec la dismutation de la charge [21–23]. Une étude récente ait démontré le succès de la fabrication de la phase cubique à basse température 200°*C*) lors de l'oxydation dans l'ozone [23] la phase cubique est beaucoup plus bénéfique pour la conduction des ions oxygène que d'autres phases en raison de la présence de lacunes en oxygène désordonnées et de canaux de transportd'oxygène en trois dimensions [24,25].

Le BaFeO₃ cubique s'est révélé être le premier oxyde de Fe signalé à présenter un comportement ferromagnétique à la pression ambiante [23] avec une température de transition de $235^{\circ}K$, Callender et al [26] signalé un ferromagnétisme hebdomadaire .Y. Yang et al [27] pense qu'une meilleure compréhension de la décomposition photo-induite du BaFeO₃ pourrait aider à concevoir un photo-catalyseur photo-stable à l'avenir.

1.4.2 Le Ba MoO_3 :

La synthèse de BaMoO₃ à structure pérovskite a été rapportée pour la première fois en (1954) par Scholder, Klemm et Brixner [28] avec un paramètre de réseau $a_0 = 4.04 \pm 0.0003 (A^\circ)$ [29].Ce pérovskite de nature métallique et de propriétés paramagnétiques a généralement une bonne conductivité électrique et une bonne dureté, ce qui en fait des candidats prometteurs pour les matériaux d'électrode dans les piles à combustible [30, 31] BaMoO₃ possède une faible résistance électrique et c'est ce que l'industrie des matériaux électriques devrait être dans le domaine de l'électronique [32–36], Selon Goodenough [37, 38].

le BaMoO₃ parmi les matériaux AMoO₃ possède des énergies de transfert d'électrons suffisantes pour filtrer et annuler l'énergie électrostatique accompagnée du transfert d'électrons, puis il a classé AMoO₃ avec (A = Ba, Sr, Ca) dans le groupe possible supraconducteur [27].Il a été rapporté que BaMoO₃ présente une conductivité thermique et une chaleur spécifique supérieures [39, 40]. BaMoO₃ de nature métallique et ductile et présente une conductivité métallique [41–43].

1.4.3 Le $BaNbO_3$:

La phase cubique de BaNbO₃ a été signalée pour la première fois en 1955, indépendamment par Ridgley et Ward [44] et par Krylov et Sharnin [45]. Il se cristallise sous forme de structure cubique et présente un comportement paramagnétique de type Pauli dans une plage de température de 100-300K. [46] Avec un paramètre de réseau $a_o = 4.04 (A^\circ)$ [47] Ce matériau est un oxyde métallique [48] présente une supraconductivité à basse température a une plus grande stabilité et la capacité anticorrosion (ambiante acide ou alcaline). Il a été largement utilisé dans les condensateurs céramiques multicouches (MLCC) [49], les capteurs chimiques et les mémoires non volatiles [50].et des capteurs d'humidité basés sur des nanocristaux de BaNbO₃ [51].il a été montré qu'il présentait des caractéristiques de bronze [52] : le composé était de couleur rouge et présentait une bonne conductivité électrique à la température ambiante. ainsi que paramagnétique Comportement de Curie-Weiss. [46]D.Y. Wan et al [53] prouvé que MNbO₃MNbO₃ sont des photocatalyseurs assistés par plasmon.

1.4.4 Le BaHfO₃ :

le BaHfO₃ appartient à la famille MHfO₃ avec (M = Ba, Ca, Sr), ou ce dernier lui-même appartient à la famille pérovskites, il cristallise dans la phase cubique « groupe spatial » (Pm3m) 221 [54] est utilisé dans diverses applications optiques et électroniques. Il engage probablement des candidats comme scintillateurs utilisés souvent dans des détecteurs de radiation pour « le diagnostic médical, l'inspection industrielle, la dosimétrie, la médecine nucléaire et la physique de haute énergie » [55]. Au cours des dernières années, BaHfO₃ a suscité l'intérêt en tant que matériau diélectrique à k élevé prometteur pour les dispositifs de mémoire vive dynamique (DRAM) [56–58, 58–60]. Kim et al. mesuré les propriétés diélectriques et optiques du BaHfO₃ [56]. Ils ont démontré que BaHfO₃ peut être utilisé comme isolant de grille dans les transistors à effet de champ. Fursenko et al. a étudié expérimentalement les propriétés optiques de couches minces de BaHfO₃ [57]. Ils ont montré qu'un remplacement des ions Hf par des ions Ti permettait d'augmenter considérablement la constante diélectrique k et de réduire sensiblement la bande interdite. Ils ont également signalé que le bord d'absorption résultait de transitions indirectes.

Bibliographie

- F. Luck, "Wet air oxidation : past, present and future," *Catalysis today*, vol. 53, no. 1, pp. 81–91, 1999.
- [2] M. Pena and J. Fierro, "Chemical structures and performance of perovskite oxides," *Chemical reviews*, vol. 101, no. 7, pp. 1981–2018, 2001.
- [3] M. H. Harunsani, "Characterisation of mixed-metal oxides prepared by hydrothermal synthesis," Ph.D. dissertation, University of Warwick, 2013.
- [4] A. Bhalla, R. Guo, and R. Roy, "The perovskite structure—a review of its role in ceramic science and technology," *Materials research innovations*, vol. 4, no. 1, pp. 3–26, 2000.
- [5] C. Li, K. C. K. Soh, and P. Wu, "Formability of abo3 perovskites," Journal of alloys and compounds, vol. 372, no. 1-2, pp. 40–48, 2004.
- [6] R. H. Mitchell, *Perovskites : modern and ancient*. Almaz Press Thunder Bay, 2002, vol. 7.
- [7] R. J. Tilley, *Perovskites : structure-property relationships*. John Wiley & Sons, 2016.
- [8] K. Choi, P. Lemmens, P. Scheib, V. Gnezdilov, Y. G. Pashkevich, J. Hemberger, A. Loidl, and V. Tsurkan, "Anomalous electronic, phonon, and spin excitations in the chalcogenide spinel fecr2s4," *Journal of Physics : Condensed Matter*, vol. 19, no. 14, p. 145260, 2007.
- H. Kay and P. Bailey, "Structure and properties of catio3," Acta Crystallographica, vol. 10, no. 3, pp. 219–226, 1957.
- [10] R. T. Shannon and C. T. Prewitt, "Effective ionic radii in oxides and fluorides," Acta Crystallographica Section B : Structural Crystallography and Crystal Chemistry, vol. 25, no. 5, pp. 925–946, 1969.

- [11] R. t. Shannon and C. Prewitt, "Revised values of effective ionic radii," Acta Crystallographica Section B : Structural Crystallography and Crystal Chemistry, vol. 26, no. 7, pp. 1046–1048, 1970.
- [12] G. Beskow, "Vm goldschmidt : Geochemische verteilungsgesetze der elemente," Geologiska Föreningen i Stockholm Förhandlingar, vol. 46, no. 6-7, pp. 738–743, 1924.
- [13] S. Karimi, I. Reaney, I. Levin, and I. Sterianou, "Nd-doped bifeo 3 ceramics with antipolar order," *Applied Physics Letters*, vol. 94, no. 11, p. 112903, 2009.
- [14] P. t. Coppens and M. Eibschütz, "Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite," Acta Crystallographica, vol. 19, no. 4, pp. 524–531, 1965.
- [15] R. L. Moreira and A. Dias, "Comment on "prediction of lattice constant in cubic perovskites"," *Journal of Physics and Chemistry of Solids*, vol. 68, no. 8, pp. 1617–1622, 2007.
- [16] L. Jiang, J. Guo, H. Liu, M. Zhu, X. Zhou, P. Wu, and C. Li, "Prediction of lattice constant in cubic perovskites," *Journal of Physics and Chemistry of Solids*, vol. 67, no. 7, pp. 1531–1536, 2006.
- [17] E. S. A.Hayward, J. Phys. Condens. Matter, vol. 14, p. 599-604.
- [18] L. Pan and e. Guang Zhu, Synthesis, Characterisation, Properties, and Applications. Perovskite Materials : BoD–Books on Demand.
- [19] D. R. Lide. CRC Handbook of Chemistry and Physics, CRC Press Inc.
- [20] A. A. E. P. J. V.Kharton, A.Yaremchenko, Sci, vol. 163, p. 307 317.
- [21] T. Matsui, H. Tanaka, N. Fujimura, T. Ito, H. Mabuchi, and K.Morii, Appl. Phys. Lett, vol. 81,2764.

- [22] M. Takano, N. Nakanishi, Y. Takeda, S. Naka, and T.Takada, Mater .Res .Bull, vol. 12, p. 923.
- [23] N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, Y. T.Kawakami, and M. A. Fujimori, vol. 50, p. 12547.
- [24] V. Kharton, A. Yaremchenko, A. Kovalevsky, A. Viskup, E. Naumovich, and J. P.Kerko, *Sci*, vol. 163, p. 307 317.
- [25] T. Kida, A. Yamasaki, K. Watanabe, N. Yamazoe, and K.Shimanoe, J.Solid State Chem, vol. 183, p. 2426 2431.
- [26] C. Callender, D. Norton, R. Das, A. Hebard, and J.D.Budai, Appl. Phys. Lett, vol. 92,012514.
- [27] Y. J. Y. W. Y. S. Yang, Y., Mater. Journal of Molecular Catalysis A : Chemical 270, p. 56–60.
- [28] R. Scholder and W. Klemm, Angew. Chem, vol. 66, p. 461.
- [29] L. Brixner, "X-ray study and electrical properties of system baxsr(1x)moo3," Journal of Inorganic and Nuclear Chemistry, vol. 14, no. 3-4, p. 225–230.
- [30] G. Banarh and W. Temmerman, *Phys. Rev. B*, vol. 69, p. 054427.
- [31] J. Cheng, T. Ishii, H. Kojitani, K. Matsubayashi, A. Matsuo, X. Li, Y. Z. Shirako, J. Goodenough, C. Jin, M. Akaogi, and Y. Uwatoko, *Phys.Rev.B*, vol. 88, p. 205114.
- [32] Z. Ali, M. Shafiq, S. Asadabidi, H. Rahnamaya, A. Abid, I. Khan, and Ahmad.I, *Comput. Mater. Sci*, vol. 81, p. 141.
- [33] L. Soderholm, S. Skanthakumar, U. Staub, M. Antonio, and W. C.W., J. Alloys Compd, vol. 250, p. 623.
- [34] C. Calle, J. Alonso, M. Garcia-Hernamdez, and V.Pomjakushin, J.Solid State Chem, vol. 179, p. 1636.

- [35] M. Park and B. Min, *Phys. Rev. B*, vol. 71, p. 052405.
- [36] H. Wang, G. Yang, D. Cui, H. Lu, T. Zhao, Y. F.Chen, Y. Z.HChen, Y. Ding, L. Chen, X. Chen, and J. Liang, J. Vac. Sci. Technol., A., vol. 930.
- [37] J. Goedenough and J. Longo, "Landolt-b6rnstein zahlenwerte und funktion neue serie bd iii/4ap."
- [38] J. enough, J. Longo, and J. Kafalas.
- [39] K. Kurosaki, T. Oyama, H. Muta, M. Uno, and S. Yamanaka, J.Alloys Compd, vol. 372, p. 65.
- [40] S. Dar, V. Srivastava, and U. Sakalle, J. Electron. Mater, vol. 46, p. 6870.
- [41] P. Woodward, J. Goldberger, M. Stoltzfus, R. R. H.W.Eng, P. Santhosh, P. Karen, and M. A.R., J. Am. Ceram. Soc., vol. 91, p. 1796.
- [42] M. Park and B. Min, *Phys. Rev. B*, vol. 71, p. 052405.
- [43] H. Wang, D. Cui, Y. Zhou, Z. Chen, F. Chen, G. M. T.Zhao, H.B.Lu, Y. Lan, X. Chen, H. Qian, and F. Liu, J. Cryst. Growth, vol. 226, p. 261.
- [44] D. Ridgley and R. Ward, J. Am. Chem. Soc, vol. 77, p. 6132.
- [45] E. Krylov and A. Sharnin, J. Gen. Chem. U.S.S.R, vol. 25, pp. 1637,.
- [46] M. Casais, J. Alonso, I. Rasines, and M. Hidalgo, vol. 30, p. 201.
- [47] R. R. Kreiser and R. Ward, "The preparation of a barium niobium bronze," Journal of Solid State Chemistry, vol. 1, no. 3-4, p. 368–371.
- [48] J. Marucco, M. Ocio, A. Forget, and D. Colson, Journal of Alloys and Compounds, no. 262–263, p. 454–458.
- [49] S. Ghosh, S. Dasgupta, A. Sen, and H. Maiti, "Synthesis of barium titanate nanopowder by a soft chemical process," *Mater. Lett*, vol. 61, p. 538.
- [50] S. Venigalla, "Barium titanate advanced materials and powders," Am. Ceram Soc Bull, vol. 6, p. 45.
- [51] M. Zhang, C. Hu, H. Liu, Y. Xiong, and Z. Zhang., Sensors and Actuators B, vol. 136, p. 128–132.
- [52] R. Kreiser and R. Ward, J. Solid State Chem I, vol. 368.
- [53] D. Wan, "Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate," *Nat. Commun*, vol. 8, p. 15070.
- [54] M. Villanueva-Ibañez, C. Luyer, S. Parola, C. Dujardin, and J. a. Mugnier, Opt.Mat, vol. 27, pp. 1541–1546,.
- [55] C. Greskovich and S., "Duclos, ceramic scintillators," Annu. Rev. Mater. Sci., vol. 27, p. 69–88.
- [56] Y. Kim, C. Park, T. Ha, U. Kim, N. Kim, J. Shin, Y. Kim, J. Yu, and K. Kim, J.H.and Char, "High-k perovskite gate oxide bahfo3," *APL Mater*, vol. 5, p. 016104.
- [57] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, and P. Ch. Wenger, "Optical properties and band gap characterization of high dielectric constant oxides," *Thin Solid Films*, vol. 520, p. 4532.
- [58] G. Lupina, O. Seifarth, P. Dudek, G. Kozlowski, J. Dabrowski, G. Thieme, H.-J. Lippert, T. Schroeder, and H.-J.Müssig, "Characterization of group ii hafnates and zirconates for metal-insulator metal capacitors," *Phys.Status Solidi B*, vol. 248, p. 323.
- [59] P. Dudek, G. Lupina, G. Kozlowski, P. Zaumseil, J. Bauer, O. Fursenko, J. Dabrowski, R. Schmidt, G. Lippert, H.-J. Müssig, T. Schroeder, D. Schmeisser, and E. Zschech, "Atomic-scale engineering of future high-k dynamic random access memory dielectrics : The example of partial hf substitution by ti in bahfo3," J. Vac. Sci. Technol. B, vol. 29, p. 01 03.
- [60] A. Abrutis, T. Katkus, S. Stanionyte, V. Kubilius, G. Lupina, C. Wenger, and M. Lukosius, "Chemical vapor deposition and characterization of high-k

bahf1xtixo3 dielectric layers for microelectronic applications," J. Vac. Sci. Technol. B, no. 29, p. 01 303.

Chapitre 2

La théorie de la fonctionnelle de la densité(DFT)

2.1 Introduction

Nous présentons dans ce chapitre les fondements théoriques de la méthode ab-initio utilisée dans ce travail. Nous commençons tout d'abord par les approximations quantiques fondamentales introduites pour résoudre l'équation de Schrödinger pour un système complexe, a savoir l'approximation de Born-Oppenheimer et l'approximation de Hartree-Fock. Nous introduisons par la suite le concept de la théorie de la fonctionnelle de la densité (DFT) qui est base principalement sur les théorèmes d'Hohenberg et Kohn (1964) et l'approche de Kohn et Sham (1965). Nous expliquons comment le potentiel d'echange-correlation peut être traite a travers différentes approximations (LDA, GGA).

Le premier pas vers une bonne description des propriétés physiques de l'état solide fut la découverte au début du XX^{ime} siècle, par la diffraction de rayons X. Celle-ci a permis ensuite d'analyser les positions atomiques dans les cristaux. Depuis, des techniques expérimentales de plus en plus sophistiquées ont facilité l'observation des phases solides des éléments.

Aujourd'hui, il est possible d'analyser expérimentalement les propriétés structurales des cristaux dans des conditions de la pression et de la température, que ce soit en statique (dans les expériences enclume-diamant), où sous choc (dans les expériences utilisant un canon à gaz). Par contre, le domaine en haute pression reste limité par le dispositif expérimental.

En Parallèle à ces avancées expérimentales, ont été développées des théories permettant une bonne description des phases solides et de leur structure électronique comme les modèles de calculs ab initio qui sont directement issus de l'équation de Schrödinger et qui permettent d'avoir un accès à toutes les propriétés physicochimiques du système. Ces modèles font intervenir seulement les paramètres physiques fondamentaux et ne contient aucun paramètre empirique.

Les atouts de ces méthodes sont leurs prédictibilités, comme il est possible d'atteindre les zones thermodynamiques inaccessibles à l'expérience, ainsi de pouvoir traiter à priori n'importe quel élément.

En effet, ces différentes méthodes théoriques ont permis d'étudier et de classifier les structures et les transitions de phase induites sous pression pour des métaux simples, mais ce qui n'est pas le cas pour les composés qui contiennent des métaux plus complexes comme les métaux de transition à électrons d (notre cas de simulation) et f (lanthanides ou terres rares (4f) et les actinides (5f)).

En revanche, l'étude des propriétés physiques de ce type des matériaux en fonction de l'augmentation de la pression hydrostatique reste un challenge La première exploitation des calculs ab-initio, en 1985, par R. Car et M. Parrinello [1] fut pour de la faisabilité d'une dynamique moléculaire ab-initio.

Depuis cette date, cette méthode a porté de très beaux fruits et essaimé dans de nombreuses directions de la recherche. La simulation sur un ordinateur offre une manière qualitative d'étudier les propriétés de la matière. Elle a pu donner assez de muscle à l'ordinateur, ceci donne au simulateur une possibilité d'établir le modèle d'un vrai système et explore son comportement. Par ailleurs, toutes les méthodes ab-initio ont bénéficié dans les années dernières, de la disponibilité d'ordinateurs de plus en plus puissants. Ceci a contribué au succès actuel de ces calculs pour les vrais systèmes des matériaux dans des situations intéressantes et avec une exactitude suffisante. Par conséquent, il peut y avoir une comparaison détaillée significative avec des mesures expérimentales. L'arrivée, de la théorie de la fonctionnelle de densité (DFT) [2] ,le développement continu des approximations et son formalisme comme l'échange-corrélation d'électrons.

2.2 Approches ab-initio

Les calculs ab-initio cherchent à prédire les propriétés des matériaux, par la résolution des équations de la mécanique quantique, sans utiliser de variables ajustables. Le point de départ de tous les développements de ces méthodes est l'équation de Schrödinger.

2.3 Equation de Schrödinger

L'équation de Schrödinger est l'équation de base du physico-chimiste théoricien. Elle a permet de trouver l'énergie totale et les fonctions d'onde associées aux régimes stationnaires d'un système donné.

Un système contient un grand nombre de molécules (n électrons et N noyaux) est complexe pour essayer de savoir son comportement et ses caractéristiques ce qui a entrainé une proposition de l'équation que tout cet énorme nombre n électrons et N noyons inhérentes à l'équation de Schrödinger [?,?]:

$$\hat{H}\Psi\left(\vec{r}_{i},\vec{R}_{I}\right) = \hat{E}\Psi\left(\vec{r}_{i},\vec{R}_{I}\right)$$
(2.1)

Ou \hat{H} représente l'operateur Hamiltonien, Ψ la fonction d'onde, \hat{E} l'énergie du système, et les variables $\vec{r_i}$ et $\vec{R_I}$ sont les coordonnées des électrons et des noyaux respectivement.

Cette équation célèbre quels scientifiques ont essayé d'être résolus parmi eux et parce qu'ils restent quelque peu sont approximatif et pas complètent la Solution se reflétée dans l'approximation de Born-Oppenheimer [3] Et cela dépend de la séparation entre la mobilité des électrons et les noyaux ; Mais cette suggestion n'est pas assez pour résoudre cette équation a cause de la complexité des interactions électron-électron , Ce complexe a été traité par Hartree [4] Où a ajouté un nouveau concept et est que chaque électron est libre pour d'autres électrons signifie que chaque électron nage dans la champ moyen créée par d'autres électrons c.à.d. sans corrélation ,après fait de tenir compte du concept de Fock [5] reflété dans l'idée de l'antisymétrie des fonctions d'ondes inclure le déterminant de Slater .

Hohenberg et Kohn [6] sont développée une des méthodes les plus utilisable et cela d'abord proposé par Thomas [7] et Fermi [8] intitulé la théorie de la fonctionnelle de la densité (DFT), L'idée est venue à cette approximations est le remplacement de la fonction d'onde par la densité électronique.

Dans le cadre de la DFT, le potentiel d'echange-correlation reste inconnu et parmi les propositions les plus populaires sont l'approximation de la densite locale (Local Density Approximation, LDA) [9] et celle du Gradient Généralise (Generalized Gradient approximation, GGA) [10]. Où on considère les deux propositions pour le système étudié sous forme d'un gaz d'électrons, et la différence observée entre ces deux approximations c'est que LDA propose que ce gaz d'électrons est localement homogène mais le GGA suggéré le contraire c'est- à-dire que ce gaz d'électrons est localement inhomogène.

L'idée incluse en forme d'une équation célèbre par Schrödinger a récapitulé le problème général d'un système de n électrons et N noyaux, \hat{H} est l'Hamiltonien non relativiste représente toutes les interactions électrostatiques : soit répulsion ou attraction suivant la charge des particules (ions, électrons).

$$\hat{\mathbf{H}} = \hat{\mathbf{T}}_n + \hat{\mathbf{T}}_e + \hat{V}_{n-e} + \hat{V}_{e-e} + \hat{V}_{n-n}$$
(2.2)

Dans laquelle les termes \hat{T}_n , \hat{T}_e , \hat{V}_{n-e} , \hat{V}_{e-e} \hat{V}_{n-n} correspondent respectivement aux termes suivants, exprimés en unités S.I :

$$\begin{split} \hat{\mathbf{T}}_n &= -\frac{\hbar^2}{2} \sum_{j=1}^M \frac{\nabla^2}{M_n} : \text{Énergie cinétique des } N \text{ noyaux de masse} M_n. \\ \hat{\mathbf{T}}_e &= -\frac{\hbar^2}{2} \sum_{i=1}^N \frac{\nabla^2}{m_n} : \text{Énergie cinétique des} M \text{ électrons de masse } m_e. \\ \hat{V}_{n-e} &= -\frac{1}{4\pi\varepsilon_\circ} \sum_{i,j} \frac{e^2 \mathbf{Z}_I}{\vec{R}_I - \vec{r}_j} : \text{Interaction coulombienne attractive noyau-électron }. \\ \hat{V}_{e-e} &= -\frac{1}{8\pi\varepsilon_\circ} \sum_{i=1\neq j}^N \frac{e^2}{|\vec{r}_i - \vec{r}_j|} : \text{Interaction coulombienne répulsive électron -électron.} \\ \hat{V}_{n-n} &= -\frac{1}{8\pi\varepsilon_\circ} \sum_{j=1}^M \frac{e^2 \mathbf{Z}_I \mathbf{Z}_j}{|\vec{r}_i - \vec{r}_j|} : \text{Interaction coulombienne répulsive noyau-noyau }. \end{split}$$

Soit :

$$\hat{\mathbf{H}} = -\frac{\hbar^2}{2} \sum_{j=1}^{M} \frac{\nabla^2}{M_n} - \frac{\hbar^2}{2} \sum_{i=1}^{N} \frac{\nabla^2}{m_n} - \frac{1}{4\pi\varepsilon_o} \sum_{i,j} \frac{e^2 \mathbf{Z}_I}{\vec{R}_I - \vec{r}_j} - \frac{1}{8\pi\varepsilon_o} \sum_{i=1\neq j}^{N} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} - \frac{1}{8\pi\varepsilon_o} \sum_{j=1}^{M} \frac{e^2 \mathbf{Z}_I \mathbf{Z}_j}{|\vec{r}_i - \vec{r}_j|}$$
(2.3)

2.3.1 Approximation adiabatique (Approximation de Born-Oppenheimer 1927)

La proposition de Born-Oppenheimer [3] est la négligence de la masse électronique en comparaison de la masse du Noyau, Il a considéré le noyau comme une référence signifie que le noyau est statique para port électron cela a conduit à une énergie cinétique des noyaux négligeable et énergie potentielle répulsive V_{n-n} devient une constante, sur cette base deviennent l'Hamiltonien comme suivant :

$$\hat{\mathbf{H}} = \hat{\mathbf{T}}_e + \hat{V}_{n-e} + \hat{V}_{e-e}$$
 (2.4)

Malgré cette simplification, cela reste un système complexe pour le résoudre, il doit être des nouvelles approximations.

2.3.2 Approximation de Hartree (1928)

Ce qu'il appelle Approximation des électrons indépendants, reflété l'idée de Hartree [4] que les électrons ont comme indépendant l'un de l'autre où le système de n électron compliquer devient un système plus simple et qu'est appelé un groupe de systèmes indépendants à chaque électron où chaque électron déplacé dans le champ moyen crée par les noyaux et les autres électrons du système.

$$\Psi\left(\vec{r}\right) = \prod_{i=1}^{n} \psi_i\left(\vec{r}\right) \tag{2.5}$$

La fonction $\Psi(\vec{r})$ se décompose à des produits de $\psi_i(\vec{r})$ mono-électronique. L'équation de Schrödinger à n électrons devient à n équations de Schrödinger à 1 électron :

$$(T_e + V_{ext}(\vec{r_i}, \vec{R_I}) + V_{\rm H}(\vec{r_i}, \vec{r_j}))\psi_i(\vec{r_i}) = {\rm E}\psi_i(\vec{r_i})$$
(2.6)

Avec $V_{ext}(\vec{r}_i, \vec{R}_I)$ action attractive entre l'électron de coordonnée \vec{r}_i et les noyaux de coordonnes \vec{R}_I et $V_{\rm H}$ est le potentiel d'Hartree issu de l'interaction Coulombienne répulsive entre un électron de coordonnée \vec{r}_i plonge dans le champ moyen des autres électrons de coordonnées \vec{r}_i .

Le nom de cette méthode est la méthode du champ auto-consistant (self-Consistent Field méthode) SCF.

L'inconvénient de l'approche d'Hartree est la négligeassions les corrélations entre les électrons et ce se concentre trop sur la répulsion coulombienne et ce concept a annulé le principe de Pauli, l'amendement a présenté par une nouvelle approximation basé sur approximation de Hartree nommée approximation Hartree-Fock [5] Où inclus, le principe de Pauli et a donné un nouveau concept de la fonction d'onde d'un système de n électrons en utilisant une combinaison linéaire des fonctions d'ondes des électrons indépendants, sous la forme générale d'un déterminant de Slater :

$$\Psi(\overrightarrow{r}) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_1(\overrightarrow{r_1}) & \psi_2(\overrightarrow{r_1}) & \cdots & \psi_n(\overrightarrow{r_1}) \\ \psi_1(\overrightarrow{r_2}) & \psi_2(\overrightarrow{r_2}) & \cdots & \psi_n(\overrightarrow{r_2}) \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \ddots & \vdots \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ \psi_1(\overrightarrow{r_n}) & \psi_2(\overrightarrow{r_n}) & \cdots & \cdots & \psi_n(\overrightarrow{r_n}) \end{vmatrix}$$
(2.7)

Ou $\frac{1}{\sqrt{n!}}$ est un facteur de normalisation.

 $\Psi(\vec{r})$ est la fonction d'onde d'un système de n électrons dans la représentation spin- orbite.

 $\psi_i(\overrightarrow{r_i})$ sont les fonctions d'ondes spin-orbitales mono électroniques. L'équation de Schrödinger devient :

$$(\mathbf{T}_e + V_{ext}(\vec{r}) + V_{xc}(\vec{r}))\psi_i(\vec{r_i}) = \mathbf{E}\psi_i(\vec{r_i})$$
(2.8)

 $V_{xc}(\vec{r})$ est le potentiel d'échange-corrélation La somme de l'énergie cinétique des électrons, externe, de Hartree et d'échange donne l'énergie totale de système.

2.4 La théorie de la fonctionnelle de la densité (DFT)

Se déroulent l'idée de la DFT à propos sur l'expression dominante d'un système électronique par la fonction d'onde a remplacé par densité électronique $\rho(\vec{r})$. Historiquement, Thomas [7] et Fermi [8] sont les premiers qui ont exprimé l'énergie en termes de densité (1928). Notons cependant que la DFT a été réellement établie formellement, en 1964 par deux théorèmes qui développeraient par Hohenberg et Kohn [2].

2.4.1 Théorèmes de Hohenberg et Khon

La théorie de la fonctionnelle de la densité (DFT) est basé sur les deux théorèmes de Hohenberg et Kohn [2] sont applicables pour tout système de particules en interaction évoluant dans un potentiel externe.

2.4.1.1 Premier théorème

Hohenberg et Kohn ont montré que Pour tout système de n particules en interaction en présence d'un potentiel extérieur est une fonctionnelle unique de la densité électronique.

2.4.1.2 Deuxième théorème

Hohenberg et Kohn exprimant l'énergie en fonction de la densité électronique et montrent que la valeur minimale de cette fonctionnelle est l'énergie exacte de l'état fondamental, la densité $\rho(\vec{r})$ qui lui est associée correspond à la densité (exacte) $\rho_{\circ}(\vec{r})$ de l'état fondamental.

$$E(\rho_{\circ}) = \min E(\rho) \tag{2.9}$$

La fonctionnelle de l'énergie totale de l'état fondamental s'écrit comme suit :

$$\mathbf{E}[(\rho(\vec{r})] = F_{\mathrm{HK}}[\rho(\vec{r})] + \int V_{ext}(\vec{r})\rho(\vec{r})d^{3}(\vec{r})$$
(2.10)

où $V_{ext}(\vec{r})$ représente le potentiel externe agissant sur les particules et $F_{\text{HK}}[\rho(\vec{r})]$ représente la fonctionnelle universelle de Hohenberg et Kohn, avec :

$$F_{\rm HK}[\rho(\vec{r})] = \langle \psi | \, \mathrm{T} + V \, | \psi \rangle \tag{2.11}$$

La connaissance de cette fonctionnelle permet de déterminer l'énergie totale et la densité de charge de l'état fondamental pour un potentiel externe donné, en utilisant le principe variationnel. Malheureusement, le théorème de Hohenberg et Kohn ne donne aucune indication de la forme de $F_{\rm HK}[\rho(\vec{r})]$.

Ce problème a été traité par une approche de Kohn et Sham [11] Où ils remplacent le système d'électrons corrélés dans un potentiel extérieur $V(\vec{r})$ et un système fictif d'électrons sans interaction dans un potentiel effectif V_{eff} .

2.4.2 Les équations de Kohn et Sham

Kohn et Sham (KS) [11] introduit une approche cela a donné le succès sans précédent de la théorie de la fonctionnelle de densité où utilisé largement dans les calculs de la structure électronique pour déterminer les propriétés exactes d'un système à plusieurs particules . En pratique cette approche a montré l'existence d'une relation proche entre la densité électronique et l'énergie de l'état fondamental d'un système non interactifs placés dans un potentiel effectif et le système réel multi- électronique en interaction soumis au potentiel réel. Pour ce système fictif, les théorèmes de Hohenberg et Kohn s'appliquent également. La fonctionnelle de la densité $F_{\rm HK}[\rho(\vec{r})]$ pour le système interactif peut être exprimée par l'expression suivante :

$$\mathbf{E}[\rho(\vec{r})] = \mathbf{T}_{\circ}[\rho(\vec{r})] + \mathbf{E}_{\mathrm{H}}[\rho(\vec{r})] + \mathbf{E}_{xc}[\rho(\vec{r})] + V_{ext}[\rho(\vec{r})]$$
(2.12)

où : $T_{\circ}[\rho(\vec{r})]$ est l'énergie cinétique du gaz d'électrons non interagissant,

 $E_{\rm H}[\rho(\vec{r})]$ est le terme de Hartree (l'interaction de Coulomb classique entre les électrons décrite à travers leur densité de charge), $E_{xc}[\rho(\vec{r})]$ est une fonctionnelle additionnelle qui décrit l'interaction inter-électronique appelée énergie d'échangecorrélation et le terme $V_{ext}[\rho(\vec{r})]$ désigne l'interaction entre l'électron en r et la densité moyenne du champ électronique. La différence entre l'énergie cinétique réelle et celle des électrons non interagissant ainsi que la différence entre l'énergie d'interaction réelle et celle de Hartree sont prises en compte dans l'énergie d'échange et corrélation $E_{xc}[\rho(\vec{r})]$.

L'équation de Schrödinger à résoudre dans le cadre de l'approche de Kohn et Sham est de la forme :

$$\mathbf{E}_{tot}^{KS}\left[-\left(\frac{1}{2}\vec{\nabla}^{2}\right)+V_{ext}(\vec{r})+V_{\mathrm{H}}(\vec{r})+V_{xc}(\vec{r})\right]\left|\psi_{i}(\vec{r}_{i})\right\rangle=\mathbf{E}_{i}\left|\psi_{i}(\vec{r}_{i})\right\rangle$$
(2.13)

$$\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V_{eff}(\vec{r})\right] \left|\psi_i(\vec{r}_i)\right\rangle = \varepsilon_i \left|\psi_i(\vec{r}_i)\right\rangle \tag{2.14}$$

Où le potentiel effectif est défini par :

$$V_{eff}(\vec{r}) = V_{ext}(\rho(\vec{r})) + V_{\rm H}(\rho(\vec{r})) + V_{xc}(\rho(\vec{r}))$$
(2.15)

Avec le potentiel de Hartree des électrons est :

$$V_H(\rho(\vec{r})) = \frac{1}{2} \left(\frac{e^2}{4\pi\varepsilon_o} \frac{\rho(r')}{|r-r'|} dr \right)$$
(2.16)

Le potentiel d'échange et de corrélation est :

$$V_{xc}(\rho(\vec{r})) = \frac{\delta \mathcal{E}_{xc}(\rho(\vec{r}))}{\delta(\rho(\vec{r}))}$$
(2.17)

Les équations (2.17) correspondent aux équations de Kohn et Sham doivent etre résolues en respectant l'ortho-normalisation des fonctions d'onde :

$$\int dr \psi_i(\vec{r}) \psi_j(\vec{r}) = \delta_{ij} \tag{2.18}$$

2.4.3 Résolution des équations de Kohn-Sham

Cette approche a diminué la complexité de de n équations en simples équations d'lectrons indépendants dites les équations de Khon-Sham se basé par densité initiale, et un potentiel $V_{eff}(\vec{r})$ est inclut dans l'équation de Schrödinger de n électrons indépendants pour obtenir les orbitales $\psi_i(\vec{r})$ de Khon-Sham : une nouvelle densité électronique est alors déterminée. A partir de cette nouvelle densité, un nouveau potentiel effectif peut être calculé. Ce processus est répété de façon autocohérente jusqu'à ce que la convergence soit atteinte, i.e. jusqu'à ce que la nouvelle densité électronique soit égale ou très proche de la précédente (correspondant au critère de convergence fixé).

$$\rho(\vec{r}) = \sum_{i}^{n} \left| \psi_i(\vec{r}) \right|^2 \tag{2.19}$$

Une procédure d'itération sera dont nécessaire [12]

FIG. 2.1 : Schéma itératif de la procédure auto cohérente destine a résoudre les équations de Kohn-Sham.

Une certaine densité ρ_{\circ} est introduite au départ, et un premier Hamiltonien H_{KS1} est construit avec. Ainsi, le problème de valeur propre d'énergie (équation 2.18) sera résolu et une nouvelle densité ρ_1 peut être dérivée de ψ_1 . Probablement cette dernière ρ_1 va différer de ρ_{\circ} . Apres ρ_1 sera réutilise pour calculer H_{KS2} pour donner ρ_2 et ainsi de suite. La procédure peut être mise en place de telle sorte que ces séries convergeront vers une densité finale ρ_f qui génèrera un H_{KSf} .

La seule ambiguïté dans l'approche de Kohn et Sham (KS) est le terme d'échange-

corrélation.La complexité formelle de ce dernier rend la résolution des équations de KS difficile, Néanmoins cette fonctionnelle peut être soumise à des approximations de l'ordre local ou proche local de la densité. Ainsi, pour résoudre les équations de Kohn et Sham diverses fonctionnelles d'échange-corrélation ont été envisagées. Il est donc nécessaire d'aboutir a des approximations telles que l'approximation de la densité locale (LDA) et celle du gradient généralise (GGA) pour évaluer ce terme.

2.4.4 Approximation de la Densité Locale (LDA)

Il est nécessaire de donner une forme simplifiée $E_{xc}(\rho(\vec{r}))$ Qui prend en compte emploie soigneusement les corrélations entre les mouvements des différents électrons. Sont reflétés La première fois par Khon et Sham (1965), sous le nom de l'approximation de la densité locale (LDA, Local Density Approximation), il est supposé que la densité électronique peut être traitée localement sous la forme d'un gaz d'électrons uniforme. L'énergie d'échange-corrélation (LDA) peut-être écrite sous la forme :

$$\mathbf{E}_{xc}^{LDA}(\rho(\vec{r})) = \int \varepsilon_{xc}^{LDA}(\rho(\vec{r}))\rho(\vec{r})d^{3}\vec{r}$$
(2.20)

Avec $\varepsilon_{xc}^{LDA}(\rho(\vec{r}))$ représente l'énergie d'échange et de corrélation par électron dans un gaz d'électrons dont la distribution est supposée uniforme.Par la Connaissance du $\varepsilon_{xc}^{LDA}(\rho(\vec{r}))$ le potentiel d'échange-corrélation $V_{xc}^{LDA}(\rho(\vec{r}))$ peut être obtenu d'une façon variationnelle selon l'équation :

$$V_{xc}^{LDA}(\rho(\vec{r})) = \frac{\delta[\rho(\vec{r})\varepsilon_{xc}^{LDA}(\rho(\vec{r}))]}{\delta[\rho(\vec{r})]}$$
(2.21)

La fonctionnelle $\varepsilon_{xc}^{LDA}(\rho(\vec{r}))$ est purement locale. Cette énergie est divisée en deux termes :

$$\mathbf{E}_{xc}^{LDA}(\rho(\vec{r})) = \varepsilon_x^{LDA}(\rho(\vec{r})) + \varepsilon_c^{LDA}(\rho(\vec{r}))$$
(2.22)

Où : $\varepsilon_x^{LDA}(\rho(\vec{r}))$ est l'énergie d'échange et $\varepsilon_c^{LDA}(\rho(\vec{r}))$ est l'énergie de corrélation.

La contribution provenant de l'échange électronique dans l'approximation de la densité locale est connue analytiquement, et provient de la fonctionnelle d'énergie d'échange formulée par Dirac [13]; son expression est connue sous la forme :

$$\begin{cases} \varepsilon_x^{LDA}(\rho(\vec{r})) = -\frac{3}{4}(\frac{3}{\pi})^{\frac{1}{3}}\rho^{\frac{1}{3}} \\ \varepsilon_c^{LDA}(\rho(\vec{r})) = -\frac{0.458}{r_s} \quad ua \\ r_s = (\frac{4\pi\rho}{3})^{\frac{1}{3}} ua \end{cases}$$
(2.23)

 r_s est le rayon de Wigner-Seitz compris entre 2 et 5 (en unité atomique), l'équation (2.23) est applicable dans le cas de trouver le domaine lui appartient le rayon de Wigner-Seitz r_s , nous distinguons trois cas;

si $r_s < 1$ [14] donc :

$$\varepsilon_x^{LDA}(\rho(\vec{r})) = -0.048 + 0.0311 \ln(r) - 0.0116 \ln(r) + 0.002(r) \ln(r)$$
 (2.24)

si $r_s > 1$ [15] donc :

$$\varepsilon_x^{LDA}(\rho(\vec{r})) = -\frac{0.88}{r_s} \tag{2.25}$$

si $1 \le r_s \le 100$ [9,16] donc :

$$\varepsilon_x^{LDA}(\rho(\vec{r})) = -\frac{0.1423}{1 + 1.0529\sqrt{r_s} + 0.333r_s}$$
(2.26)

L'approximation de la densité Local a Spin polarise (Local Spin polarized Density Approximation, LSDA) [10, 16] c'est une extension de LDA, où employé le spin polarise

$$\mathbf{E}_{xc}^{LSDA}[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})] = \int [\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})]\varepsilon_{xc}^{LSDA}[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})]d^{3}(\vec{r}) \qquad (2.27)$$

Les paramètres de maille, l'énergie de gap et des moments orbitaux de spin sousestimer par la LDA et LSDA alors il fallait introduit d'autres termes dans l'expression d'échange et de corrélation.

2.4.5 Approximation du Gradient Généralisé (GGA)

L'approximation du gradient généralise (GGA, Generalized Gradient Approximation) consiste à considérer la densité serait axé sur la densité d'électrons et son gradient dans un système réel est évidemment non homogène en densité électronique. La fonctionnelle d'echange-correlation est définie dans la GGA comme :

$$\mathbf{E}_{xc}^{GGA}[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})] = \int \rho(\vec{r})\varepsilon_{xc}^{GGA}[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r}),\vec{\nabla}\rho_{\uparrow}(\vec{r}),\vec{\nabla}\rho_{\downarrow}(\vec{r})]d^{3}(\vec{r})$$
(2.28)

Nous pouvons écrivons la fonctionnelle d'énergie d'échange-corrélation de la GGA sous la forme suivante :

$$\mathbf{E}_{xc}^{GGA}[\rho_{\uparrow}(\vec{r}),\rho_{\downarrow}(\vec{r})] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \int \rho^{\frac{4}{3}}(\vec{r}) \mathbf{F}[\mathbf{s}(\vec{r})] d^{3}(\vec{r}) \qquad (2.29)$$

Où $s = \frac{|\nabla \rho|}{2\rho(3\pi^2 \rho)^{\frac{1}{3}}}$ Et F(s) est le facteur de perfectionnement. Perdew et Wang [17] introduire le terme du facteur de perfectionnement qui est 1 donner par LDA à une nouvelle forme donnée comme suite :

$$\mathbf{F}^{\mathrm{PW91}}[\mathbf{s}(\mathbf{r})] = \frac{1 + 0.19645 \mathrm{sinh}^{-1}(7.7956 \mathrm{s}) + (0.2743 * 0.1508 \mathrm{e} * 100 \mathrm{s}^2) \mathrm{s}^2}{1 + 0.19645 \mathrm{sinh}^{-1}(7.7956 \mathrm{s}) + 0.004 \mathrm{s}^4} \quad (2.30)$$

Cette forme a été modifiée par Perdew, Burke, et Ernzerhof (PBE) [10] est donner par un terme plus facile comme suite :

$$F^{PW91}[s(r)] = 1 + K - \frac{K}{1 + \frac{\sigma}{K}s^2}$$
(2.31)

K= 0.804 et $\sigma = -0.21951$ Z. Wu et R.E. Cohen (WC) [18] ont présente une version améliorée de la F(s) comme celle donnée par GGA-PBE :

$$F^{WC}[s(r)] = 1 + K - \frac{K}{1 + \frac{x}{K}}$$
 (2.32)

Où K= 0.804 $x = \frac{10}{80}s^2 + (\sigma - \frac{10}{80})s^2e^{-s^2} + \ln(1 + cs^4), \sigma = 0.21951, c = 0.0079325$

2.4.6 Potentiel de Becke et Johnson modifié mBJ

Becke et Johnson [19], développé une nouvelle version du potentiel d'échange est apparues par Tran et Blaha [20] et que signifie le potentiel mBJ modified Becke Johnson Potentiel (dit aussi le potentiel TB : Tran-Blaha)

$$v_{x,\sigma}^{mbj}(r) = c U_{x,c}^{mbj}(r) + (3c-2) \frac{1}{\pi} \sqrt{\frac{5}{12}} \sqrt{\frac{2t_{\sigma}(r)}{\rho_{\sigma}(r)}}$$
(2.33)

Avec $\rho_{\sigma}(r) = \sum_{i=1}^{n_{\sigma}} |\psi_{i,\sigma}(r)|^2$ est la densité électronique des électrons. $t_{\sigma}(r) = \sum_{i=1}^{n_{\sigma}} \nabla \psi^*_{i,\sigma}(r) \nabla \psi_{i,\sigma}(r)$ est la densité de l'énergie cinétique.

$$v_{x,\sigma}^{BR}(r) = -\frac{1}{b_{\sigma}(r)} \left(1 - e^{-x_{\sigma}(r)} - \frac{1}{2} x_{\sigma}(r) e^{-x_{\sigma}(r)} \right)$$
(2.34)

 $v_{x,\sigma}^{BR}(r)$ est le potentiel de Becke-Roussel (BR) [21]. Le potentiel de Becke-Roussel (BR) qui a été propose pour modéliser le potentiel coulombien crée par le trou d'échange. Le terme x_{σ} dans l'équation (2.34) a été détermine à partir de $\rho_{\sigma}(r)$, $\nabla \rho_{\sigma}(r)$, $\nabla^2 \rho_{\sigma}(r)$, et $t_{\sigma}(r)$; tandis que le terme $b_{\sigma}(r)$ a été calculé en utilisant la relation suivante :

$$b_{\sigma}\left(r\right) = \left(\frac{x_{\sigma}^{3}\left(r\right)e^{-x_{\sigma}\left(r\right)}}{8\pi\rho_{\sigma}\left(r\right)}\right)^{\frac{1}{3}}$$
(2.35)

À l'origine, BJ a utilisé le potentiel de Slater Slater $v_{x,\sigma}^{Slater}$ au lieu de $v_{x,\sigma}^{BR}$, mais ils ont montré que ces deux potentiels sont quasi-identiques pour des atomes [22]. Dans Eq2.34, c a été choisi pour dépendre linéairement de la racine carrée de la moyenne $\frac{\nabla \rho}{\rho}$:

$$c = \alpha + \beta \left(\frac{1}{V_{cell}} \int \frac{|\nabla \rho(r')|}{\rho(r')} d^3r'\right)^{\frac{1}{2}}$$
(2.36)

Bibliographie

- R. Car and M. Parrinello, "Unified approach for molecular dynamics and density-functional theory," *Physical review letters*, vol. 55, no. 22, pp. 2471,.
- [2] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," *Phys. Rev*, vol. 136, pp. 864–871,.
- [3] M. Born and R. Oppenheimer, "Zur quantentheorie der molekeln," Annalen der Physik, vol. 389, no. 20, pp. 457–484,, online]. Available :.
 [Online]. Available : https://onlinelibrary.wiley.com/doi/abs/10.1002/andp. 19273892002
- [4] D. Hartree, "The wave mechanics of an atom with a non-coulomb central field.part i. theory and methods mathematical proceedings of the cambridge philosophical society," vol. 24, no. 1, p. 89–110.
- [5] V. Fock, "Näherungsmethode zur lösung des quantenmechanischen mehrkör perproblems," Zeitschrift für Physik, vol. 61, pp. 126–148,.
- [6] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," *Physical review*, vol. 136, pp. 864,, p.
- [7] L. Thomas, "The calculation of atomic fields in mathematical proceedings of the cambridge philosophical society," vol. 23, p. 542–548.
- [8] E. Fermi, "Eine statistische methode zur bestimmung einiger eigenschaftendes atoms und ihre anwendung auf die theorie des periodischen systems derelemente," Zeitschrift für Physik, vol. 48, no. 1-2, pp. 73–79,.
- [9] D. Ceperley and B. Alder, "Ground state of the electron gas by a stochastic method," pp. 566,.
- [10] J. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," *Physical review letters*, vol. 77, no. 18, pp. 3865,.

- [11] W. Kohn and L. Sham, "Self-consistent equations including exchange and correlation effects," *Physical review*, vol. 140, no. 4A, pp. 1133,, p.
- [12] M. Payne, M. Teter, D. Allan, T. Arias, and Joannopoulos, "Iterative minimization techniques for ab initio total-energy calculations : molecular dynamics and conjugate gradients," *J.Reviews of modern physics*, vol. 64, no. 4, pp. 1045,.
- [13] P. Dirac, "Note on exchange phenomena in the thomas atom mathematical proceedings of the cambridge philosophical society," vol. 26, p. 376–385.
- [14] M. Gell-Mann and K. Brueckner, "Correlation energy of an electron gas at high density," *Physical Review*, vol. 106, no. 2, pp. 364,.
- [15] J. Bardeen, G. Baym, and D. Pines, "Interactions between he 3 atoms in dilute solutions of he 3 in superfluid he 4," *Physical Review Letters*, vol. 17, p. 372.
- [16] J. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems," *Physical Review B*, vol. 23, no. 10, p. 5048.
- [17] J. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy," *Physical review B*, vol. 45, no. 23, p. 13244, p.
- [18] Z. Wu and R. Cohen, "More accurate generalized gradient approximation for solids," *Physical Review B*, vol. 73, no. 23, p. 235116.
- [19] A. Becke and E. Johnson, "A simple effective potential for exchange," The Journal of chemical physics, vol. 124, no. 22, pp. 221 101,.
- [20] F. Tran and P. Blaha, "Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential," *Physical review letters*, vol. 102, no. 22, pp. 226401,.

- [21] A. Becke and M. Roussel, "Exchange holes in inhomogeneous systems a coordinate-space model," *Physical Review A*, vol. 39, no. 8, pp. 3761,.
- [22] J. Slater, "A simplification of the hartree-fock method," vol. 81, no. 3, p. 385.

Chapitre 3

LA MÉTHODE DES ONDES PLANES AUGMENTÉES LINÉARISÉES

3.1 Méthode des ondes planes augmentées (APW)

Cette méthode est développé la première fois par Slater en 1937 [1] et son continu et amélioration en 1964 [2]. L'idée de base de cette méthode est divisée l'espace en deux régions loin des noyaux, les électrons sont plus en moins « libres » , et peuvent être assez bien décrits par des ondes planes. Inversement, a proche les excitations des états du cœur). d'un noyau, l'électron se comporte plus ou moins comme s'il était dans un atome isole est en résument comme suit :

- Une région interne des sphères atomiques S de rayon R_{mt} qui entourent les noyaux et ne se chevauchent pas. Une telle sphère est souvent appelée muffin tin sphère (nid d'abeille).
- la région complémentaire hors des sphères, appelée région interstitielle I [3].

de rayon R_{mt} et en une région interstitielle (I) adoptée dans la méthode APW. L'idée se présente comme suit : près du noyau, les électrons se comportent comme dans un atome libre ce qui nécessite le choix d'une base de fonctions atomiques

FIG. 3.1 : Répartition des cellules atomiques unitaires en sphères muffin tin (S).

pour décrire les fonctions d'onde de manière correcte, à l'intérieur de la région interstitielle, le potentiel est presque constant et les électrons sont quasiment libres, permettant ainsi l'utilisation d'ondes planes pour une meilleure description des fonctions d'onde.

Dans la région interstitielle (I) :

$$\varphi_I(\overrightarrow{r}) = \frac{1}{\sqrt{\Omega}} \sum_G C_G e^{i(\overrightarrow{G} + \overrightarrow{K}) \cdot \overrightarrow{r}} \qquad r \rangle R_{mt}$$
(3.1)

À l'intérieur de la sphère muffin tin (S) :

$$\varphi_S(\overrightarrow{r}) = \sum_{lm} A_{lm} U_l(r, \mathbf{E}_l) Y_{lm}(\overrightarrow{r}) \qquad r \langle R_{mt} \tag{3.2}$$

 R_{mt} représente le rayon de la sphère MT, Ω le volume de la cellule unitaire (de la sphere muffin-tin), C_G et A_{lm} les coefficients du développement et Y_{lm} sont les harmoniques sphériques. $U_l(r, E_l)$ est la solution radiale qui satisfait l'équation de Schrödinger pour l'energie E_l qui peut s'écrire sous la forme suivante :

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - \mathcal{E}_l\right\} r U_l(r) = 0$$
(3.3)

Le terme V(r) représente le potentiel muffin tin. Le paramètre de coupure cutoff paramètre $R_{mt} * K_{max} = 6 \dots 9$ vérifier la convergence de cet ensemble de base K_{max} est la magnitude du plus large vecteur d'onde \overrightarrow{K} dans la première zone de Brillouin irréductible. Slater introduit une modification à ce choix particulier présentant les ondes planes comme solutions de l'équation de Schrödinger dans un potentiel constant. Cette approximation du potentiel, appelée l'approximation muffin-tin (MT). Les coefficients A_{lm} doivent être développés en fonction des coefficients C_G des ondes planes existantes dans la région interstitielle. Ainsi, après les calculs :

$$A_{lm} = \frac{4\pi i^l}{\Omega^{1/2} U_l(R_{mt})} \sum_G C_G J_j(|K+G|R_{mt}) Y_{lm}^*(K+G)$$
(3.4)

Le principal inconvénient de la APW est que trouver des valeurs de l'énergie Ei pour lesquels le terme $U_l(R_{mt})$ s'annule a la limite de la sphère muffin-tin. C'est ce qu'on appelle le problème de l'asymptote. Les calculs deviennent plus compliqués quand les bandes apparaissent près de l'asymptote. Plusieurs modifications à la méthode APW ont été apportées, notamment celles proposées par Koelling [4] et par Andersen [5] . La modification consiste à représenter la fonction d'onde à l'intérieur des sphères par une combinaison linéaire des fonctions radiales et de leurs dérivées par rapport à l'énergie, donnant ainsi naissance de la méthode FP-LAPW.

3.2 La méthode LAPW

En 1975, Andersen [5] a proposé la méthode linéaire des ondes planes augmentées (LAPW),La nouvelle l'amélioration apportée concerne les fonctions de base à l'intérieur des sphères MT : ces fonctions sont une combinaison linéaire des fonctions radiales $U_l(r) Y_{lm}(r)$ et de leurs dérivées par rapport à l'énergie $U'_l(r) Y_{lm}(r)$ c-à-d un $U_l(r, E_0)$ est construit a une énergie E_0 puis un développement de Taylor est effectué afin de déterminer sa valeur au voisinage de cette énergie :

$$u_{l}'\left(\varepsilon_{n}^{K},r\right) = u_{l}\left(\mathrm{E}_{0},r\right) + \left(\mathrm{E}_{0},\varepsilon_{n}^{K}\right)\underbrace{\frac{\partial u_{l}\left(r,\mathrm{E}_{l}\right)}{\partial \mathrm{E}_{l}}}_{u_{l}'\left(r,\mathrm{E}_{0}\right)} + O\left(\mathrm{E}_{0}+\varepsilon_{n}^{K}\right) \tag{3.5}$$

Substituer les deux premiers termes du développement et les remplacer dans la APW, pour l'énergie E_{\circ} fixe, donne définition à LAPW, les fonctions de base sont données par :

$$\varphi_I(\overrightarrow{r}) = \frac{1}{\sqrt{\Omega}} \sum_G C_G e^{i(\overrightarrow{G} + \overrightarrow{K}) \cdot \overrightarrow{r}} \qquad r \rangle R_{mt}$$
(3.6)

$$\varphi_{S}\left(\overrightarrow{r}\right) = \sum_{lm} \left[A_{lm}U_{l}\left(r, \mathbf{E}_{0}\right)B_{lm}U_{l}'\left(r, \mathbf{E}_{0}\right)\right]Y_{lm}\left(\overrightarrow{r}\right) \quad r\langle R_{mt} \tag{3.7}$$

Où B_{lm} sont des coefficients de la dérivée de la fonction $U_l(r, E_0)$ par rapport à l'énergie, Les coefficients A_{lm} et B_{lm} sont déterminés de telle sorte à satisfaire aux conditions de continuité entre les zones (S) et (I). L'expression générale de cette dernière est obtenue en généralisant à l'ensemble des énergies E_l de chaque atome au lieu d'une seule valeur fixe E_0 :

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right\} r U_l'(r, E_l) = r U_l(r, E_l)$$
(3.8)

La détermination des coefficients A_{lm} et B_{lm} qui satisfont les conditions aux limites Cette dernière permet la détermination des moments angulaires de coupure (cutoff) lmax, et le (cutoff) des ondes planes utilisées Gmax.la convergence des calculs de LAPW est assurée pour $R_{mt} * G_{max} = l_{max}$ compris entre 7 et 9.

3.3 la méthode FP-LAPW

Dans la méthode des ondes planes augmentées linéarisées a potentiel total (Full- Potentiel Linearized Augmented plane Waves : FP-LAPW) aucune approximation n'est faite pour la forme du potentiel ni de la densité de charge. En effet, le potentiel décrivant les interactions entre noyaux et électrons peut être traite différemment suivant que l'on se trouve à l'intérieur ou à l'extérieur de la sphère muffin tin. Il est développé en harmoniques (dans chaque atome sphérique muffin tin) et en séries de Fourier (dans les régions interstitielles) : à l'intérieur de la sphère :

$$V(\overrightarrow{r}) = \sum_{lm} U_{lm} Y_{lm}(\overrightarrow{r}) \qquad r \langle R_{mt} \qquad (3.9)$$

à l'extérieur de la sphère :

$$V\left(\overrightarrow{r}\right) = \sum_{K} U_{K} e^{iK\overrightarrow{r}} \qquad r \rangle R_{mt} \qquad (3.10)$$

La méthode FP-LAPW assure ainsi la continuité de la fonction d'onde à la surface de la sphère MT.

3.4 La méthode LAPW avec les orbitales locales (LAPW+LO)

Les états de valence sont situés à l'extérieur de la sphère muffin-tin et participent à la liaison chimique. Par contre, les états de cœur sont complètement enfermés à l'intérieur de la sphère muffin-tin. Ils sont caractérisés par le fait qu'ils ne participent pas directement dans la liaison chimique. Mais à cause des hybridations électroniques, certains états appelés « semicoeur » sont des états intermédiaires entre l'état de valence et l'état de cœur participent à la liaison mais avec une faible contribution. La méthode FP-LAPW donne généralement des énergies de bande précises au voisinage des énergies de linéarisation E_l [4] et dans la plupart des matériaux, il suffit de choisir ces énergies au voisinage du centre des bandes. Afin d'améliorer la linéarisation et rende possible le traitement des états de valence et de semi-cœur dans une seule fenêtre d'énergie, des orbitales dites locales (LO) sont ajoutées dans la base LAPW [6] , et se composent d'une combinaison linéaire de deux fonctions radiales correspondant à deux énergies différentes et de la dérivée par rapport à l'énergie de l'une de ces deux fonctions. Une orbitale locale (LO) est définie par :

$$\varphi_{lm}^{LO}\left(\vec{r}\right) = \begin{cases} \left[A_{lm}^{LO}U_{l}\left(r, \mathbf{E}_{1,l}\right) + B_{lm}^{LO}U'_{l}\left(r, \mathbf{E}_{1,l}\right) + C_{lm}^{LO}U_{l}\left(r, \mathbf{E}_{2,l}\right)\right]Y_{lm}\left(r\right) & r \in I\\ 0 & r \notin I \end{cases}$$
(3.11)

Où : $C_{lm}^{LO},$ sont des coefficients possédant la même nature des coefficients ${\cal A}_{lm}^{LO}$

et B_{lm}^{LO} Une orbitale locale est définie pour un atome donné pour chaque l et m. Elle est appelée locale car elle est nulle partout sauf dans la sphère muffin-tin à laquelle se rapporte. Ces orbitales locales sont alors ajoutées à la base LAPW. Donc l'addition des orbitales locales augmente la taille de la base LAPW.

3.5 La méthode APW+lo

Le problème de la méthode APW est la dépendance en énergie des fonctions de base. Cette dépendance est écartée dans la méthode LAPW+LO, mais au prix de l'utilisation d'une base légèrement plus grande, ceci impose des limitations aux méthodes APW et LAPW+LO. Récemment, une méthode proposée par Sjöstedt et al. [7], appelée la méthode APW+lo, et correspond à une base indépendante de l'énergie et a toujours la même taille que celui de la méthode APW. Cette méthode combine les avantages de la méthode APW et ceux de la méthode LAPW+LO. La base APW+lo contient des deux types de fonctions d'ondes. Le premier étant les ondes planes augmentées APW, avec un ensemble d'énergie E_l fixées :

$$\varphi\left(\overrightarrow{r}\right) = \begin{cases} \sum_{lm} \left[A_{lm}U_{l}\left(r, \mathbf{E}_{i}\right)\right]Y_{lm}\left(\overrightarrow{r}\right) & r \in I\\ \\ \frac{1}{\sqrt{\Omega}}\sum_{G}C_{G}e^{i\left(\overrightarrow{G}+\overrightarrow{K}\right)\overrightarrow{r}} & r \in II \end{cases}$$
(3.12)

L'utilisation d'une base d'énergies fixées ne permet pas une bonne description des fonctions propres, on y ajoute alors un deuxième type de fonctions, appelé : orbitales locales « lo », qui permettent d'assurer une flexibilité vibrationnelle au niveau des fonctions de base radiales. Le deuxième type de fonctions (lo) sont différentes de celles de la méthode LAPW+LO, définie par :

$$\varphi_{lm}^{LO}\left(\overrightarrow{r}\right) = \begin{cases} \left[A_{lm}^{LO}U_{l}\left(r, \mathbf{E}_{1,l}\right) + B_{lm}^{LO}U_{l}'\left(r, \mathbf{E}_{1,l}\right)\right]Y_{lm}\left(\overrightarrow{r}\right) U_{l}\left(\overrightarrow{r}\right) & r \in I\\ 0 & r \notin I \end{cases}$$

$$(3.13)$$

Les coefficients A_{lm}^{LO} et B_{lm}^{LO} sont déterminés par normalisations, et en considérant que l'orbitale locale ait une valeur zéro à la limite de la sphère muffin-tin (mais sa dérivée est non nulle). Cette base donne des résultats aussi satisfaisants que ceux de la méthode LAPW+LO, tout en permettant de réduire le produit $R_{mt} * G_{max}$.

3.6 Le code Wien 2k :

Une application réussie de la méthode (FP-LAPW) est le programme Wien2k, un code développé par Blaha, Schwartz et Luiz [8] . Il a été appliqué avec succès pour le gradient du champ électrique [9,10] [10, 11], les minéraux [11], les surfaces des métaux de transition [12] , les oxydes non ferromagnétiques [13] et même les molécules .

Le code Wien2k est constitué de différents programmes indépendants qui sont liés par le C-SHEL SCRIPT. Le déroulement et l'utilisation des différents programmes du Wien2k sont illustrés dans le diagramme suivant figure :3.2 .

- 1. 1nitialisation : pour déterminer les propriétés d'un matériau donné, il faut générer les données de départ. Qui se trouvent dans le fichier case. Struct
 Ce dernier contient le paramètre du réseau, la structure cristalline, les rayons muffin-tin, les opérations de symétrie...etc. Cette étape est faite pour la préparation du cycle SCF. Ces éléments sont générés par une série de petits programmes :
 - NN : donne les distances entre plus proches voisins et aide à déterminer le rayon de la sphère Muffin-tin.
 - LSTART : génère les densités atomiques et détermine comment les différentes orbitales sont traitées dans le calcul de la structure de bande (c'est à dire états de coeur et états de valence, avec ou sans orbitales locales ...).
 - SYMMETRY : génère les opérations de symétrie du groupe spatial, détermine le groupe ponctuel des sites atomiques individuels, génère l'expansion lm pour les harmoniques du réseau et détermine les matrices de rotation locale.
 - KGEN : génère une maille k dans la zone de Brillouin.

Chapitre 3 LA MÉTHODE DES ONDES PLANES AUGMENTÉES LINÉARISÉES

- **DSTART** : génère une densité de départ pour le cycle SCF par la superposition des densités atomiques générées dans LSTART.
- 2. Calcul SCF : le cycle SCF comprend les étapes suivantes :
 - LAPW0 : génère le potentiel à partir de la densité.
 - LAPW1 : calcule les bandes de valence (les valeurs propres et les vecteurs propres)
 - LAPW2 : calcule les densités de valence à partir des vecteurs propres.
 - LCORE : calcule les états de coeur et les densités.
 - **MIXER :** mélange les densités de valence et du coeur pour produire une nouvelle densité.
- Calcul des propriétés : le calcul des propriétés physiques se fait à l'aide des programmes :
 - **OPTIMISE :** détermine l'énergie totale en fonction du volume qui sert à calculer le paramètre du réseau, le module de compressibilité et sa dérivée.
 - **TETRA** : calcule la densité d'état totale et partielle.
 - SPAGHETTI : calcule la structure de bandes en utilisant les valeurs propres générés par LAPW1. OPTIC : calcule les propriétés optiques.
 XSPEC : calcule les structures des spectres d'absorption et émission des rayons X.

FIG. 3.2 : l'organigramme des programmes du code WIEN2k.

Bibliographie

- [1] J. Slater, "A simplification of the hartree-fock method," vol. 81, no. 3, p. 385.
- [2] —, "Energy band calculations by the augmented plane wave method**the research reported in this paper has been assisted by the national science foundation and the office of naval research, as well as by the army, navy, and air force," vol. 1, p. –, online]. Available :. [Online]. Available : https://www.sciencedirect.com/science/article/pii/S0065327608603743
- [3] S. Cottenier, "Density functional theory and the family of (l) apw methods : a step-by-step introduction," vol. 4, p. 41.
- [4] D. Koelling and G. Arbman, "Use of energy derivative of the radial solution in an augmented plane wave method : application to copper," *Journal of Physics*, F : Metal Physics, vol. 5, no. 11, p. 2041.
- [5] O. Andersen, "Linear methods in band theory," *Physical Review B*, vol. 12, no. 8, p. 3060.
- [6] D. Singh and H. Krakauer, "H-point phonon in molybdenum : Superlinearized augmented-plane-wave calculations," *Physical Review B*, vol. 43, no. 2, p. 1441, p.
- [7] E. Sjöstedt, L. Nordström, and D. Singh, "An alternative way of linearizing the augmented plane-wave method," *Solid state communications*, vol. 114, no. 1, pp. 15–20,.
- [8] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, "An augmented plane wave plus local orbitals program for calculating crystal properties : Wien2k user's guide."
- [9] W. Harrison, "Effective charges and piezoelectricity," *Physical Review B*, vol. 10, no. 2, pp. 767,.
- [10] W. Harrison and S. Ciraci, "Bond-orbital model. ii," *Physical Review B*, vol. 10, no. 4, pp. 1516,.

- [11] D. Penn, "Wave-number-dependent dielectric function of semiconductors," *Physical review*, vol. 128, no. 5, pp. 2093,.
- [12] P. Stiles, "Trends in the ionicity in the average valence v materials," Solid State Communications, vol. 11, no. 8, pp. 1063–1066,.
- [13] D. Schiferl, "Bonding and crystal structures of average-valence-< 5> com," *Physical Review B*, vol. 10, no. 8, pp. 3316, p.

Chapitre 4

Résultats et discussion

4.1 PROPRIETES STRUCTURALES ET ELAS-TIQUES

4.1.1 Introduction :

Dans ce chapitre nous allons présenter les principales propriétés des composés Ba(X=Fe, Nb, Mo, Hf)O₃. Nous nous sommes tout d'abord intéressés à un test de convergence, et de l'optimisation de la structure cristalline, en déterminant les paramètres de réseau pour leurs grandeurs structurales (paramètre de maille a et module de compressibilité B). Par la suite nous présenterons l'étude des propriétés élastiques qui englobe le calcul des constantes élastiques C_{ij} , les modules de cisaillement G et de Young Y, le rapport de Poisson ν , le facteur d'anisotropie A, et la température de Debye θ_D .

4.1.2 Détails de calcul

Il est important de noter que dans tous les calculs ab-initio, le choix de certains paramètres est crucial pour l'obtention de fiables résultats. Ainsi dans nos calculs le rayon de coupure $(Rmt \times kmax)$ et le nombre de points spéciaux (Nkpt)utilisés pour l'intégration dans la zone irréductible de Brillouin ont été choisis après des tests de convergence. Nous avons calculé la variation de l'énergie totale

en fonction du paramètre $\operatorname{Rmt} \times \operatorname{kmax}$ et le nombre de points spéciaux (*Nkpt*). Nous avons trouvé que l'énergie totale converge à partir de $Rmt \times kmax = 8$ et de 3000k - points dans la zone irréductible de Brillouin. Pour rendre nos calculs plus précis et convaincants, nous nous sommes appuyés sur un test de convergence des paramètres numériques en utilise la méthode FP-LAPW [1] implémentée dans le code WIEN2K [2] Ce code est basé sur la théorie de la fonctionnelle de la densité (DFT) [3] le potentiel de l'échange et de corrélation sont menés par l'approximation de gradient généralisée GGA-PBEsol proposé en 2008 par Perdew et al [4,5] Les fonctions de base, la densité d'électrons et le potentiel sont calculées avec la géométrie du champ auto-consistent dépendent normalement de la résolution de l'ensemble de base ψ_K , de l'échantillonnage des points spéciaux K dans la zone de Brillouin. Nous avons utilisé une énergie cohérente qui sépare le cœur et des états de valence (-7.0Ry) avec précision de critères de convergence 10^{-5} . On limite le nombre quantique orbital l du développement de la fonction d'onde dans la sphère atomique a $l_{max} = 8$. Le développement de Fourier de la densité de charge a été limite au vecteur d'onde $G_{max} = 10 R_y^{1/2}$. Les valeurs des rayons muffin-tin des atomes :Ba,(X=Fe, Nb, Mo, Hf) et O sont choisis respectivement égales à 2.50, 1.95 et 1.68 unités atomiques (u.a). Pour tous nos calculs, l'optimisation est réalisée à l'aide d'une simple supercellule cubique 1x1x1.

4.1.2.1 Test de convergence :

Les résultats résumés sont dérivés des figures : 4.1 et 4.2 suivantes :

4.2 Les Propriétés Structurales :

La première partie dans ce genre de calculs, est l'optimisation des paramètres structuraux à savoir que le paramètre du réseau a_0 , le module de compressibilité B_0 et de sa dérivée B'_0 . Cette étape est d'une importance capitale, car elle va nous permettre d'accéder au calcul des autres propriétés à travers le paramètre cristallin optimisé. C'est pour cela, nous avons effectué un calcul auto cohérent (self consistent) de l'énergie totale pour différentes valeurs du paramètre du réseau

FIG. 4.1 : L'énergie en fonction de K_{point} pour le Ba(X=Fe, Nb, Mo, Hf)O₃

prises au voisinage du paramètre expérimental. En ajustant la courbe de l'énergie totale en fonction du volume par l'équation d'état de Birch–Murnaghan [6] [6]

FIG. 4.2 : L'énergie en fonction de $R_{mt} * K_{point}$ pour le Ba(X=Fe, Nb, Mo, Hf)O₃

pour obtenir les paramètres d'équilibre.

$$E(V) = E_0 - \frac{B_0 V_0}{B'_0 - 1} + \frac{B_0 V}{B'_0} \left[\frac{\left(\frac{V_0}{V}\right)^{B'_0}}{B'_0 - 1} + 1 \right]$$
(4.1)

Où E_0 , V_0 et B' sont les valeurs à l'équilibre de l'énergie totale, du volume, du module de compression et de la dérivée du module de compression par rapport à la pression, respectivement. La constante du réseau à l'équilibre est donnée par le minimum de la courbe E(V):

$$V = V_0 \left[1 + \frac{B'_0 P}{B_0} \right]^{-\frac{1}{B'_0}}$$
(4.2)

Le module de compression B est déterminé par la courbure de la courbe E(V) :

$$B = V \frac{\partial^2 \mathcal{E}}{\partial V^2} \tag{4.3}$$

La dérivée, par rapport à la pression, du module de compression, B', est obtenue à partir de l'équation suivante :

$$E(V) = E_0 + \frac{B_0}{B'_0(B'_0 - 1)} + \left[V\left(\frac{V_0}{V}\right)^{B'_0} - V_0\right] + \frac{B_0}{B}(V - V_0)$$
(4.4)

Les résultats numériques obtenus pour les paramètres du réseau et les modules de compressibilité sont présentés dans le tableau (4.1). Pour valider nos résultats, ce tableau contient également des résultats expérimentaux et théoriques obtenus par d'autres méthodes.

TAB. 4.1 : Paramètres structuraux à l'équilibre (paramètre du réseau a_0 (A°), module de compressibilité B_0 et sa dérivée B'_0 (GPa)) calculés par la GGA-PBsol comparés avec d'autres calculs théoriques et données expérimentales pour les composés BaFeO₃,BaNbO₃,BaMoO₃ et BaHfO₃.

		a_0	B_0	B_0^{\prime}
	Nos Résultas	3.8933	160.3504	4.8735
$BaFeO_3$	Autres Résultas	4.013	212.85,142.16,149.87 [8][8]	4.60 [9][9]
		[7][7]3.819, 3.916, 3.9211	189.069 [9][9]	
		[8][8]		
		3.85 [9][9],3.86 [10][10]		
	Exprémontal	3.97 [11][11]		
BaNbO ₃	Nos Résultas	4.081	187.7596	4.6657
	Autres Résultas	4.082 [12][21],4.130 [13][22]	186.3 [12][21],171.2 [13][22]	4.45 [12][21],3.94 [13][22]
	Exprémontal	4.085 [14][12]		
BaMoO ₃	Nos Résultas	4.0196	199.6180	4.7688
	Autres Résultas	4.010,4.032,4.038 [15][13]		
	Exprémontal	$4.063 \ [16][14] 4.041 \ [17][15]$		
BaHfO ₃	Nos Résultas	4.162	170.15	4.61
	Autres Résultas	4.127 [18][23],4.325 [19][24]	181.30 [1 8][23]154 [1 9][24]	4.53 [18][23],5.09 [19][24]
	Exprémontal	4.16 [20][25]		

En confrontant nos valeurs optimisées à celles disponibles dans la littérature, on voit bien que celles-ci concordent bien avec les résultats théoriques. Cependant, nous comparons les résultats expérimentaux, nous rencontrons le comportement bien connu de l'approximation GGA-PBEsol qui amplifie les constantes du réseau par rapport à celles trouvées expérimentalement.

Cette amplification est autour de 0,97% pour BaFeO₃ 0,99% pour BaMoO₃ et 1% pour BaNbO₃ et 1% pour BaHfO₃. Globalement nous pouvons dire que cette approximation choisie nous a donné des résultats concordants bien avec les mesures expérimentales et les résultats théoriques obtenus par d'autres travaux utilisant différentes méthodes DFT.

En ce qui concerne le module de compressibilité, Nous remarquons une bonne concordance de nos résultats avec les autres travaux théoriques, en vue de l'absence des données expérimentales.

Le rapprochement de nos résultats avec ceux obtenus par d'autres méthodes théoriques peut être accordé au fait que ces différentes méthodes utilisent ainsi que les conditions imposées sur l'énergie de coupure $E_{Cut-off}$ et l'échantillonnage de la première zone de Brillouin (kpts), probablement le même formalisme qui est la DFT. Les figures :4.3 suivants illustres la variation de l'énergie totale en fonction du volume E=f(V) des composés BaFeO₃, BaNbO₃, BaMoO₃ et BaHfO₃, respectivement :

FIG. 4.3 : la variation de l'énergie totale en fonction du volume E = f(V) pour le Ba(X=Fe, Nb, Mo, Hf)O₃
4.3 Propriétés élastiques :

4.3.1 Introduction :

La flexibilité des solides c'est la réponse du matériau aux sollicitations appliquées, ces sollicitations peuvent provoquées des déformations réversibles (retour à l'état initial). La loi de Hooke s'applique seulement aux faibles déformations et établit dans un solide élastique, la déformation est relative à la contrainte. Le module de flexibilité et de cisaillement peuvent être exprimé comme une combinaison linéaire d'un ensemble de constantes d'élasticités C_{ij} et sont actuellement considérées comme les meilleurs prédicateurs de dureté pour les solides. En théorie de l'élasticité linéaire, il existe une relation linéaire entre σ_{ij} et ε_{ij} donnée par la loi de Hooke généralisée ?? [27].

4.3.2 Paramètres élastiques monocristallins :

Les conditions de stabilité mécanique sont :

$$C_{11} - C_{12} \langle 0, C_{11} \rangle 0, C_{44} \rangle 0, C_{11} + 2C_{12} \rangle 0 \ et \ C_{12} \langle B \langle C_{11}$$

$$(4.5)$$

Nous rapportons dans le tableau :(??) nos paramètres élastiques calculés de BaFeO₃ ,BaNbO₃ BaMoO₃ et BaHfO₃.Et des données expérimentales et théoriques disponibles dans

la littérature comme nous savons.

TAB. 4.2: table

Paramètres élastiques monocristallins de BaXO₃ : Constantes élastiques (C_{11} , C_{12} et C_{44} en GPa), module de masse (B en GPa), module de cisaillement ($G = C_{44}$ en GPa), module de cisaillement tétragone (G' en GPa),

compressibilité (β en GPa^{-1}), pression de Cauchy (C_p en GPa) et facteur d'anisotropie élastique A, à P = 0 et T = 0.

		C11	C_{12}	$G = C_{44}$	A	В	β	G	C_p
	Nos Résultas	182.5357	79.8926	98.1171	1.9118	114.106	75.646	51.32155	-18.2245
BaFeO ₃	Autres Résultas	238.5443 999194.28,107.77,108.05 888	164.3315 [9][9]225.78,155.23,150.96 [8][8]	105.352 [9][9]131.71,88.37,89.50 [8][8]	2.8391 [9][9]	215.28,139.41,136.65 [8][8]		78.053	
	Exprémontal								
	Nos Résultas	369.9149	98.9151	82.3747	0.6079	189.248	0.00528	135.4999	16.5404
BaNbO ₃	Autres Résultas	335.4 [12] [21] 270.8 [13] [22]	111.7 [12][21]121.4 [13][22]	81.5 [12][21]84.2 [13][22]	1.13 [13][22]	171.2 [13][22]			
	Exprémontal								
	Nos Résultas	355.2732	121.2721	87.3535	0.7466	199.272	0.00502	117.0005	33.9186
$BaMoO_3$	Autres Résultas	253.67 [15][13]	111.54 [15][13]	81.63 [15][13]94.3 [21][20]	1.1486 [15][13]	158.92 [15][13]	0.00648 [21][20]		71.07 [15][13]
	Exprémontal	349.9 [22][16]320.6 [23][17]	120.9 [22][16]105.48 [23][17]	81.6 [24][18]82.08 [23][17]	0.71 [22][16]0.76 [24][18]	197 [22][16]167 [23][17]177.19 [24][18]			22.92 [24][18]
	Nos Résultas	348.64	81.29	92.81	0.69	170.41	0.00587	133.67	-11.52
BaHfO ₃	Autres Résultas	381.73 [18] [23] 340 [19] [24]	82.23 [18] [23] 65 [19] [24]	74.25 [18][23]72 [19][24]		157 [19][24]			
	Exprémontal						0.00878 20 25		

Le module de compressibilité B constant qui décrit les propriétés élastiques

d'un solide ou liquide quand c'est sous pression sur toutes les surfaces à partir des constantes élastiques en utilisant l'équations suivante :

$$B = \frac{C_{11} + 2C_{12}}{3} \tag{4.6}$$

La compressibilité est donnée par l'équations suivante :

$$\beta = \frac{1}{B} = \frac{3}{C_{11} + 2C_{12}} \tag{4.7}$$

Le facteur d'anisotropie A est le rapport entre G et G' :

$$G = C_{44} \tag{4.8}$$

$$G' = \frac{C_{11} - C_{12}}{2} \tag{4.9}$$

$$A = \frac{G}{G'} = \frac{2C_{44}}{C_{11} - C_{12}} \tag{4.10}$$

Nos calculs de facteur d'anisotropie ont indiqué que BaX(X=Fe, Nb, Mo et Hf)O₃ sont élastiquement anisotrope. La pression de Cauchy C_p peut identifier la caractéristique minérale et non minérale de matériel, si la valeur de la pression de Cauchy positive alors le matériel est métallique et si la valeur de la pression de Cauchy négative alors le matériel est non métallique [25] [28]. À une condition proche, la négativité et la positivité de la pression de Cauchy expliquent la souplesse et la fragilité d'un matériel [26] [29].

$$C_p = C_{12} - C_{44} \tag{4.11}$$

Le GGA-PBEsol est utilisé pour calculer les paramètres élastiques monocristallins : l'élastique constantes $(C_1 1, C_1 2 \text{ et} C_4 4)$, le module de compressibilité (B), le module de cisaillement $(G = C_4 4)$, le module de cisaillement tétragone (G'), la compressibilité (), la pression de Cauchy (C_P) et le facteur d'anisotropie

élastique (A). Dans le tableau4.2, nous montrons nos résultats avec les résultats théorique et expérimental disponible d'autres travaux illustré dans le tableau4.2 Nous avons observé que la majorité des travaux théoriques et expérimental dans les littératures pour nos matériaux n'ont pas de résultats à le module de cisaillement tétragone (G'), la compressibilité (), la pression de Cauchy (C_P) , ce qui signifie que nos résultats sont premier prédiction. Comme le GGA-PBEsol nous donne un paramètre de réseau précis, nous pensons que nos valeurs de paramètres élastiques monocristallins devraient être bonnes. La pression de Cauchy (C_P) peut identifier la caractéristique minérale et non minérale de matériel, si la valeur de la pression de Cauchy positive ($C_P = 33.92GPa$ et $C_P = 16.54GPa$) respectivement pour (BaNbO3 et BaMoO3) alors le matériel est métallique et si la valeur de la pression de Cauchy négative $(CP = -18.2245 \text{ et } C_P = -11, 52GPa)$ pour (BaFeO3 et BaHfO3) alors le matériel est non métallique [25][28]. À une condition proche, la négativité et la positivité de la pression de Cauchy expliquent la souplesse et la fragilité d'un matériel [26] [29] Par conséquent, la liaison directionnelle est prédominante dans $BaX(X=Fe, Nb, Mo et Hf)O_3$. Puisque l'oxygène est beaucoup plus électronégatif que Baryum, Fer, Molybdène, Niobium et Hafnium, la liaison dans $BaX(X = Fe, Nb, Mo et Hf)O_3$ devrait avoir un caractère plus ionique que covalent. Le facteur d'anisotropie de Zener (A) est égal à 1.9118, 0.75, 0.61 et 0.69 pour BaFeO₃, BaMoO₃, BaNbO₃ etBaHfO₃ respectivement. Rappelons-nous qu'une déviation de l'unité mesure le degré d'anisotropie élastique. Comme A s'écarte de manière significative de l'unité, nos matériaux sont élastiquement anisotropes. Il y a donc une forte probabilité que des microfissures se forment pendant croissance des échantillons de BaXO₃. Puisque A < 1, BaXO₃ devrait être le plus raide le long des axes du cube < 100 > [27][32].

Le module d'Young E, que l'on connaît aussi comme le module élastique, est une propriété mécanique des matériels solides élastiques linéaires. Il définit la relation entre le stress (la force par zone d'unité) et la tension (la déformation proportionnelle) dans un matériel.

$$E = \frac{9BG_H}{3B + G_H} \tag{4.12}$$

Les coefficients de Lamé, μ et λ , sont obtenus en utilisant le coefficient de Poisson σ et le module de Young E :

$$\sigma = \frac{1}{2} - \frac{E}{6B} \tag{4.13}$$

$$\mu = \frac{E}{2(1+\sigma)} \tag{4.14}$$

$$\lambda = \frac{\sigma E}{(1+\sigma)(1-2\sigma)} \tag{4.15}$$

Le module de cisaillement de Reuss G_R , le module de cisaillement de Voigt G_V , le module de cisaillement de Hill G_H donnée par les relation suivantes respectivement :

$$G_R = \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}$$
(4.16)

$$G_V = \frac{C_{11} - C_{12} + 3C_{44}}{5} \tag{4.17}$$

$$G_H = \frac{G_V + G_R}{2} \tag{4.18}$$

4.3.3 Paramètres élastiques polycristallins :

Ainsi, nous calculer les paramètres élastiques polycristallins de BaXO₃, nous présentons nos valeurs de paramètres élastiques polycristallins ainsi que les données disponibles dans la littérature dans le tableau **??**. À notre connaissance la majorité des travaux théoriques et expérimental dans les littératures pour nos matériaux n'ont pas du résultat à des paramètres élastiques polycristallins ce qui signifie que nos résultats sont première prédiction. Un matériau est considéré comme ductile (Fragile) si son rapport de Pugh $\frac{G_H}{B}$ est inférieur ou plus grand que 0, 57 [28][33]. Notre ratio de Pugh $\frac{G_H}{B}$ calculé est égal à (0.6629, 0.49, 0.53 et 0.63). Par conséquent, BaXO₃ peut être considéré comme des matériaux fragiles. Le coefficient de Poisson ($\sigma = 0.228, 0.288, 0.274$ et 0.240) est inférieur à 1/3. Cela indique également que BaXO₃ sont des matériaux fragiles et non un composé

métallique ductile. Rappelons que le rapport Poisson est proche de 0, 25 pour les matériaux avec des forces interatomiques principalement centrales [29] [34]. Par conséquent, la liaison dans $BaXO_3$ devrait être principalement ionique et / ou covalente.

TAB. 4.3 : Paramètres élastiques pour phase polycristalline de BaXO₃ : le module de cisaillement de Reuss $G_R(GPa)$, le module de cisaillement de Voigt $G_V(GPa)$, le module de cisaillement de Hill $G_H(GPa)$, le module de Kr[°]oner $G_K(GPa)$, le rapport $\frac{G_H}{B}$, module de YoungE(GPa), coefficients de lamé λ, μ et rapport de Poisson σ à P = 0 et T = 0.

		G_R	G_V	G_H	$\frac{G_H}{B}$	E	σ	λ	μ
[Nos Résultas	71.895	79.398	75.646	0.6629	185.865	0.228	0.668	75.6779
BaFeO ₃	Autres Résultas					205.836 [9][9]			
	Exprémontal								
	Nos Résultas	97.696	103.623	100.659	0.5318	256.500	0.274	122.0478	100.6672
BaNbO ₃	Autres Résultas			92.5 [12][21]		208.5 [13][22]	0.29 [12][21]0.29 [13][22]		
	Exprémontal								
	Nos Résultas	97.206	99.212	98.209	0.4928	253.055	0.288	133.45	98.2356
BaMoO ₃	Autres Résultas	77.05 [15][13]	77.40 [15][13]	77.23 [15][13]		89.39 [15][13]			
	Exprémontal	90.67 [24][18]	92.27 [24][18]	94.3 [23][17]91.47 [24][18]		242,234.12 [24][18]253 [30][19]			
1	Nos Résultas	105.74	109.15	107.45	0.63	266.26	0.240	99.10	107.36
BaHfO ₃	Autres Résultas	95.32 [31][26]	112.26 [31][26]	93 [19][23]103.79 [31][26]		234 [19][23]264.87 [31][26]	0.2516 [19][24]0.276 [31][26]	94.51 [19][23]127.90 [31][26]	93.33[24]
	Exprémontal					194 [20][25]			

Dans la théorie Debye, la température Debye θ_D ?? [30, 31] est la température du mode normal le plus haut d'un cristal de vibration, la température la plus haute qui peut être réalisée en raison d'une vibration normale seule. Avec

$$G_R = \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}$$
(4.19)

$$\theta_D = \left(\frac{h}{K_B}\right) \left(\frac{3n}{4\pi V}\right)^{1/3} v_m \tag{4.20}$$

Les vitesses acoustiques longitudinale et transversale, V_l et V_t respectivement, s'expriment à partir de l'équation de Navier :

$$V_l = \left[\frac{3B + 4G_H}{3\rho}\right]^{1/2}$$
(4.21)

$$V_t = \left[\frac{G_H}{\rho}\right]^{1/2} \tag{4.22}$$

Où ρ est la masse volumique. La vitesse moyenne du son V_m est définie par [24] [18] :

$$\frac{1}{v_m^3} = \frac{1}{3} \left(\frac{1}{v_l^3} + \frac{2}{v_t^3} \right)$$
(4.23)

La température de Debye θ_D peut être estimée, à partir de la connaissance de la vitesse moyenne du son, V_m l'équation 4.20(IV.20) Où h est la constante de Plank , K_B est la constante de Boltzmann, n est le nombre d'atomes dans la maille unitaire et V est le volume de l'unité de formule. Nous rapportons dans le tableau : ?? nos paramètres Densité (ρ en $kg.m^{-3}$), vitesse longitudinale (V_l en $m.s^{-1}$), vitesse transversale (V_t en $m.s^{-1}$) vitesse moyenne (V_m en $m.s^{-1}$) et température de Debye θ_D de BaX(X=Fe, Nb, Mo et Hf)O₃, à P = 0 et T = 0.

TAB. 4.4 : les paramètres Densité (ρ en $kg.m^{-3}$), vitesse longitudinale (V_l en $m.s^{-1}$), vitesse transversale (V_t en $m.s^{-1}$) vitesse moyenne (V_m en $m.s^{-1}$) et température de Debye θ_D de BaX(X=Fe, Nb, Mo et Hf)O₃, à P = 0 et T = 0.

		ρ	V_l	V_t	V_m	θ_D
	Nos Résultas	6785.1654	5848.02	3469.09	3841.85	489.705
BaFeO ₃	Autres Résultas					
	Exprémontal					
	Nos Résultas	6796.0758	6895.05	3846.39	4282.53	534.397
BaNbO ₃	Autres Résultas					513.3 [12][21]491.6 [13][22]
BaNbO ₃	Exprémontal					
	Nos Résultas	7189.5302	6770.16	3692.11	4117.97	521.87
BaMoO ₃	Autres Résultas					
	Exprémontal					512 [21][20]
	Nos Résultas	8382.70	6116.51	3579.42	3969.03	485.72
BaHfO ₃	Autres Résultas	7463.8 [19][24]	6525 [32][27]6137 [19][24]	3629 [32][27]3536 [19][24]	4041 [32][27]3926 [19][24]	485 [32][27]462 [19][24]
	Exprémontal		5397 [20][25]	3245 [20][25]		438 [20][25]

4.4 PROPRIETES ELECTRONIQUES ET THER-MODYNAMIQUES

4.4.1 Propriétés électroniques :

4.4.1.1 La structure de bande :

Le calcul des structures de bandes des composés $BaX(X=Fe, Nb, Mo et Hf)O_3$ le long des lignes de haute symétrie dans la première zone de Brillouin a été effectué par la méthode FP-LAPW et par l'utilisation de l'approximation GGA-PBEsol et nous appliquons le mBJ en combinaison avec l'approximation GGA-PBEsol. Tous les calculs ont été réalisés en utilisant les paramètres du réseau d'équilibre optimisés théoriquement par l'approximation GGA-PBEsol. Les figures 4.4 montrent la structure de bandes en utilisant la GGA-PBEsol pour les composés $BaX(X=Fe, Nb, Mo et Hf)O_3$, respectivement. Sachant que les structures de bandes obtenues par l'utilisation des deux approximations (mBJ et GGA-PBEsol) ont presque la même allure. L'approximation utilisée n'affecte pas la nature des bandes, elle a une influence sur les valeurs des gaps énergétiques. D'après les trois figures (a) , (b) , (c) l'absence de gap au niveau de l'énergie de fermi cela indique que les trois composés BaFeO₃, BaNbO₃ et BaMoO₃ ont une nature métallique.

Pour le BaHfO₃ nous montrons nos valeurs de la bande interdite et des énergies de transition entre bandes ainsi que des données disponibles dans la littérature [20, 32–35] [1, 2, 3, 4, 5] est à R et Γ le bas de la bande de conduction (CB), conduisant à une bande interdite indirecte $R - \Gamma$ de 5, 66eV, en bon accord avec la valeur expérimentale (5, 8eV) de Dudek et al [20] [1].et la valeur calculée (5, 9eV) d'Evarestov [34][4]utilisant la fonction de corrélation d'échange hybride PBE0.Les énergies de transition entre bandes rapportées dans la littérature sont nettement sous-estimées en raison des fonctions de corrélation d'échange utilisées [32–34][2,3]. Nos énergies de transition inter-bandes sont plus réalistes et devraient constituer de bonnes prédictions pour les transitions optiques dans BaHfO₃.

FIG. 4.4 : La structure de bandes du composé Ba(X=Fe, Nb, Mo, Hf)O₃

	Nos Résultas		Autres Ré	sultas		Exprémontal
	GGA-PBEsol + TB-mBJ	LDA	GGA-PBE	sX-LDA	PBE0	
E_g	5.66	3.51 [36][6]	3.61 [36][6]	5.3 [36][6]	5.9[7]	5.8 [20][1]
$R - \Gamma$	5.66	3.51 [36][6]	3.61 [36][6]	5.3 [<mark>36</mark>][6]		
R-X	6.23					
R-R	7.38	5.87 [32][2]		6.64 [33][3]		
R-M	7.81					
$M - \Gamma$	5.70	4.24 [33][3]				
M-X	6.27					
M-R	7.42					
M - M	7.85	5.62 [32][2]		6.65 [33][3]		
$\Gamma - \Gamma$	5.86	2.99 [32][2]		4.44 [33] [3]		
$\Gamma - X$	6.43	3.43 [32][2]		4.87 [33][3]		
$\Gamma - R$	7.58	5.83 [32][2]		7.14 [33][3]		
$\Gamma - M$	8.01	$5.51 \ [32][2]$		6.85 [33][3]		
$X - \Gamma$	6.14			4.30 [33][3]		
X - X	6.71	3.80 [32][2]		4.73 [33][3]		
X - R	7.86					
X - M	8.29					

Les résultats obtenus pour les gaps énergétiques de $BaHfO_3$ à différentes directions sont rassemblés dans le tableau ??. Nos résultats sont comparés avec des données expérimentales et théoriques disponibles dans la littérature.

4.4.1.2 La densité d'états :

La densité d'état électronique (DOS) est l'une des propriétés électroniques les plus importantes qui nous renseigne sur le comportement et le caractère électronique du système. Elle nous permet aussi de connaitre la nature des liaisons chimiques entre les atomes d'un cristal ou d'une molécule. La densité d'état total peut être décomposée en deux parties : la partie interstitielle $(NI(\varepsilon))$ et la partie des harmoniques sphériques $(NMT(\varepsilon))$. Si on part de l'équation maîtresse de la densité totale :

$$N(\varepsilon) = \sum_{i\,\overrightarrow{k}} \delta(\varepsilon - \varepsilon_{i\,\overrightarrow{k}}) \tag{4.24}$$

L'expression de la densité partielle est obtenue a partir de l'Eq. 4.24 par insertion de l'identité ($\langle \psi_{i\vec{k}} | | \psi_{i\vec{k}} \rangle = 1$). En divisant cette intégrale en deux : une sur le domaine (MT) (harmonique sphérique) et une autre sur le domaine interstitielle. Notamment àl'intérieur de la sphère MT, l'équation des orbitales Kohn-Sham peut être élargie de la manière suivante :

$$\left|\psi_{i\vec{k}}\right\rangle = \sum_{lm} \varphi_{lm}^{\alpha i\vec{k}} r Y_{lm}(\vec{r}) \tag{4.25}$$

L'équation 4.24 devient :

$$N(\varepsilon) = \sum_{i\vec{k}} \delta(\varepsilon - \varepsilon_{i\vec{k}}) \left\langle \psi_{i\vec{k}} \right| \left| \psi_{i\vec{k}} \right\rangle = \sum_{i\vec{k}} \delta(\varepsilon - \varepsilon_{i\vec{k}}) \left(\left\langle \psi_{i\vec{k}} \right| \left| \psi_{i\vec{k}} \right\rangle_{MT} + \left\langle \psi_{i\vec{k}} \right| \left| \psi_{i\vec{k}} \right\rangle_{I} \right) = N_{MT}(\varepsilon) + N_{I}(\varepsilon)$$

$$(4.26)$$

L'équation est exprimée en tant que :

$$N_{MT}(\varepsilon) = \sum_{i\vec{k}} \delta(\varepsilon - \varepsilon_{i\vec{k}}) \sum_{\alpha} \sum_{lm} \int_{0}^{R_{\alpha}} \left| \varphi_{lm}^{\alpha i \vec{k}}(r) \right|^{2} r^{2} dr = \sum_{\alpha} \sum_{lm} N_{MT}^{\alpha lm}(\varepsilon) \quad (4.27)$$

Avec

$$N_{MT}^{\alpha lm}(\varepsilon) = \sum_{i\,\vec{k}} \delta(\varepsilon - \varepsilon_{i\,\vec{k}}) C_{MT}^{\alpha i\,\vec{k}}(\varepsilon)$$
(4.28)

 Et

$$C_{MT}^{\alpha i \vec{k}}(\varepsilon) = \int_0^{R_\alpha} \left| \varphi_{lm}^{\alpha i \vec{k}}(r) \right|^2 r^2 dr$$
(4.29)

Est dite « la bande des caractères » avec R_{α} est le rayon MT. $(NMT(\varepsilon))$ est ainsi appelée le nombre d'état disponible par unité d'énergie dans une cellule unité à l'énergie (ϵ) relative à la sphèreMT présentant des harmoniques sphériques de nombre quantique azimutal (l). De la même façon, ($NI(\varepsilon)$) est la densité d'état dans la région interstitielle où les ondes sont de nature plane et ne font pas intervenir le nombre quantique azimutal.

La densité d'état totale (TDOS) des trois composés BaFeO₃,BaNbO₃, BaMoO₃ présente une valeur nulle de l'énergie de gap au niveau de fermi ce qui confirme la métallicité de ces deux oxydes.

à partir des calculs des densités d'état partielles (PDOS), la figure 4.5a obtenue montre que la première région est dominée par les états O - p avec une contribution des états Ba - p et Fe - d et la deuxième région est dominée essentiellement par les états O - p avec une petite contribution des étatsFe - dreprésentés par les orbitales t2g au voisinage du niveau de fermi et à partir de 1eVapparaissent les états Fe - d(dn), Ba - d.

La figure4.5c obtenue montre que la première région est dominée par les états O - p avec une contribution des états Ba - p et Mo - d et la deuxième région est dominée essentiellement par les états Mo - d représentés par les orbitales t2g avec une petite contribution des états O - p au voisinage du niveau de fermi et à partir de 2eV apparaissent les états Mo - d, Ba - d.

La figure 4.5b obtenue montre que la première région est dominée par les états O - p avec une contribution des états Ba - p et Nb - d et la deuxième région est dominée essentiellement par les états Nb - dreprésentés par les orbitales t2g avec une petite contribution des états O - p au voisinage du niveau de fermi et à partir de 2.5eV apparaissent les états Nb - d, Ba - d.

La figure 4.6 obtenue montre que la bande de valence supérieure a une largeur de

3,99eV. le sommet du BV, compris entre -1, 32eV et 0eV, est essentiellement dû aux états O2p. Les états compris entre -3, 99eV et-1, 32eV résultent principalement d'états O2p faiblement hybridés avec des états Hf5d. Cela indique que les liaisons Hf - O ont un caractère ion-covalent. Le pic étroit et intense de la DOS à -9, 21eV, correspond aux bandes d'énergie plates, à peu près à la même énergie, dans la structure de la bande 4.4d. Il résulte des états semi-principaux Hf - 4f. Le pic de DOS à -10, 20eV correspond aux bandes d'énergie quasi-plates, autour de la même énergie, dans la structure de la bande . Il résulte des états Ba5p. Nous affichons la bande de conduction de 0 à 13eV. Au bas de la BC, il existe une sous-bande comprise entre 5, 66eV et 10, 4eV constituée essentiellement d'un mélange d'états Bad et Hf - dt2g. Cette sous-bande est suivie d'un pic situé à 11, 65eV en raison d'états Ba - f avec un mélange d'additifs Hfd.

4.4.2 Propretés thermodynamiques :

Nous avons appliqué le modèle quasi-harmonique de Debye [37][8] qui est implémenté dans le programme GIBBS, pour calculer les propriétés thermiques de nos composée l'énergie libre de Gibbs G (V, P, T) est définie comme suit :

$$G * (V, P, T) = E(v) + PV + A_{vib}(\Theta_D, T)$$

$$(4.30)$$

Où E(V) est l'énergie totale par cellule unitaire, PV correspond à la pression hydrostatique constante, $\Theta_{\rm D}$ est la température de Debye, et A_{vib} est le terme lié aux vibrations, qui peut être écrit en utilisant le modèle de Debye de la densité d'état des phonons [38,39] [9, 10] souvent l'équation :

$$A_{\rm vib}(\Theta_{\rm D}, {\rm T}) = {\rm nkT}\left[\frac{9}{8}\frac{\Theta_{\rm D}}{T} + 3{\rm ln}(1 - {\rm e}^{\Theta_{\rm D}/{\rm T}}) - {\rm D}(\Theta_{\rm D}/{\rm T})\right]$$
(4.31)

Où *n* est le nombre d'atomes par cellule unitaire, $D(\Theta_D/T)$ représente l'intégrale de Debye et pour un solide isotrope, Θ_D est donné par [39] [10] :

$$\Theta_{\rm D} = \hbar (6\pi^2 V^{1/2} n)^{1/3} f(\sigma) \sqrt{\frac{B_s}{K_B^2 M}}$$
(4.32)

(c)

FIG. 4.5 : Densités d'état total (TDOS) et partiel (PDOS) du composés ${\rm Ba}({\rm Fe},{\rm Nb},{\rm Mo\,}){\rm O}_3$

FIG. 4.6 : Densités d'état total (TDOS) et partiel (PDOS) du composé BaHfO3 en utilisent le GGA PBe et GGA PBe+mBJ. BaHfO₃

Le facteur de Poisson σ est pris égale à 0.25 [40] [11], M est la masse moléculaire, $f(\sigma)$ est donné à partir des Réfs [41,42] [12-13], B_s est le module de compressibilité adiabatique, approximé par la compressibilité statique [37][8] :

$$B_s = B_T (1 + \alpha \gamma T) \tag{4.33}$$

Où le module isotherme B_T est :

$$B_T(P,T) = V(\frac{\partial V}{\partial V}) = \left[\frac{\partial^2 G(V,P,T)}{\partial V^2}\right]_{P,T}$$
(4.34)

Par conséquent, la fonction de Gibbs G * (V, P, T) en fonction de (V, P, T) peut être minimisée par rapport au volume V.

$$\left[\frac{\partial G(V, P, T)}{\partial V}\right]_{P,T} = 0 \tag{4.35}$$

La capacité calorifique à volume constant CV, l'entropie et le coefficient de dilatation thermique α sont donnés par [43] [14] :

$$C_V = 3nk \left[4D(\Theta_{\rm D}/{\rm T}) \frac{3\Theta_{\rm D}/{\rm T}}{e^{\Theta_{\rm D}/{\rm T}} + 1} \right]$$
(4.36)

$$S = nk \left[4D(\Theta_{\rm D}/{\rm T}) 3\ln(1 + e^{\Theta_{\rm D}/{\rm T}}) \right]$$
(4.37)

$$\alpha = \frac{\gamma C_V}{B_T V} \tag{4.38}$$

Avec γ est le paramètre Grüneisen, qui est donnée par la forme suivante :

$$\gamma = \frac{\partial \ln \frac{\Theta_D}{T}}{\partial \ln V} \tag{4.39}$$

Les propriétés thermiques de BaX(X=Fe, Nb, Mo et Hf)O₃ sont déterminées dans l'intervalle de température allant de $0K^{\circ}$ à $1200K^{\circ}$ et de pas de $200K^{\circ}$, l'effet

de pression est à l'intervalle qu'étudié 0GPa à 30GPa et de pas de 15GPa. Le calcul des propriétés thermodynamiques nous permet de prédire la stabilité des matériaux à étudier. Nous calculons le paramètre de Gruneisen (γ), le coefficient de dilatation thermique (α), la chaleur spécifique à pression constante (C_P), la chaleur spécifique à volume constant (C_V) , le module de compressibilité isotherme (B_T) , le module de compressibilité adiabatique (B_S) et la température de Debye (Θ_D) , à $(P = 0GPa, T = 0K^{\circ})$ et $(P = 0GPa, T = 300K^{\circ})$. Le tableau V-3 présente nos résultats ainsi que les données disponibles dans la littérature [31,32] [18, 19]. Nos valeurs de γ , C_V , B_T et B_S sont les premières prédictions. Pour α , C_P et Θ_D , les différences entre nos valeurs et les valeurs expérimentales doivent être due principalement au fait que les échantillons synthétisés par Maekawa et al. Étaient polycristallins et présentaient un déficit de densité apparente [31] [18]. Notre coefficient de dilatation thermique calculé pour BaFeO₃, BaNbO₃, BaMoO₃ et BaHfO₃ $(\alpha = (4.369, 3.042, 3.105et3, 953) * 10^{-}5K^{-}1)$ indique que nos matériaux appartient au groupe des fortes dilatations ($\alpha > 8 * 10^{-}6K^{-}1$), selon la classification du coefficient de dilatation thermique des solides [44] [20]. Nous avons présenté dans le tableau 4.5 de la température de debye Θ_D calculé par les constantes élastiques et le modèle de Debye quasi-harmonique à $T = 0K^{\circ}$ et P = 0GPa. Les résultats obtenus entre les deux méthodes sont assez proches, ce qui indique que notre calcul est proche de la précision par rapport aux autres résultats.

	Θ_D (constantes élastiques)	Θ_D (le modèle de Debye quasi-harmonique)
BaFeO ₃	489.705	560
BaNbO ₃	521.87	528.84
BaMoO ₃	534.397	513.53
BaHfO ₃	485.72	478.47

TAB. 4.5 : Classification de la température de debye Θ_D par les constantes élastiques et le modèle de Debye quasi-harmonique à $T = 0K^{\circ}$ et P = 0GPa.

TAB. 4.6 : le paramètre de Gruneisen (γ) , la coefficient de dilatation thermique (α) , la chaleur spécifique à pression constante (C_P) , la chaleur spécifique à volume constant C_V), le module de compressibilité isotherme (B_T) , le module de compressibilité adiabatique (B_S) et la température de Debye (Θ_D) , à $(P = 0GPa, T = 300K^{\circ})$ et $(P = 0GPa, T = 0K^{\circ})$.

		γ	α	C_V	C_P	B_T	B_S	Θ_D
	Neg Dágultog	2.274	4.369	103.737	100.226	149.746	145.342	550.093
$BaFeO_3$	Nos nesultas	2.238	0	0	0	154.284	154.284	560
	Autres Résultas							
	Exprémontal							
BaNbO ₃	Nog Págultag	2.176	3.042	104.881	102.366	180.747	177.436	522.954
	Nos Resultas	2.162	0	0	0	183.54	183.54	528.84
	Autres Résultas							
	Exprémontal							
	N Dímlt.	2.235	3.105	106.32	103.91	188.712	192.409	506.916
BaMoO ₃	Nos nesultas	2.221	0	0	0	194.777	194.777	513.53
	Autres Résultas							
	Exprémontal							
	Neg Dágultag	2.05	3.213	112.623	110.441	160.39	163.56	473.96
$BaHfO_3$	nos nesultas	2.027	0	0	0	166.69	166.69	479.73
	Autres Résultas		4.41 [32][19]	114.29 [32][19]				453 [32][19]
	Exprémontal		2.079 [31][18]	125.264 [31][18]				438 [31][18]

La variation du paramètre Gruneisen (γ) est présentée dans les figures 4.7 pour nos matériaux BaFeO₃ ,BaNbO₃ ,BaMoO₃ et BaHfO₃ respectivement tous les figures en le presque même allure . En dessous de $T = 100K^{\circ}$, c'est presque constant. Pour $T > 100K^{\circ}$, (γ) augmente faiblement et quasi-linéairement avec la température. À une température donnée, (γ) diminue lorsque P augmente.

FIG. 4.7 : la variation du paramètre Gruneisen (γ) en fonction de la température $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃

La variation du coefficient de dilatation thermique (α) est reportée à les figures 4.8 pour nos matériauxBaFeO₃ ,BaNbO₃ ,BaMoO₃ et BaHfO₃ respectivement tous les figures en le presque même allure . (α) augmente avec la température, rapidement au-dessous de $T = 200K^{\circ}$ et moins fortement au-dessus. À basse température,(α) varie comme T^3 . Pour $T > 400K^{\circ}$, (α) augmente quasilinéairement avec T. À une température donnée, (α) diminue considérablement à mesure queP augmente. À température et pression élevées, (α) converge vers une valeur limite.

FIG. 4.8 : la variation du coefficient de dilatation thermique $\alpha(K^{-1})$ en fonction de la température $T(K^{\circ})$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃

nous montrons les variations de la chaleur spécifique à volume constant (C_V) et à pression constante (C_P) , respectivement. Dans les figures 4.9 et4.9 pour nos matériaux BaFeO₃, BaNbO₃, BaMoO₃ et BaHfO₃ respectivement tous les figures en le presque même allure, Nous notons que (C_V) et (C_P) augmentent avec la température. Pour $T < 300K^\circ$, (C_V) et (C_P) augmentent rapidement. À basse température, (C_V) et (C_P) augmentent en tant que T^3 . Au-dessus de400 K° , le (C_P) croît faiblement et quasi-linéairement avec la température, tandis que le (C_V) tend vers un valeur limite (124J.mol⁻¹.K⁻¹), en accord avec la loi Dulong-Petit. À une température donnée, (C_V) et (C_P) diminue lorsque P augmente.

nous affichons la variation du module de compressibilité B_T et B_S en fonc-

FIG. 4.9 : la variation de la chaleur spécifique à volume constant (C_V) $(\frac{J}{mol.K})$ en fonction de la température $T(K^\circ)$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃ [45]

tion de la température à différentes pressions, dans les figures 4.11 pour nos matériaux BaFeO₃ ,BaNbO₃ ,BaMoO₃ et BaHfO₃ respectivement tous les figures en le presque même allure, En dessous de $100K^{\circ}$, B_T et B_S sont presque constants et égaux.Cela indique que le volume de la cellule est presque constant. Au-dessus de $100K^{\circ}$, B_T et B_S diminuent de façon quasi linéaire lorsque T augmente, la décroissance de B_T étant la plus importante. La diminution de B_T et B_S est due à l'augmentation du volume de la cellule avec la température. À une température donnée, B_T et B_S augmentent considérablement avec P.

nous présentons les variations de la température de Debye (Θ_D) pour les figures 4.12 pour nos matériaux BaFeO₃, BaNbO₃, BaMoO₃ et BaHfO₃ respectivement tous les figures en le presque même allure, Au-dessous de 100 K° , (Θ_D) est presque constant. Au-dessus de 100 K° , (Θ_D) décroît presque linéairement lorsque

FIG. 4.10 : la variation de la chaleur spécifique à pression constant (C_p) $(\frac{J}{mol.K})$ en fonction de la température $T(K^\circ)$ du composés BaX(X=Fe, Nb, Mo, Hf)O_3

T augmente. À une température donnée, (Θ_D) augmente sensiblement avec P.

FIG. 4.11 : Variation du module de compressibilité B_S et B_T en fonction de la température à différentes pressions du composés BaX(X=Fe, Nb, Mo, Hf)O₃

FIG. 4.12 : la variation de la température de Debye $\Theta_D(K^\circ)$ en fonction de la température $T(K^\circ)$ du composés BaX(X=Fe, Nb, Mo, Hf)O₃

Bibliographie

- P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," *Phys. Rev*, vol. 136, pp. 864–871,.
- [2] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, and K. Schwarz, "An augmented plane wave plus local orbitals program for calculating crystal properties : Wien2k user's guide."
- [3] W. Kohn and L. Sham, "Self-consistent equations including exchange and correlation effects," *Physical review*, vol. 140, no. 4A, p. 1133, p.
- [4] J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, L. Scuseria, G.E.Constantin, X. Zhou, and K. Burke, "Restoring the density-gradient expansion for exchange in solids and surfaces," *Physical review letters*, vol. 100, no. 13, p. 136406.
- [5] J. Perdew, A. Ruzsinszky, M. Ernzerhof, G. Csonka, O. Vydrov,
 L. G.E.Scuseria, X. Zhou, and K. Burke, *Phys. Rev. Lett*, vol. 102, p. 039902.
- [6] F. Birch, Journal of Geophysical Research, vol. 83, p. 1257–68.
- [7] Z. Baiyee, C. Chena, and F. Ciucci. , Physical Chemistry Chemical Physics.
- [8] Ghous.Narejo, International Journal of Scientific and Engineering Research, vol. 6, no. ue 1.
- [9] H. Rached, M. D.Rached, and A. R.Khenata, *Physica B*, vol. 405.
- [10] G. R. Saad Sarwar, cond-mat.mtrl-sci, p. 1604.06040v1.
- [11] N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami, A. Y.Matsushita, and M. Takano, *Angew. Chem*, vol. 123, p. 12755–12758.
- [12] A. Kılıçarslan, E. Bal, a. B. S. Mustafa Dinç, and S. Duman, AIP Conference Proceedings 1722, vol. 220012.

- [13] N. Iles, K. K. Kellou, B. Amrani, F. Lemoigno, D. Bourbie, and H.Aourag, *Comput.Sci.Mater*, vol. 39, p. 896–902.
- [14] A. Roberto L.Moreira, vol. 68.
- [15] Z. A. I. K. F. K. I. A. Somia, Shahid Mehmood, Journal of Electronic Materials, vol. 48, p. 1730–1739.
- [16] J. Kubo and W. a. Ueda, *Mater.Res.Bull*, vol. 44, p. 906.
- [17] S. Dar, V. Srivastava, and U. Sakalle, J. Electron. Mater, vol. 46, p. 6870.
- [18] T. Ouahrani, I. Merad-Boudia, H. Baltache, R. Khenata, and Z. Bentalha, "Effect of pressure on the global and local properties of cubic perovskite crystals," *Phys. Scr*, vol. 84, p. 025704.
- [19] F. Gu, Y.-Y. Chen, X.-L. Zhang, J.-H. Zhang, and Q.-Q. Liu, "First-principles calculations for the structural, elastic and thermodynamic properties of cubic perovskite bahfo3 under pressure," *Phys. Scr*, vol. 89, p. 105703.
- [20] P. Dudek, G. Lupina, G. Kozlowski, P. Zaumseil, J. Bauer, O. Fursenko, R. Dabrowski, G. Lippert, H.-J. Müssig, T. Schroeder, D. Schmeisser, and E.Zschech, "Atomic-scale engineering of future high-k dynamic random access memory dielectrics : The example of partial hf substitution by ti in bahfo3," J. Vac. Sci. Technol, vol. B29, p. 01AC03.
- [21] S. Yamanaka, K. Kurosaki, T. Maekawa, and S.-i. K. M. U. Matsuda, Tetsushi, *Journal of Nuclear Materials*, vol. 344, p. 61–66.
- [22] S. Tariq, M. Jamil, A. Sharif, S. Ramay, H. Ahmad, N.U.Qamar, and B. Tahir, *Appl.Phys. A*, vol. 124, p. 44.
- [23] M. Fine, L. Brown, and H. Marcus, Scr. Metall, vol. 18, 951.
- [24] S. Dar, V. Srivastava, and U. Sakalle, Mater. Res. Express, vol. 4, p. 086304.
- [25] E. Dieulesaint and D. Royer, "Ondes élastiques dans les solides," Application au traitement du signal Masson, Ed Paris, p. 407.

- [26] W.-C. H. D.-j. L. X.-Q. Z. C.-S. X. X.-J. Liu, Yong, *Intermetallics*, vol. 31, p. 257–263.
- [27] M. P.Wachter and Rebizant, J.Physica B, vol. 293, 199.
- [28] R. Newnham, "Properties of materials, anisotropy, symmetry, structure."
- [29] S. Pugh, "Relations between the elastic moduli and the plastic properties of polycrystalline pure metals," *Philos. Mag*, vol. 45, p. 823.
- [30] E. Screiber, O. Anderson, and N. Soga, "Elastic constants and their measurements."
- [31] T. Maekawa, K. Kurosaki, and S. Yamanaka, "Thermal and mechanical properties of perovskite-type barium hafnate," J. Alloys Compd, vol. 407, p. 44.
- [32] Q.-J. Liu, Z.-T. Liu, L.-P. Feng, and H. Tian, *Physica B*, p. 405.
- [33] H. Zhao, A. Chang, and Y. Wang, "Structural, elastic, and electronic properties of cubic perovskite bahfo3 obtained from first principles," *Physica B*, vol. 404, p. 2192.
- [34] R. Evarestov, "Hybrid density functional theory lcao calculations on phonons in ba(ti, zr, hf)o3," *Phys. Rev. B*, vol. 83, p. 014105.
- [35] A. Yangthaisong, "Electronic and lattice vibrational properties of cubic bahfo3 from first principles calculations," *Phys. Lett. A*, vol. 377, p. 927.
- [36] R. Hill, "The elastic behaviour of a crystalline aggregate,," Proc. Phys. Soc, vol. A65.
- [37] V. L. M.A. Blanco, E. Francisco, Comput. Phys. Commun, vol. 158, p. 57.
- [38] M. Blanco, A. Pendás, E. Francisco, J. Recio, and R. Franco, J. Mol. Struct. Theochem, vol. 368, p. 245.
- [39] M. Flórez, J. Recio, E. Francisco, M. Blanco, and A. Pendás, *Phys.Rev. B*, vol. 66, p. 144112.

- [40] J. Poirier, "Introduction to the physics of the earth's interior," Cambridge UniversityPress, Oxford, p. 39.
- [41] E. Francisco, J. M., M. Blanco, and A. Martín Pendás, J. Phys. Chem., vol. 102, p. 1595.
- [42] E. Francisco, M. Blanco, and G. Sanjurjo, Phys. Rev. B, vol. 63.
- [43] R. Hill, Proc. Phys. Soc. Lond. A, vol. 65, p. 349.
- [44] R. Roy, D. Agrawal, and H. McKinstry, "Very low thermal expansion coefficient materials,," Annu. Rev. Mater. Sci, vol. 19, p. 59.
- [45] A. Petit and P. Dulong, Ann. Chim. Phys., vol. 10, p. 395.

Conclusion générale

Dans ce travail, nous nous sommes intéressés à l'étude ab- initio des propriétés structurales, élastiques, électroniques et thermodynamiques des pérovskites cubiques BaFeO₃,BaNbO₃, BaMoO₃ etBaHfO₃ .Les calculs sont effectués selon la méthode FP-LAPW et le modèle de Debye quasi-harmonique, l'utilisation de la fonction de corrélation d'échange GGA-PBEsol permet d'obtenir des paramètres structurels et élastiques précis ,Nous montrons que BaX(X=Fe, Nb, Mo, Hf)O₃ sont fragiles, mécaniquement stable et élastiquement anisotrope, avec une prédominance de liaison directionnelle.

Nous donnons les premières prévisions du paramètre de Grüneisen γ , de la chaleur spécifique à volume constant C_v , du module de compressibilité isotherme et du module de compressibilité adiabatique et le coefficient de dilatation thermique (α) .

la densité (ρ) , vitesse longitudinale (v_l) , vitesse transversale (v_t) vitesse moyenne (v_m) et température de Debye (Θ_D) de BaFeO₃, BaNbO₃, BaMoO₃.

Nous réalisons également une étude des effets de la pression et de la température sur les paramètres thermodynamiques Nous donnons les premières prévisions du paramètre ,

En utilisant le potentiel de corrélation d'échange de Becke-Johnson modifié par Tran-Blaha pour calculer les propriétés électroniques, nous trouvons queBaHfO₃ présente un gap indirect $R - \Gamma$ de 5,66eV. Le haut de la bande de valence résulte principalement des états O - 2p, tandis que celui du bas de la bande est principalement dû aux étatsBa - d et Hf - d - t2g. Nous démontrons également que les liaisonsHf - O ont un caractère iono-covalent alors que les liaisons Ba - O sont ioniques. Computational Condensed Matter 16 (2018) e00296

Contents lists available at ScienceDirect

ELSEVIER

Structural, elastic, thermodynamic, and electronic properties of BaHfO₃: A first-principles study using GGA-PBEsol + TB-mBJ approach

Mohamed Benatia, Fatima-Zohra Driss-Khodja, Fatiha Saadaoui, Mohammed Driss-Khodja^{*}, Abdelkader Boudali

Laboratoire d'Etudes Physico-Chimiques, Université de Saïda, 20000 Saïda, Algeria

A R T I C L E I N F O

Article history: Received 6 March 2018 Received in revised form 13 April 2018 Accepted 18 April 2018

Keywords: First-principles GGA-PBEsol TB-mBJ Elastic parameters Thermodynamic properties Band structure

ABSTRACT

The structural, elastic, thermodynamic, and electronic properties of cubic perovskite BaHfO₃ are calculated by means of the full-potential linearized augmented plane wave (FP-LAPW) method and the quasiharmonic Debye model. Accurate structural and elastic parameters are obtained by using the GGA-PBEsol scheme of the generalized gradient approximation (GGA) to describe the exchange-correlation potential. BaHfO₃ is found brittle, mechanically stable, and elastically anisotropic, with a predominance of directional bonding. First predictions of the Grüneisen parameter, the specific heat at constant volume, the isothermal bulk modulus, and the adiabatic bulk modulus are given. BaHfO₃ has high thermal expansion coefficient. The effects of pressure and temperature on the thermodynamic parameters are also investigated. The electronic properties are calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange-correlation potential. BaHfO₃ has an indirect band gap R- Γ of 5.66 eV. The top of the valence band is due essentially to O 2*p* states while the bottom of the conduction band results mainly from Ba *d* and Hf *d* t_{2g} states. The Hf-O bonds have an iono-covalent character while the Ba-O bonds are ionic. © 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, BaHfO₃ attracted interest as a promising high-k dielectric material for dynamic random access memory (DRAM) devices [1-6]. Kim et al. measured the dielectric and optical properties of BaHfO₃ [1]. They evinced that BaHfO₃ can be used as a gate insulator in field effect transistors. Fursenko et al. studied experimentally the optical properties of BaHfO₃ thin films [2]. They showed that a replacement of Hf ions by Ti ions makes it possible to greatly increase the dielectric constant *k* and substantially reduce the band gap. They also reported that the absorption edge results from indirect transitions. The electrical characteristics and the band structure of BaHfO₃ thin layers were measured by Dudek et al. [4] and Lupina et al. [6,7]. A dielectric constant *k*~45 was reached for BaHfO₃ samples crystallized by annealing at 900 K [7]. The dielectric constant was substantially improved by replacing Hf ions with Ti ions. A dielectric constant k~90 was obtained for BaHf_{0.5}Ti_{0.5}O₃ annealed at 700 K [4]. Studies on the thermodynamic properties of BaHfO₃ are scarce [8,9]. Maekawa et al. investigated experimentally

Corresponding author.
 E-mail address: drisskhodjam@yahoo.com (M. Driss-Khodja).

https://doi.org/10.1016/j.cocom.2018.e00296 2352-2143/© 2018 Elsevier B.V. All rights reserved. the mechanical and thermal properties of BaHfO₃ [8]. They also showed that the prepared samples were polycrystalline and had a deficient bulk density. Gu et al. [9] performed first-principles calculations of the structural, elastic, and thermodynamic properties of BaHfO₃ using the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) [10].

Most ab-initio calculations of BaHfO₃ properties [9,11–15] were performed using the local density approximation (LDA) [16,17] and the GGA-PBE to describe the exchange-correlation potential. However, the LDA (resp. GGA-PBE) underestimates (resp. overestimates) the lattice parameter and overestimates (resp. underestimates) the bulk modulus [18,19]. This gives inaccuracies when calculating properties depending on the lattice parameter and/or the bulk modulus. In addition, both LDA and GGA-PBE underestimate the band gap by around 30% [20]. The GGA-PBEsol is a revised version for solids of the GGA-PBE [21,22]. For a wide class of materials including ABO₃ perovskites, the GGA-PBEsol approach gives structural and elastic parameters close to experimental values, with equal and sometimes better accuracy than hybrid functionals [23-28]. The advantage of the GGA-PBEsol is to be computationally much cheaper than the hybrid functionals. The GGA-PBEsol approach appropriately describes the electronic properties of perovskites ABO3 but, like the LDA and GGA, it underestimates the band gap [25–29]. Knowing the width of the band gap with precision is essential to predict the applications and areas of use for a material. The use of hybrid functionals or the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange-correlation potential [30] makes it possible to obtain band gaps close to the experimental values for ABO₃ perovskites [25,27,28,31–33]. Calculations using the TB-mBJ potential have the advantage of being much less expensive than those employing hybrid functionals.

The aim of this work is to perform accurate calculations of structural, elastic, thermodynamic, and electronic properties of BaHfO₃. The calculations are carried out using the full-potential linearized augmented plane wave (FP-LAPW) method [34-36], based on the density functional theory (DFT) [37,38] and implemented in the wien2K code [39]. We use the GGA-PBEsol approach to obtain accurate structural and elastic parameters and then correctly predict the structural and mechanical properties. In particular, we show that BaHfO₃ is brittle, mechanically stable, and elastically anisotropic with a predominance of directional bonding. Using the GGA-PBEsol + TB-mBJ approach, we describe well the electronic energy bands. Our calculated band gap is close to the experimental value. The thermodynamic properties are studied using the quasi-harmonic Debye model implemented in the Gibbs code [40]. We give, in particular, first predictions of the Grüneisen parameter, the specific heat at constant volume, the isothermal bulk modulus, and the adiabatic bulk modulus. More detailed results will be presented below. The paper is organized as follows. In Sec. 2, we give a brief review of calculation details. Our results are reported and discussed in Sec. 3. Finally, conclusions are drawn in Sec. 4.

2. Details of calculation

The valence wave functions inside the muffin-tin spheres are expanded up to an angular momentum l = 8 with $R_{\text{MT}}K_{\text{MAX}} = 8$, where R_{MT} is the smallest muffin-tin radius and K_{MAX} is the maximum value of the wave vector. Integrations in the reciprocal space are carried out using Monkhorst-Pack meshes corresponding to 3000 *k*-points in the Brillouin zone for the calculation of the structural, elastic, and thermodynamic properties. We use a denser Monkhorst-Pack mesh, corresponding to 4000 *k*-points in the Brillouin zone, to calculate the electronic properties. The muffin-tin radii are chosen equal to 2.50 Ry for Ba, 1.95 Ry for Hf, and 1.68 Ry for O. For all our calculations, the optimatization is performed using a simple cubic $1 \times 1 \times 1$ supercell. In this section, we only recall the expressions of the calculated parameters. More details on the calculations of the elastic and thermodynamic parameters were given in a previous paper [41].

Cubic BaHfO₃ has three independent elastic constants (C_{11} , C_{12} , and C_{44}) which are obtained from first-principles calculations. The *monocrystalline elastic parameters*, *i.e.* the bulk modulus (B), the compressibility (β), the shear modulus (G), the tetragonal shear modulus (G'), the Cauchy pressure (CP), and the Zener anisotropy factor (A) are expressed from the elastic constants C_{11} , C_{12} , and C_{44} as follows:

$$B = \frac{C_{11} + 2C_{12}}{3},\tag{1}$$

$$\beta = \frac{1}{B} = \frac{3}{C_{11} + 2C_{12}},\tag{2}$$

$$G = C_{44}, \tag{3}$$

$$G' = \frac{C_{11} - C_{12}}{2}, \tag{4}$$

$$CP = C_{12} - C_{44}, (5)$$

$$A = \frac{G}{G} = \frac{2 C_{44}}{C_{11} - C_{12}} \tag{6}$$

The Voigt-Reuss-Hill average is generally used to estimate elastic parameters of polycrystalline materials [42]. The Reuss shear modulus (G_R), the Voigt shear modulus (G_V), and the Hill shear modulus (G_H) are written as follows:

$$G_{\rm R} = \frac{5 \left(C_{11} - C_{12} \right) C_{44}}{4 C_{44} + 3 \left(C_{11} - C_{12} \right)},\tag{7}$$

$$G_{\rm V} = \frac{C_{11} - C_{12} + 3C_{44}}{5},\tag{8}$$

$$G_{\rm H} = \frac{G_{\rm R} + G_{\rm V}}{2}.$$
 (9)

The Young modulus (*E*), the Poisson ratio (σ), and the Lamé coefficients (μ , λ) are expressed as:

$$E = \frac{9BG_{\rm H}}{3B + G_{\rm H}}, \qquad (10)$$

$$\sigma = \frac{1}{2} - \frac{E}{6B} , \qquad (11)$$

$$\mu = \frac{E}{2(1+\sigma)} , \qquad (12)$$

$$\lambda = \frac{\sigma E}{(1+\sigma)(1-2\sigma)}.$$
(13)

The longitudinal, transverse, and mean acoustic velocities (v_l , v_t , and v_m , respectively) are given by:

$$v_{\rm l} = \left[\frac{3B + 4G_{\rm H}}{3\rho}\right]^{1/2},$$
 (14)

$$v_{\rm t} = \left[\frac{G_{\rm H}}{\rho}\right]^{1/2},\tag{15}$$

$$\frac{1}{v_{\rm m}^3} = \frac{1}{3} \left(\frac{1}{v_{\rm l}^3} + \frac{2}{v_{\rm t}^3} \right),\tag{16}$$

where ρ is the density.

The Debye temperature θ_D is expressed as follows:

$$\theta_{\rm D} = \left(\frac{h}{k_{\rm B}}\right) \left(\frac{3n}{4\pi V}\right)^{1/3} v_{\rm m},\tag{17}$$

where h is the Plank constant, $k_{\rm B}$ is the Boltzmann constant, n is the number of atoms in the unit cell, and V is the unit cell volume.

In the Debye model, the phononic effects are taken into account. The isothermal bulk modulus (B_T), the specific heat at constant volume (C_V), the Grüneisen parameter (γ), the thermal expansion coefficient (α), the specific heat at constant pressure (C_P), the adiabatic bulk modulus (B_S), and the Debye temperature (θ_D) are given as:

Table 1

Equilibrium lattice constant (a_0 , in Å), bulk modulus (B_0 , in GPa), and pressurederivative of bulk modulus (B'_0) from the Birch-Murnaghan equation of state, at P = 0 and T = 0.

	<i>a</i> ₀	B ₀	B_0^{\prime}
Present work			
GGA-PBEsol	4.162	170.15	4.61
Other calculations			
LDA	4.127 ^a	181.30 ^a	4.53 ^a
GGA-PBE	4.325 ^b	154 ^b	5.09 ^b
Experiments	4.160 ^c		

^a Ref. [13].

^b Ref. [9].

^c Ref. [4].

$$B_{\rm T}(P,T) = -V\left(\frac{\partial P}{\partial V}\right)_T = V\left[\frac{\partial^2 G^*(V;P,T)}{\partial^2 V^2}\right]_{P,T},\tag{18}$$

$$C_{\rm V} = 3nk_{\rm B} \left[4D(\theta_{\rm D}/T) - \frac{3\theta_{\rm D}/T}{e^{\theta_{\rm D}/T} - 1} \right], \tag{19}$$

$$\gamma = -\frac{dln\theta_{\rm D}(V)}{dlnV},\tag{20}$$

$$\alpha = \frac{\gamma C_{\rm V}}{B_{\rm T} V},\tag{21}$$

 $C_{\rm P} = C_{\rm V}(1 + \alpha \gamma T), \tag{22}$

$$B_{\rm S} = B_{\rm T}(1 + \alpha \gamma T), \tag{23}$$

$$\theta_{\rm D} = \frac{\hbar}{k_{\rm B}} \left[6\pi^2 V^{\frac{1}{2}} n \right]^{\frac{1}{3}} f(\sigma) \sqrt{\frac{B_{\rm S}}{M}},\tag{24}$$

where V, $G^*(V;P,T)$, $D(\theta_D/T)$, $f(\sigma)$, and M are the unit cell volume, the non-equilibrium Gibbs function, the Debye integral, a scaling function depending on Poisson ratio, and the molecular mass per formula unit, respectively.

3. Results and discussion

3.1. Structural properties

BaHfO₃ belongs to the perovskite family. It crystallizes in the $Pm\overline{3}m$ cubic space group. The Wyckoff atomic positions are: Ba: 1a (0,0,0); Hf: 1b (1/2,1/2,1/2); O: 3c (1/2,1/2,0). The structural parameters are calculated using the GGA-PBEsol approach. The equilibrium lattice constant (a_0), the bulk

modulus (B_0), and the pressure-derivative of the bulk modulus (B'_0), at P = 0 and T = 0, are obtained by calculating the total energies for different volumes around the experimental unit cell volume and fitting them to the Birch-Murnaghan equation of state [43,44]. In Table 1, the calculated values of a_0 , B_0 , and B'_0 are reported along with results of other works [4,9,13]. Our value of a_0 (4.162 Å) is in excellent agreement with the experiment (4.160 Å) [4]. We do not find any experimental values of B_0 and B'_0 in the literature. Our value of B_0 (170.15 GPa), which is intermediate between those obtained with the LDA and GGA-PBE [9,13], should be a good prediction.

3.2. Elastic properties

3.2.1. Monocrystalline elastic parameters

The GGA-PBEsol is used to calculate the monocrystalline elastic parameters: the elastic constants (C_{11} , C_{12} , and C_{44}), the bulk modulus (B), the shear modulus ($G = C_{44}$), the tetragonal shear modulus (G'), the compressibility (β), the Cauchy pressure (CP), and the elastic anisotropy factor (A). In Table 2, we show our results together with results of other works [8,9,13]. We do not find any experimental results in the literature, with the exception of a compressibility value reported by Maekawa et al. [8]. We remark a noticeable difference with our calculated value of β . This is mainly due to the fact that the samples synthesized and characterized by Maekawa et al. were polycrystalline, with a deficient bulk density [8]. As the GGA-PBEsol gives us an accurate lattice parameter, we think that our values of monocrystalline elastic parameters should be good predictions. Let us note that the mechanical stability criteria for cubic crystals are satisfied [45]: $C_{11} - C_{12} > 0$, $C_{44} > 0$, $C_{11} + 2C_{12} > 0$, $C_{12} < B < C_{11}$. We also find that B > G' > G. Thus, $BaHfO_3$ is mechanically stable and the shear modulus G is the limiting parameter for the mechanical stability.

The Cauchy pressure is negative (CP = -11.52 GPa). Let us recall that the Cauchy pressure is positive for metallic bonding and is negative for directional bonding [46]. Consequently, the directional bonding is predominant in BaHfO₃. Since oxygen is much more electronegative than barium and hafnium, the bonding in BaHfO₃ should have character more ionic than covalent. The Zener anisotropy factor (A) is found equal to 0.69. Let us recall that a deviation from unity measures the degree of elastic anisotropy. As A deviates significantly from unity, BaHfO₃ should be elastically anisotropic. There is therefore a high probability that micro-cracks form during the growth of BaHfO₃ samples. Since A < 1, BaHfO₃ should be stiffest along the cube axes (100) [47].

3.2.2. Polycrystalline elastic parameters

Crystalline BaHfO₃ samples were synthesized as polycrystalline ceramics [4,7,8]. Thus, we calculate the *polycrystalline elastic parameters* of BaHfO₃. In Table 3, we present our values of polycrystalline elastic parameters along with available data in the

Table 2

Monocrystalline elastic parameters of BaHfO₃: Elastic constants (C_{11} , C_{12} , and C_{44} , in GPa), bulk modulus (B, in GPa), shear modulus ($G = C_{44}$, in GPa), tetragonal shear modulus (G', in GPa), compressibility (β , in GPa⁻¹), Cauchy pressure (CP, in GPa), and elastic anisotropy factor (A), at P = 0 and T = 0.

	C ₁₁	C ₁₂	$C_{44} = G$	В	G'	β	СР	Α
Present work								
GGA-PBEsol	348.64	81.29	92.81	170.41	133.67	0.00587	-11.52	0.69
Other calculations								
LDA	381.73 ^a	82.23 ^a	74.25 ^a					
GGA-PBE	340 ^b	65 ^b	72 ^b	157 ^b				
Experiments						0.00878 ^c		
d D-6 [12]								

^a Ref. [13].

^b Ref. [9].

^c Ref. [8].

M. Benatia et al. / Computational Condensed Matter 16 (2018) e00296

Table 3

Polycrystalline elastic parameters of BaHfO₃: Reuss shear modulus (G_R, in GPa), Voigt shear modulus (G_V, in GPa), Hill shear modulus (G_H, in GPa), Pugh ratio (G_H/B), Young modulus (E, in GPa). Poisson ratio (σ), and Lamé coefficients (λ and μ , in GPa), at P = 0 and T = 0.

	G _R	Gv	G _H	$G_{\rm H}/B$	Е	σ	λ	μ
Present work GGA-PBEsol Other calculations	105.74	109.15	107.45	0.63	266.26	0.240	99.10	107.36
LDA GGA-PBE Experiments	95.32 ^a	112.26 ^a	103.79 ^a 93 ^b		264.87 ^a 234 ^b 194 ^c	0.276 ^a 0.2516 ^b	127.90 ^a 94.51 ^b	93.33 ^b

^a Ref. [14].

^b Ref. [9].

^c Ref. [8].

Table 4

Density (ρ , in kg.m⁻³), longitudinal velocity (v_{l} , in m.s⁻¹), transverse velocity (v_{t} , in m.s⁻¹), mean velocity (ν_m , in m.s⁻¹), and Debye temperature (θ_D , in K) of BaHfO₃, at P = 0 and T = 0.

	ρ	v_1	vt	v _m	$\theta_{\rm D}$
Present work GGA-PBEsol Other calculatio	8382.70	6116.51	3579.42	3969.03	485.72
LDA GGA-PBE Experiments	7463.8 ^b	6525 ^a 6137 ^b 5397 ^c	3629 ^a .3536 ^b 3245 ^c	4041 ^a 3926 ^b	485 ^a 462 ^b 438 ^c
^a Ref. [14].					

^b Ref. [9].

^c Ref. [8].

literature [8,9,14]. To our knowledge, there is no experimental result, apart from a value of the Young modulus reported by Maekawa et al. [8]. This value (194 GPa) is well below our calculated value (266.26 GPa). This can be explained mainly by the fact that the samples studied by Maekawa et al. [8] had a deficient bulk density. A material is considered as ductile (resp. brittle) if its Pugh ratio (G_H/B) is lower (resp. larger) than 0.57 [48]. Our calculated Pugh ratio is equal to 0.63. Therefore, BaHfO₃ can be regarded as a brittle material. The Poisson ratio ($\sigma = 0.240$) is lower than 1/3. This also indicates that BaHfO₃ is a brittle material and not a ductile metallic compound. Let us recall that Poisson ratio is close to 0.25 for materials with predominantly central interatomic forces [49]. Therefore, the bonding in BaHfO₃ should be predominantly ionic and/or covalent.

3.2.3. Sound velocities and debye temperature

In Table 4, the calculated values of the density (ρ) , longitudinal (v_l) , transverse (v_t) , and mean (v_m) velocities, and Debye temperature (θ_D), at P = 0 and T = 0, are reported together with available data in the literature [8,9,14]. The differences between our values of $v_{\rm l}$, $v_{\rm t}$, and $\theta_{\rm D}$ and the experimental values of Maekawa et al. [8] should be mainly due to the bulk density deficiency in their

Fig. 1. Temperature dependence of the Gruneisen parameter γ of BaHfO₃, at *P* = 0, 15, 30 GPa

samples and, to a limited extent, as can be seen below in Table 5, to the fact that the experimental values of Maekawa et al. were obtained at room temperature while our values are calculated for T = 0.

3.3. Thermodynamic properties

Through the quasi-harmonic Debye model, we calculate the Grüneisen parameter (γ), the thermal expansion coefficient (α), the specific heat at constant pressure (C_P) , the specific heat at constant volume (C_V), the isothermal bulk modulus (B_T), the adiabatic bulk modulus (B_S), and the Debye temperature (θ_D), at P = 0 and T = 0and at P = 0 and T = 300 K. In Table 5, we show our results along with available data in the literature [8,9]. Our values of γ , C_V , B_T , and $B_{\rm S}$ are first predictions. For α , $C_{\rm P}$, and $\theta_{\rm D}$, the differences between

Table 5

Grüneisen parameter (γ), thermal expansion coefficient (α , in 10⁻⁵ K⁻¹), specific heat at constant pressure ($C_{\rm P}$, in J/mol.K), specific heat at constant volume ($C_{\rm V}$, in J/mol.K), isothermal bulk modulus (*B*_T, in GPa), adiabatic bulk modulus (*B*_S, in GPa), and Debye temperature (θ_D , in K) calculated, at *P* = 0 and *T* = 300 K, by using quasi-harmonic Debye model. In parenthesis, parameters values calculated at P = 0 and T = 0.

	γ	α	CP	Cv	B _T	B _S	$\theta_{\rm D}$
Present work							
GGA-PBEsol	2.050	3.213	112.623	110.441	160.39	163.56	473.96
	(2.027)	(0)	(0)	(0)	(166.69)	(166.69)	(479.73)
Other calculations							
GGA-PBE		4.41 ^a	114.29 ^a				453 ^a
Experiments		2.079 ^b	125.264 ^b				438 ^b

Ref. [9]. b

Ref. [8].

Fig. 2. Temperature dependence of the thermal expansion coefficient α of BaHfO₃, at P = 0, 15, 30 GPa.

Fig. 3. Temperature dependence of the specific heat at constant volume C_V of BaHfO₃, at P = 0, 15, 30 GPa.

Fig. 4. Temperature dependence of the specific heat at constant pressure C_P of BaHfO₃, at P = 0, 15, 30 GPa.

Fig. 5. Temperature dependence of the bulk moduli B_S and B_T of BaHfO₃, at P = 0, 15, 30 GPa.

Fig. 6. Temperature dependence of the Debye temperature $\theta_{\rm D}$ of BaHfO₃, at *P* = 0, 15, 30 GPa.

Fig. 7. The electronic band structure of $BaHfO_3$ with the GGA-PBEsol + TB-mBJ approach.

Fig. 8. Total and partial densities of states of $BaHfO_3$ with the GGA-PBEsol + TB-mBJ approach.

our values and the experimental ones should be mostly due to the fact that the samples synthesized by Maekawa et al. were polycrystalline and had a deficiency in the bulk density [8]. Our calculated thermal expansion coefficient ($\alpha = 3.953 \times 10^{-5} \text{ K}^{-1}$) indicates that BaHfO₃ belongs to the high expansion group ($\alpha > 8 \times 10^{-6} \text{ K}^{-1}$), according to the thermal expansion coefficient classification of solids [50]. The value of θ_D calculated, at P = 0 and T = 0, with the quasi-harmonic Debye model (478.47 K, see Table 5) and the value of θ_D deduced from the elastic constants (485.72 K, see Table 4) have a relative difference of only 1.5%.

We also investigate the effects of pressure and temperature on the thermodynamic parameters of BaHfO₃. These are calculated by varying the temperature from 0 to 1200 K, at P = 0, 15, 30 GPa. In Fig. 1, the variations of the Gruneisen parameter (γ) are presented. Below 100 K, γ is almost constant. For T > 100 K, γ increases weakly and quasi-linearly with temperature. At a given temperature, γ decreases when *P* increases. The variations of the thermal expansion coefficient (α) are reported in Fig. 2 α increases with temperature, rapidly below 200 K and less strongly above it. At low temperature, α varies as T^3 . For T > 400 K, α rises quasi-linearly with *T*. At a given temperature, α decreases considerably as *P* increases. At high temperature and pressure, α converges towards a limit value. In Figs. 3 and 4, we show the variations of the specific heat at constant volume (C_V) and at constant pressure (C_P) , respectively. We note that C_V and C_P increase with temperature. For T < 300 K, C_V and C_P increase rapidly. At low temperature, C_V and C_P rise as T^3 . Above 400 K, C_P grows weakly and quasi-linearly with temperature while C_V tends towards a limit value (~124 J mol⁻¹. K⁻¹), in agreement with the Dulong-Petit law. At a given temperature, C_V and C_P diminish when P rises. In Fig. 5, we display the variations of the isothermal bulk modulus (B_T) and the adiabatic bulk modulus (B_S) . Below 100 K, B_T and B_S are almost constant and equal. This indicates that the cell volume is nearly constant. Above 100 K, $B_{\rm T}$ and $B_{\rm S}$ decrease quasi-linearly when T increases, the decrease of $B_{\rm T}$ being most important. The decrease of $B_{\rm T}$ and $B_{\rm S}$ is due to the cell volume increase with temperature. At a given temperature, $B_{\rm T}$ and $B_{\rm S}$ increase greatly with P. In Fig. 6, we present the variations of the Debve temperature (θ_D). Below 100 K, θ_D is nearly constant. Above 100 K, θ_D deceases almost linearly when T increase. At a given temperature, $\theta_{\rm D}$ rises substantially with P.

3.4. Electronic properties

The electronic properties are calculated using the GGA-PBEsol approach plus Tran-Blaha modified Becke-Johnson potential (GGA-PBEsol + mBJ) to improve the calculated band gap. In Fig. 7, we display the band structure along high symmetry directions. In Fig. 8, we report the total (TDOS) and partial (PDOS) densities of states. In both figures, the Fermi level corresponds to 0 eV. In Table 6, we show our values of the band gap and the inter-band transition energies along with available data in the literature [4,14,15,51,52]. The top of the valence band (VB) is at R and the bottom of the conduction band (CB) is at Γ , leading to an indirect band gap R- Γ of 5.66 eV, in good agreement with the experimental value (5.8 eV) of Dudek et al. [4] and the calculated value (5.9 eV) of Evarestov [51] using the hybrid exchange-correlation functional PBE0. The inter-band transition energies reported in the literature are significantly underestimated due to the exchange-correlation

Band gap (E_g) and inter-band transition energies of BaHfO₃.

	Present work	Other calculations				Experiments
	GGA-PBEsol + TB-mBJ	LDA	GGA-PBE	sX-LDA	PBEO	
Eg	5.66	3.51 ^a	3.61 ^a	5.3 ^a	5.9 ^b	5.8 ^c
R−Γ	5.66	3.51 ^a	3.61 ^a	5.3 ^a		
R-X	6.23					
R-R	7.38	5.87 ^d		6.64 ^e		
R-M	7.81					
$M-\Gamma$	5.70			4.24 ^e		
M-X	6.27					
M-R	7.42					
M-M	7.85	5.62 ^d		6.65 ^e		
$\Gamma - \Gamma$	5.86	2.99 ^d		4.44 ^e		
$\Gamma - X$	6.43	3.43 ^d		4.87 ^e		
$\Gamma - R$	7.58	5.83 ^d		7.14 ^e		
$\Gamma - M$	8.01	5.51 ^d		6.85 ^e		
$X-\Gamma$	6.14			4.30 ^e		
X–X	6.71	3.80 ^d		4.73 ^e		
X-R	7.86					
X-M	8.29					
^a Ref. [42].						

^b Ref. [41].

^d Ref. [14].

^e Ref. [15].

^c Ref. [4].

Fig. 9. Charge density contours in the (1 1 0) plane of cubic BaHfO₃.

functionals used [14,15]. Our inter-band transition energies are more realistic and they should be good predictions for the optical transitions in BaHfO₃.

The upper valence band is 3.99 eV wide. The top of the VB, between -1.32 eV and 0 eV, is due essentially to 0.2p states. The states between -3.99 eV and -1.32 eV result predominantly from O 2p states weakly hybridized with Hf 5d states. This indicates that Hf-O bonds have an iono-covalent character. The narrow and intense peak of DOS at -9.21 eV (Fig. 8) corresponds to the flat energy bands, at around the same energy, in the band structure (Fig. 7). It results from semi-core Hf 4f states. The peak of DOS at -10.20 eV (Fig. 8) corresponds to the quasi-flat energy bands, at around the same energy, in the band structure (Fig. 7). It results from Ba 5p states. We display the conduction band from 0 to 13 eV. At the bottom of the CB, there is a sub-band between 5.66 eV and ~10.4 eV consisting essentially of a mixture of Ba d and Hf d t_{2g} states. This sub-band is followed by a peak located at 11.65 eV due to Ba f states with some admixture of Hf $d e_g$ states. In Fig. 9, we show the charge density contours in the (110) plane. We note an electronic charge accumulation between O and Hf atoms. This confirms the hybridization of O 2p and Hf 5d orbitals leading to iono-covalent Hf-O bonds, as expected from the study of elastic properties. We also notice a charge transfer from Ba to O and a weak charge density between Ba and O atoms. This reveals that Ba-O bonds are ionic.

4. Conclusions

In summary, we report in this work a first-principles study of structural, elastic, thermodynamic, and electronic properties of perovskite BaHfO₃. Calculations are made within the FP-LAPW method and the quasi-harmonic Debye model. The use of the GGA-PBEsol exchange-correlation functional allows obtaining accurate structural and elastic parameters. We show that BaHfO₃ is brittle, mechanically stable, and elastically anisotropic with a predominance of directional bonding. We give first predictions of the Grüneisen parameter, the specific heat at constant volume, the isothermal bulk modulus, and the adiabatic bulk modulus. We also perform a study of the effects of pressure and temperature on the thermodynamic parameters. Using the Tran-Blaha modified Becke-Johnson exchange-correlation potential when calculating the electronic properties, we find that BaHfO₃ has an indirect gap $R-\Gamma$ of 5.66 eV. The top of the valence band results primarily from O 2p states whereas the bottom of the band conduction is due mainly to

Ba d and Hf d t_{2g} states. We also evidence that the Hf-O bonds have an iono-covalent character whereas the Ba-O bonds are ionic.

References

- Y.M. Kim, C. Park, T. Ha, U. Kim, N. Kim, J. Shin, Y. Kim, J. Yu, J.H. Kim, K. Char, High-k perovskite gate oxide BaHfO₃, APL Mater. 5 (2017), 016104.
 O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch Wenger,
- [2] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch Wenger, P. Zaumseil, Optical properties and band gap characterization of high dielectric constant oxides, Thin Solid Films 520 (2012) 4532.
- [3] G. Lupina, O. Seifarth, P. Dudek, G. Kozlowski, J. Dabrowski, H.-J. Thieme, G. Lippert, T. Schroeder, H.-J. Müssig, Characterization of group II hafnates and zirconates for metal-insulator metal capacitors, Phys. Status Solidi B 248 (2011) 323.
- [4] P. Dudek, G. Lupina, G. Kozlowski, P. Zaumseil, J. Bauer, O. Fursenko, J. Dabrowski, R. Schmidt, G. Lippert, H.-J. Müssig, T. Schroeder, D. Schmeisser, E. Zschech, Atomic-scale engineering of future high-*k* dynamic random access memory dielectrics: The example of partial Hf substitution by Ti in BaHfO₃, J. Vac. Sci. Technol. B 29 (2011), 01AC03.
 [5] A. Abrutis, T. Katkus, S. Stanionyte, V. Kubilius, G. Lupina, Ch Wenger,
- [5] A. Abrutis, T. Katkus, S. Stanionyte, V. Kubilius, G. Lupina, Ch Wenger, M. Lukosius, Chemical vapor deposition and characterization of high-*k* BaHf₁₋ _xTi_xO₃ dielectric layers for microelectronic applications, J. Vac. Sci. Technol. B 29 (2011), 01A303.
- [6] G. Lupina, G. Kozlowski, J. Dabrowski, Ch Wenger, P. Dudek, P. Zaumseil, G. Lippert, Ch Walczyk, H.-J. Müssig, Thin BaHfO₃ high-k dielectric layers on TiN for memory capacitor applications. Appl. Phys. Lett. 92 (2008), 062906.
- TiN for memory capacitor applications, Appl. Phys. Lett. 92 (2008), 062906.
 G. Lupina, O. Seifarth, G. Kozlowski, P. Dudek, J. Dabrowski, G. Lippert, H.-J. Müssig, Hf- and Zr-based alkaline earth perovskite dielectrics for memory applications, Microelectron. Eng. 86 (2009) 1842.
- [8] T. Maekawa, K. Kurosaki, S. Yamanaka, Thermal and mechanical properties of perovskite-type barium hafnate, J. Alloys Compd. 407 (2006) 44.
- [9] F. Gu, Y.-Y. Chen, X.-L. Zhang, J.-H. Zhang, Q.-Q. Liu, First-principles calculations for the structural, elastic and thermodynamic properties of cubic perovskite BaHfO₃ under pressure, Phys. Scr. 89 (2014), 105703.
- [10] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.
- [11] A. Bouhemadou, F. Djabi, R. Khenata, First principles study of structural, elastic, electronic and optical properties of the cubic perovskite BaHfO₃, Phys. Lett. A 372 (2008) 4527.
- [12] R. Vali, Lattice dynamics and electronic properties of the scintillator host material: barium hafnate, Solid State Commun. 147 (2008) 1.
- [13] T. Ouahrani, I. Merad-Boudia, H. Baltache, R. Khenata, Z. Bentalha, Effect of pressure on the global and local properties of cubic perovskite crystals, Phys. Scr. 84 (2011), 025704.
- [14] Q.-J. Liu, Z.-T. Liu, L.-P. Feng, H. Tian, Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO₃: First-principles calculations, Physica B 405 (2010) 4032.
- [15] H. Zhao, A. Chang, Y. Wang, Structural, elastic, and electronic properties of cubic perovskite BaHfO₃ obtained from first principles, Physica B 404 (2009) 2192.
- [16] D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566.
- [17] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048.
- [18] S. Kurth, J.P. Perdew, P. Blaha, Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs, Int. J. Quantum Chem. 75 (1999) 889.
- [19] F. Tran, R. Laskowski, P. Blaha, K. Schwarz, Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional, Phys. Rev. B 75 (2007), 115131.
- [20] S.J. Clark, J. Robertson, Screened exchange density functional applied to solids, Phys. Rev. B 82 (2010), 085208.
- [21] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), 136406.
- [22] J.P. Perdew, A. Ruzsinszky, M. Ernzerhof, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Erratum: Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 102 (2009), 039902.
- [23] M. Faghihnasiri, M. Izadifard, M.E. Ghazi, DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH₃NH₃PbX₃, X= I, Br, CI), J. Phys. Chem. C 121 (2017), 27059.
- [24] S.F. Yuk, K.C. Pitike, S.M. Nakhmanson, M. Eisenbach, Y.W. Li, V.R. Cooper, Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects, Sci. Rep. 7 (2017), 43482.
- correlation effects, Sci. Rep. 7 (2017), 43482.
 [25] R. Wahl, D. Vogtenhuber, G. Kresse, SrTiO₃ and BaTiO₃ revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals, Phys. Rev. B 78 (2008), 104116.
- [26] N. Charles, J.M. Rondinelli, Assessing exchange-correlation functional performance for structure and property predictions of oxyfluoride compounds from first principles, Phys. Rev. B 94 (2016), 174108.
- [27] T. Shimada, T. Matsui, T. Xu, K. Arisue, Y. Zhang, J. Wang, T. Kitamura, Multiferroic nature of intrinsic point defects in BiFeO₃: A hybrid Hartree-Fock

density functional study, Phys. Rev. B 93 (2016), 174107.

- [28] F. Schmidt, M. Landmann, E. Rauls, N. Argiolas, S. Sanna, W.G. Schmidt, A. Schindlmayr, Consistent atomic geometries and electronic structure of five phases of potassium niobate from density-functional theory, Adv. Mater. Sci. Eng. 2017 (2017), 3981317.
- [29] J. Shin, J. Lim, T. Ha, Y.M. Kim, C. Park, J. Yu, J.H. Kim, K. Char, Band gap and mobility of epitaxial perovskite BaSn_{1-x}Hf_xO₃ thin films, Phys. Rev. Mater. 2 (2018), 021601(R).
- [30] F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009), 226401.
- [31] S.-D. Guo, B.-G. Liu, Electronic structures and optical dielectric functions of room temperature phases of SrTiO₃ and BaTiO₃, J. Appl. Phys. 110 (2011), 073525.
- [32] X.H. Zhu, X.R. Chen, B.G. Liu, First principles investigation of electronic and magnetic structures of centrosymmetric BiMnO₃ using an improved approach, Solid State Commun. 243 (2016) 65.
- [33] S. Tariq, S. Saad, M.I. Jamil, S.M.S. Gilani, S.M. Ramay, A. Mahmood, Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO₃, Eur. Phys. J. Plus 133 (2018) 87.
- [34] E. Sjöstedt, L. Nordström, D.J. Singh, An alternative way of linearizing the augmented plane-wave method, Solid State Commun. 114 (2000) 15.
- [35] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Efficient linearization of the augmented plane-wave method, Phys. Rev. B 64 (2001), 195134.
- [36] K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun. 147 (2002) 71.
- [37] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964). B864.
- [38] W. Kohn, LJ. Sham, Self-consistent equation including exchange and correlation effects, Phys. Rev. 140 (1965). A1133.

- [39] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001.
- [40] M.A. Blanco, E. Francisco, V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57.
- [41] F. Saadaoui, F.-Z. Driss-Khodja, A. Kadoun, M. Driss-Khodja, A. Elias, A. Boudali, First-principles calculations of structural, elastic, thermodynamic, and electronic properties of anti-perovskites A^{III}CNi₃ (A^{III} = AI, Ga, In), Eur. Phys. J. B 88 (2015) 316.
- [42] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952) 349.
- [43] F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947) 809.
- [44] F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. U.S.A. 30 (1944) 244.
- [45] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, 1956. Clarendon, Oxford.
- [46] D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992) 345.
- [47] R.E. Newnham, Properties of Materials, Anisotropy, Symmetry, Structure, Oxford University Press Inc., New York, 2005.
- [48] S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954) 823.
 [40] U.V. Barshking, P.L. Huerley, Huerley, Herster discussed decrease and
- [49] V.V. Brazhkin, A.G. Lyapin, R.J. Hemley, Harder than diamond: dreams and reality, Philos. Mag. A 82 (2002) 231.[50] R. Roy, D.K. Agrawal, H.A. McKinstry, Very low thermal expansion coefficient
- materials, Annu. Rev. Mater. Sci. 19 (1989) 59.
- [51] R.A. Evarestov, Hybrid density functional theory LCAO calculations on phonons in Ba(Ti, Zr, Hf)O₃, Phys. Rev. B 83 (2011), 014105.
- [52] A. Yangthaisong, Electronic and lattice vibrational properties of cubic BaHfO₃ from first principles calculations, Phys. Lett. A 377 (2013) 927.

8