
 

 

 
 

 

Ministry of Higher Education and Scientific Research 

Dr. Tahar Moulay University of Saida 

School  of Science 

 

 

 

 

 

 

Computer Science Department 

 

Textual knowledge engineering. 

 

 

 

 

Author  : 

Dr. Mebarka YAHLALI 

Associate Professor in Computer Science 

October 2024 

 

 

 

 



 

 

 
 

 

Preface 

 

This course is intended to second year Master MICR1 students of 

University of Saida "Dr Tahar Moulay". Textual knowledge engineering 

aims to transform unstructured textual information into structured, 

actionable knowledge that is easily accessed, utilized, and maintained. 

This handout is organized into four chapters: Basic Concepts, 

Descriptive Logic, OWL and Mapping and alignment of ontologies. We 

have started the course by presenting the main basic concepts in the 

context of the subject (data, Information, Knowledge, Knowledge graphs 

and ontologies….). The second part is dedicated to the Descriptive Logic 

(DL). This method is a formalism used in knowledge representation and 

reasoning. Its primary goal is to provide a structured way to represent 

knowledge about the world in a manner that enables efficient reasoning 

and inference.  Chapter three presents the essentials of Web Ontology 

Language (OWL). In the last chapter, we study Mapping and alignment of 

ontologies. 

 

 

 

 

 

 

 

 

 

 
1 MICR: Modélisation Informatique des Connaissances et du Raisonnement 



 

 

 
 

Table of Contents 
Preface 

Table of Contents 

Figure List 

 

General Introduction   ...................................................................................................... 6 

 

Chapter I : Basic Concepts 

Introduction  

 I. Data, information and knowledge  ................................................................................... 8 

II. Knowledge Engineering. .................................................................................................. 9 

III. Model  .............................................................................................................................. 9 

Knowledge graphs and ontologies 

I. Definitions  ...................................................................................................................... 11 

II. Terminology vs. Ontology  ............................................................................................. 11 

III. Ontology Components  .................................................................................................. 12 

IV. Examples  ...................................................................................................................... 15 

V. Ontology Lifecycle  ....................................................................................................................... 15 

VI. Formal representation of ontologies (languages)  ........................................................ 18 

VI.1. DefOnto (operational language) :  .................................................................. 18 

VI.2. Ontology exchange languages on the Web  .................................................... 20 

 

Chapter II: Descriptive logic 

I. Introduction (Knowledge representation)  ...................................................................... 26 

II. Semantic networks ......................................................................................................... 26 

III. Description logics (DL)  ................................................................................................ 27 

      III.1. DL components :  ................................................................................................. 27 

      III.2. Description Level ................................................................................................. 27 

 III.3. Description languages ................................................................................... 29 

  III.4. Semantics of the AL language ..................................................................... 33 

  III.5. Description logic properties.......................................................................... 35 

 

Chapter III : Web Ontology Language 

I. Introdcution ...................................................................................................... 38 



 

 

 
 

II. Structure of an OWL document (Syntax)  ........................................................ 35 

II.1. Namespace Declaration (header)  ............................................................. 39 

II.2. Header of the Ontology  ............................................................................ 40 

II.3. Elements of language ................................................................................ 40 

III. Exercises ........................................................................................................... 47 

Chapter IV: Mapping and alignment of ontologies.  

I. Introduction ...................................................................................................... 49 

II. Mapping ............................................................................................................ 49 

III. Alignment ......................................................................................................... 50 

IV. Steps in a mapping process .............................................................................. 51 

V. Alignment Approaches ..................................................................................... 52 

General Conclusion ......................................................................................................... 54 

Annex ................................................................................................................................. 55 

Bibliography ..................................................................................................................... 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

Figure List 
 

Fig1. Data,Information and Knowledge  .............................................................................. 8 

Fig2. Modeling Process. ...................................................................................................... 10 

Fig 3. Ontology Lifecycle ..................................................................................................... 16 

Fig4.  Design and evolution  stage...................................................................................... 17 

Fig5.   DefOnto  example stage ........................................................................................... 19 

Fig 6: HTML vs XML .......................................................................................................... 21 

Fig7:  RdF Statement  ......................................................................................................... 21 

Fig8:  RdF Statement -Example- ........................................................................................ 22 

Fig9:  Structured Value -Example-..................................................................................... 23 

Fig10:  RDF Model : Example of Abstract Syntax ............................................................. 24 

Fig11:  Semantic  Networks: Example  .............................................................................. 26 

Fig 12: Namespace Declaration (header)  .................................................................................... 38 

Fig 13: OWL: Elements of language ............................................................................................. 39 

Fig 14: Example of alignment of two ontologies ......................................................................... 50 

Fig 15: Mapping Process  .................................................................................................... 51 

 

 

 

 

 

 

 

 

https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf
https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf


 

 

 
 

 

GENERAL INTRODUCTION 

 

 In today's data-driven world, it is increasingly important to be 

able to harness and utilize information. With the exponential growth of 

unstructured textual data, such as articles and reports, and social media 

posts, there is a pressing need for effective techniques to extract, 

manage, and represent knowledge. This module on textual knowledge 

engineering aims to provide students with the foundational concepts and 

practical skills necessary to navigate this complex landscape. 

 

 Textual Knowledge Engineering encompasses a diverse range of 

interdisciplinary methodologies, incorporating disciplines such as natural 

language processing (NLP), machine learning, information retrieval, and 

knowledge representation. The objective is to convert raw textual data 

into structured knowledge that can be easily analyzed and utilized for 

various applications. 

 

 Throughout this module, we will explore key topics including: 

1. Knowledge Representation:  

✓ Ontologies and  knowledge graphs  

✓ Descriptive Logic 

✓ OWL  

2. Mapping and alignment of ontologies. 

 

By the end of this module, students will not only have a solid theoretical 

understanding of Textual Knowledge Engineering, but also have the 

hands-on experience necessary to apply these concepts to real-world 

problems. 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

.Chapter I : Basic 

Concepts



Textual Knowledge Engineering 
Basic Concepts 
 

 

 
 
 
 

 

8 

 

Textual Knowledge Engineering is the field of Knowledge Engineering 

which is interested in texts, Its objective is to acquire knowledge from 

texts or to exploit the products and methods of knowledge engineering – 

and more broadly AI – to interpret texts and access their content. 

I. Data, information and knowledge 

 

Fig 1:  Data, information and knowledge  

I.1. Data 

The concept of data or  ‘raw’ data  is  a collection of text, numbers and 

symbols with no meaning. [1]  

Example  

• cat, dog, rabbit,... 

• 161.2, 175.3, 166.4, 164.7, 169.3  

 

I.2. Information  

Information is data that has meaning. 

  Data + Meaning = Information. [1] 

Example  

• cat, dog, rabbit is a list of household pets  

• 161.2, 175.3, 166.4, 164.7, 169.3 are the heights of 15-year-old 

students.  

 

I.3. knowledge 

According to experts in the field, knowledge is: 

• the result of the understanding of information (Hayes, 1992) 



Textual Knowledge Engineering 
Basic Concepts 
 

 

 
 
 
 

 

9 

 

• the result of internalising information (Hayes, 1992) 

• collected information about an area of concern (Senn, 1990) 

information with direction or intent—it facilitates a decision or an action 

 

Information + application or use = Knowledge 

 

Example1  : 

 The tallest student is 175.3cm.  

 A lion is not a household pet as it is not in the list and it lives in the wild.  

 

Example 2:  

 

 

 

 

 

II. Knowledge Engineering 

• Knowledge engineering is a field of artificial intelligence (AI). 

• In computer science, knowledge engineering refers to techniques 

for manipulating knowledge on a computer. 

• Integration of artificial intelligence techniques and software 

engineering to design and build expert systems. [2] 

III. Model  

III.1. What is a model? 

A model is an abstraction that reduces complexity by focusing on certain 

aspects, according to certain goals. [4] 

 BUT a model should manipulate objects and interpret the 

results. 

 

 

 

 

Information  

The temperature outside is 5® C 

It is Cold  

It is Cold , put on a warm coat  
Knowledge 

Data  

https://www.investopedia.com/alternative-investments-4427781


Textual Knowledge Engineering 
Basic Concepts 
 

 

 
 
 
 

 

10 

 

 

III.2. The modeling process 

 

    Fig 2: Modeling Process[4] 

• Phase 1: Data-Driven Acquisition : Corpus analysis tools are used to 

collect raw data (primary data) 

• Phases 2 an 3 : (2)Construction of the conceptual model diagram 

and (3) Instantiation  of the conceptual model diagram : Phases 2 

and 3 contribute to the development of the conceptual model. Phase 2 

develops the diagrams of this model phase 3 extends these diagrams with 

data from the application domain (refine) . 

• Phase 4  : Operationalization of the model ( implementation )  :  

corresponds to the choice of a language for the implementation of the final 

system 

 

 

 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

11 

 

I. Definitions  

 

• The word ontology comes from the Greek :  

a. intos : means being, what exists, the existing 

b.  logos:  means speec 

 

• The word “ontology” is used with different senses in different 

communities. Ontology, as a branch of philosophy, is  the nature of 

being and existence . In Computer Science, we refer to an ontology as a 

special kind of information,  object or computational artifact. 

 In simple terms, ontology seeks the classification and explanation of 

entities.    

It is a discourse on what is, what exists. According to Willard Van 

Orman Quine, ontology answers the question: What exists? how is the 

World constituted? [2]   

 

• Gruber originally defined the notion of an ontology as an “explicit 

specification of a conceptualization” [4] . Borst in [5] defined an 

ontology as a “formal specification of a shared conceptualization”  

a. The expression “explicit specification” means: representation 

in a language (natural language or formal language).  

b. The term “conceptualization” refers to a system of concepts 

(entities, attributes, processes, their definitions and their 

interrelations) [3] 

• An ontology defines the basic terms and relationships of a domain's 

vocabulary as well as the rules that indicate how to combine terms and 

relationships in order to be able to expand the vocabulary  [1]. 

 

II. Terminology vs. Ontology 

Terminology:  

• Set of terms representing a system of concepts for a particular domain. 

•  Association of linguistic information to terms (linguistic entities). 

•  No formal organization of terms (redundancy problems) 

Ontology:  

• Formal description of concepts and relationships for a particular domain. 

•  Association of properties to concepts  

• Intended for automatic processing =>the ontology must be readable by a 

machine, which excludes natural language.  



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

12 

 

Two complementary resources => Terminology can be used to populate 

an ontology 

III. Ontology Components  

The formalization of Knowledge in ontologies is based on five components: classes, 

instances, relations, functions, axioms , instances and  Attributes 

III.1. Concepts (classes): are relevant abstractions of a segment of reality 

[1]. A Class is a set, entity, collection, or type of objects sharing common 

characteristics.  

The concept can be defined as an entity composed of three distinct elements [5]: 

1. The term(s): is a symbolic representation, often linguistic, expressing 

the concept (label). 

e.g: Person, Human,..... Car, Auto.... 

2. The meaning of the concept: also called “notion” or “intension” of the 

concept. ➔ Attributes  

e.g: Person (Name, Age, gender ...) 

 

3. The object(s) denoted by the concept, also called “realization” or 

“extension” of the concept. They are the real and concrete basic objects. 

These are the leaves in the ontology diagram. 

e.g  (Mohamed , 25, male )  

 

Two classes of concepts can be distinguished  

a. Primitive concept: Human, Male, Female  

b. Defined concept :  

• Man: Human and Male  

• Woman: Human and Female 

III.2. Relations (object property): the relations are the links or interactions 

that a class or a class instance can have with other classes or class instances in 

the targeted domain [6]. 

Formally a relation R is defined as a subset of a Cartesian product of n sets:                    

R: C1 x C2x … x Cn 

 

 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

13 

 

III.2.1. Relationship types 

a. The specialization relationship :(subsumption, 

generalization, subclass), *means inheritance (is-a, is-a);  

(called Hyperonymy (upper element, ) /Hyponymy (lower 

element). 

This relationship allows the inheritance of properties 

(hierarchical links).  

 

e.g:  

• “father” is a “person”  

“person” is the hyperonym “father”  

 

b. The relation of composition (meronymy), (aggregation or 

composition) (is-a-part-of); are semantic links.  

eg:  

• A Branch is a part of a Tree.  

• A Leaf is a part of a Branch 

 

c. Association ; instance-of…. 

III.2.1. Characteristics of relationships:  

1. Algebraic Characteristics: 

 

• Symmetric: a relation R is symmetric if  

for all x,y ∈ E /  x R y if y R x.  

E.g: Brother_of  

 

• Transitive: a relation R is transitive if  

for all x,y,z ∈ E / if x R y ˄ y R z => x R z.  

e.g : Parent_of  

If Mohamed parent_of Karim ˄ Karim parent_of Ali 

 => Mohamed parent_of Ali  

 

• Inverse:  

if R :: x R y     / x ∈ E1 ˄y ∈ E2 the inverse relation  

R-1 :: y R x / y ∈ E2 ˄x∈ E1  

e.g: mother_of and son_of (son_of = mother_of -1) 

 

2. Cardinality: 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

14 

 

• minCardinality: any instance of the class will be 

connected by the property :has at least x individuals  

e.g: A teacher has at least one diploma: minCardinality=1 

 

• maxCardinality: any instance of the class will be 

connected by the property :has at most x individuals  

e.g:  

• A mother has at most 10 children: maxCardinality=10 

• By Muslim law, men can have, at the most, 4 wives in total: 

maxCardinality=10 

• cardinality: any instance of the class will be linked by the 

property : has exactly x individuals  

e.g: A child with exactly one and only one mother: 

cardinality=1 

III.3. Functions :Are special cases of relations in which the nth element of 

the relation is uniquely defined from the previous n-1 elements (The nth 

element of the relation is unique for the preceding n − 1 elements.) 

F: C1 x C2 ... x Cn-1 →Cn 

e.g:  Ternary function:  

Price of a used car: Model x Years x Kilometers --> Price 

III.4.Axiom: [rules]: Set of axioms or inference rules allowing the definition 

of properties of relationships. They are assertions accepted as true for: 

• Define the components signification.  

• Set restrictions on attribute values. 

• Define the arguments of a relationship. 

• Check the validity of specified information or derive new 

information. 

III.5.Instances: (individuals or extension of the concept) : are the real 

and concrete basic objects.  The instances are the leaves in the 

ontology diagram.  

III.6.Attribute: (intension/notion or meaning): or Data properties. 

The attributes are the set of characteristics or parameters that 

describe the concepts (instances).  

e.g: Age, last name, first name for the concept person  



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

15 

 

 

IV. Examples :  

Informal  :  

“A novel and a Roman are books.” 

 “A book is a document.” 

 

Formal  

 

 

 

 

 

Informal  :  

“A document has an author.” 

 “An author is human” 

A human has name ... name is String   

 

Formal  

 

 

 

 

 

 

 

 

 

 

 

V.Ontology Lifecycle 

 The ontology lifecycle identifies the different stage to develop an ontology. 

Several ontology construction methods have been proposed. These methods 

share the following main steps [34]:  

Roman Novel 

Book  

Document 

Subsumption 

Binary relation 

Transitive 

 

Human Author  

Roman Novel 

Book  

Document 

String  

Name 

https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf
https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf


Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

16 

 

• Identification of the ontology domain and  its scope of 

application; 

•  Definition of the expected objectives of the ontology; 

•  Informal specification of concepts; 

•  Coding the ontology by formally representing its components 

(concepts, relation , axioms....) 

• Evaluation of the ontology.... 

 

 

 

 

 

 

 

 Fig 3. Ontology Lifecycle [6] 

 

1. The needs detection (specification) : needs detection phase 

starts with a detailed inventory of the domain and the various 

purposes: 

 

✓ The operational objective: it is important to determine the 

operational use of the ontology through use case diagrams; 

(scenario) 

✓ Domain of knowledge 

✓ Users   

 

2.  Design and evolution: Consists of identifying from raw corpus 

data all concepts and the relationships between them.  

 

 

 

 

1. Needs 

detection 

2. Design & Evolution  

3. Validation  4.  Deployment  

5. Use 6. Evaluation  8. Evolution & 

Maintenance  

https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf
https://www.emse.fr/~beaune/websem/Staab_OntoLC.pdf


Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig4.  Design and evolution  stage [6] 

 

The design and development phases share a certain number of points: 

✓ Conceptualization and modeling: sort the knowledge found in the 

specific corpus (Select specific terms of the domain).  Then it is 

necessary to specify the concepts, the relationships, the properties of 

the concepts and relationships, the rules and constraints, ... ➔ 

conceptual aspect. 

 

✓ Formalization (Ontologization and Operationalization): 

Sometimes called representation, is a transcription of the ontology into 

a formal and operational knowledge representation language 

(description logics, conceptual graphs, semantic web formalisms RDF, 

RDF(S) and OWL) . 

 

3. Validation  (Documentation and evaluation) 

 

• Documentation: Produce formal, informal and complete 

definitions to clarify the meaning of ontology terms.  

 

• Evaluation: performed by tests corresponding to the 

operational objective of the ontology. 

 

Raw data  

Conceptual 

Model  

Conceptualization  

Ontology   

ontologization 

Operational and 

formal ontology   

Operationalization 

(implementation) 

Informal   

Semi-Formal  

Formal  



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

18 

 

4. The deployment, diffusion and use phase: the ontology is 

distributed and it is put at the service of users. 

 

5. Evolution and Maintenance:  

The ontology must evolve if:  

 

✓ It does not exactly meet the needs expressed at the start of the 

project (The evaluation of the ontology failed:) ➔ It will be 

necessary to modify certain parts of the ontology. 

 

✓ Over time the context of use is modified, or the domain of 

knowledge is expanded => needs change automatically. It is 

important to : 

 

a) Build a new ontology with the knowledge to add and 

integrate it into the ontology already established  

b) Or directly aggregate new knowledge into the existing 

ontology 

VI. Formal representation of ontologies (languages) 

To construct an ontology, several languages can be used. They are adapted 

to the different stages: 

1. Natural language or informal modeling language to acquire ontological 

knowledge,  

2. Or formal and executable representation languages. Formal languages 

offer data structures adapted to the representation of concepts. Among 

these languages, we distinguish: 

• Operational languages which implement ontologies for inference 

purposes, to constitute a component of an information system.  

• Languages for exchanging ontologies on the Web, whose syntax 

is based on XML. 

VI.1. DefOnto (operational language) : 

DefOnto allows the representation of meta-knowledge (ex: properties of 

properties), an objective of DefOnto is to provide the language with modular 

compilation mechanisms to facilitate the development and maintenance of 

formal ontologies. Each type of conceptual entity corresponds to a particular 

language construction, defined using one of the following "constructors" [7] : 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

19 

 

• DefGenConcept : to define generic concepts. The generic concept 

represents an undefined object. 

• DefRelation to define relationships; 

• DefIndConcept :  to define individual concepts. The individual 

concept represents a specific object. In natural language, it 

corresponds to a proper noun or a common noun preceded by a definite 

article. For example, Algeria is represented by the concept 

[COUNTRY: Algeria]. 

 

 

 

 

 

 

 

 

 

Example :  

« Electronic document: An ELECTRONIC DOCUMENT is a DOCUMENT 

which HAS A SUPPORT electronic. Every ELECTRONIC DOCUMENT 

HAS FOR FORMAT a FORMAT. The ELECTRONIC DOCUMENTS are 

opposed to PAPER DOCUMENTS  » 

   

 

 

 

 

 

 

Fig5.   DefOnto  example [7] 

 

DefGenConcept Product  

DefGenConcept Meat 

is-a  Product 

DefRelation  is_preserved 

RelationProperties 

domain  Meat 

range    Cold_room 

 

Product 

Meat 

Cold_room 

is-a 

is-preserved 

DefGenConcept  #document 

 =[#object] 

DefGenConcept  #paper_document 

  = [#document] 

DefGenConcept  #electronic_document 

  = [#document] -> (MI#has_a_support) ->‘‘électronic‘’ 

ObjectProperties 

->(AE#has_for_format)->[#format] 

SetProperties 

->(#is_disjoint_with)->[#paper_document] 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

20 

 

Remarks :  

• The letters ‘A’ (=ALL) and ‘E’ (Exist), preceding the name of the relationship 

possesses, 

• The letter ‘I’ (I = Individual) indicates the presence of a constant.  

• The letter ‘M’ represents a peudo-quantifier. The M introduces a relative and 

reads “who…” or “whose…” or even “having…”. 

 

VI.2. Ontology exchange languages on the Web 

VI.2.1. XML :  

What is XML? 

• XML stands for eXtensible Markup Language 

• XML is a markup language much like HTML 

• XML was designed to store and transport data 

• XML is a W3C Recommendation 

• All major browsers have a built-in XML parser to access and manipulate 

XML.[8] 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

21 

 

 

Fig 6: HTML vs XML 

 

VI.2.2. Resource Description Framework (RDF) 

• A language for representing Web resources and information about them in the 

form of metadata2  [9] 

What is a resource? 

• A resource is an object or anything that has identity  

• For example, : electronic document, Authors, books, publishers,  an image, a 

service (e.g., "today's weather report for Algiers "), and a collection of other 

resources.  

• All resources are identified by a URI (Uniform Resource Identifier).  

• Resources are described in terms of simple statements specifying properties 

and property values.   

 

 
2 Metadata is defined as the information that describes and explains data 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

22 

 

RDF Data Model (Abstract Syntax) 

A statements is a triplet of  :  subject- predicate –value 

 

 

 

Fig7:  RdF Statement  

 

1. A subject : a “thing” we want to talk about. 

2. A predicate ( or property about the subject) 

Special kind of resources:  

– Describe relations between resources, for example “written by”, “age”, “title”, 

and so on. 

–  Are also identified by URIs (and in practice by URLs).  

–  

3. An object (the value of predicate) 

— Values can be resources (for relations) or literals (for attributes) 

 

Fig8:  RdF Statement -Example- 

 

Example : 

— Statement:      "The author of http://www.w3schools.com/rdf is Refsnes ". 

The subject of the statement is: http://www.w3schools.com/rdf 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

23 

 

The predicate (or property) is: author 

The object is: Refsnes. 

 

 

— Statement: "The homepage of http://www.w3schools.com/rdf is 

http://www.w3schools.com". 

The subject of the statement above is: http://www.w3schools.com/rdf 

The predicate is: homepage 

The object is: http://www.w3schools.com 

 

<?xml version=“1.0”?> 

<rdf:RDF 

xmlns:rdf=“ http://www.w3.org/1999/02/22-rdf-syntax-ns” 

xmlns:dc=“http://purl.org/dc/terms#”> 

 

<rdf:Description about=“ http://www.w3schools.com/rdf”> 

<dc:Creator> Refsnes </dc:Creator> 

<dc: homepage  rdf:resource = “http://www.w3schools.com” /> 

</rdf:Description> 

</rdf:RDF> 

 

 

Fig9:  Structured Value -Example 

 



Textual Knowledge Engineering 
Knowledge graphs and ontologies 
 

 

 
 
 
 

 

24 

 

 

Fig10:  RDF Model : Example of Abstract Syntax 

 

Exercise  

Write an RDF model representing the following statements: 

• Document 1 has been created by Mohamed 

• Document 2 and document 3 have been created by the same author 

(who is unknown) 

•  Document 3 says that document 1 has been published by W3C 

Use predicates dc:Creator and dc:Publisher, and assume that the three documents 

are represented by URIs doc1, doc2, doc3, respectively.



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

25 

 

 

 

 

 

 

Chapter II : 

Descriptive Logic 

 

 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

26 

 

I. Introduction (Knowledge representation) 

 Knowledge is considered as a collection of information appropriate and 

relating to a particular subject. In the field of AI the main objective of 

knowledge representation is to store knowledge so that programs can 

process and carry out calculations. i.e the knowledge representation model 

should facilitate the reasoning process. 

Knowledge representation approaches can be classified into two categories: 

1. Non-logical approach: The meaning is decided by users' and 

programmers' intuition. Therefore, different knowledge 

representation systems based on the same model could have different 

interpretations. Example: semantic networks. 

2. Logical approach: They have surpassed intuition in non-logical 

representations. They clearly use predicate calculations to capture 

facts about the world.  [10] 

II. Semantic networks: Knowledge is represented in the form of a labeled 

directed graph. Vertices denote concepts and objects, and arcs  represent the 

various relationships between concepts.  

There are two types of  arcs :  [10] 

1. is-a  arcs  which introduce hierarchical relationships between concepts 

and instance relationships between objects and concepts.  

e.g :  

• Teacher is-a Person     (hierarchical relationships) 

• Amina is-a Teacher      (instance relationships) 

 

2. Property arcs that assign properties to concepts and objects. 

 

 

 

Fig 11 . Semantic networks : Example 

Person Parent Mother 

Child 

Has  

Professor  

work 

University  



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

27 

 

Semantic networks do not have formal semantics. For example: the property 

arc "work" from "PROFESSOR" to "UNIVERSITY" may indicate that the 

university is the only establishment for professors, furthermore, it may 

mean that a professor works in at least one university and also in other 

establishments. 

➔ Evolution: logical definition 

III. Description logics (DL) :  

Description logics are a family of knowledge representation languages. DLs 

are used to represent knowledge of an application domain in a formal and 

unambiguous way. [11] 

 III.1. DL components  [11]: 

• Atomic concepts (unary predicates): classes of objects or set of 

properties Examples: Woman, Human, Mother!  

• individuals or objects (constants):  identifiable by a name  

Examples: Amina, Mohamed, Ali!  

• Atomic roles (binary predicates) : relationships between objects  

examples: hasChild, hasHsband!  

• Constructors: 

¬,⊓, ⊔, ⊑, ∃, ∀ 
III.2. Description Level  

In a description logic knowledge base, there are two components:  

•  TBox (Terminological Box): contains all the axioms defining the 

concepts of the domain.  

• ABox (Assertional Box): contains assertions about individuals: 

specification of their class and their attributes. [12] 

III.2.1.TBox: Defines concepts (classes) and roles (relationships). The TBox 

contains:  [11][12] 

1. Atomic Entities: atomic concepts and atomic roles constituting the 

elementary entities of the LD. 

2. Minimal predefined atomic concepts and roles:  

• The concept ⊤ and the role ⊤R: (T: universal TOP): root of all 

concepts.  

By definition, for any concept C, we have the following axiom:   



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

28 

 

C ⊑ ⊤ 

• The concept ⊥ and the role ⊥R: The impossible concept: the most 

specific (empty set). 

3. Composite Entities: atomic concepts and roles can be combined 

using constructors to form composite entities 

Note :  Some conventions 

• A and B denote atomic concepts  

• C and D denote composite or atomic concepts  

• R denotes a role 4. 

• The names of concepts begin with a capital letter: Ex: Man, 

Woman, 

•  Role names with a lowercase letter: Ex: parent, child, etc 

 

III.2.2.ABox:  

• Describes individuals in terms of concepts and relationships.  

• Provides a description of the world: The ABox introduces individuals 

by specifying their names, the concepts they belong to, and their 

relations with other individuals. i.e. Describe a concrete situation by 

stating properties of individuals. 

• Corresponds to Data (ground facts) in database settings 

An ABox contains 2 types of assertions about individuals:  

1. Element-of (belongs-to)  assertions: specify the class and attributes 

of individuals:  

ex: Meriem is a woman,  

      Meriem is a Mother ((individual/instance of the mother class))  

2. role assertions: specify the existing relationships between 

individuals (real relationships)  

Example: a mother must have at least one child: the ABox must 

contain at least one other individual, and a relationship between this 

one and Meriem indicating that he is one of her children. 

III.3. Description languages: There are several concepts and roles 

description languages. The minimal language called AL (Attributive 

Language), which is gradually enriched with new constructors. [13] 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

29 

 

 

A Atomic Concept 

⊤ Universal Concept 

⊥ Impossible Concept 

¬A Atomic Negation 

C⊓D Concept Intersection 

∀R.C Value Restriction 

∃R. ⊤ Limited existential qualification 

Table 1: AL Syntax[12] 

• ∃R.C: individuals who have at least one type R relationship with a 

type C individual.  

• ∀R.C: individuals whose all type R relationships are with type C 

individuals. 

 

Example :  

Assuming 

Set  C ={a,b,c} 

Relationship R {(a,b) (a,d) ,(b,c) }            

 

III.3.1 Description logic families (some Extensions) 

The AL language can be enriched with constructors. Among these 

constructors we can note: 

• The negation of primitive or defined concepts (complement), which is 

noted (not C) or ¬C. The corresponding extension of AL is ALC3 = AL ⊔ 

{¬C}. 

• The disjunction of concepts, which is noted (C or D) or (C ⊔ D). The 

corresponding extension of AL is ALU = AL ⊔ {C ⊔ D}. 

• The cardinality on the roles, which is noted (atleast n r) or ≥ n r, and 

(atmost n r) or ≤ n  r. The corresponding extension of AL is ALN = AL 

⊔{≥n r , ≤n r}. 

The constructors ≤n r and ≥n r set the cardinality => minimum and 

maximum number of elementary values of the role with which they are 

associated. In particular, construction (∃ r) is equivalent to construction 

(≥1 r). 

 

 

 
3  Attributive concept Language with Complements 

∃R.C= {a,b} 

∀R.C {b} 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

30 

 

III.3.2. Description of concepts and roles (TBOX)  

Axioms are constructed from a set of concepts. Two possible formulas for the 

axioms:  C⊑ D or C ≡ D . 

1. C ⊑ D: stating (express) inclusion relations (C is included in D): 

declares that any entity of class C also belongs to class D,  

2. C ≡ D: stating equivalence (definition) relations between concepts: C 

equivalent by definition to D. A definition is an axiom in the form of C 

≡ D where C is an atomic concept. It  actually serves to associate a 

name with a complex concept. 

Ex: some statement (declaration)  

• Humain is an  animal, 

Humain  ⊑ Animal 

• A human is a reasoning animal 

Humain  ≡ Animal ⊓ Reasonable 

 

 

3. On Dl we can define a concept by restrictions on roles 

(relationships) 

 

Ex : 

• Person with at least one child: ∃aChild.Human  

• The class of individuals whose children are all women: ∀ 

aChild.Woman 

 

 

4. Number restrictions are used to restrict the number of successors in the 

given role for the given concept. 

 

 
 

Woman who has at least 3 sons : Womthreesun ≡ Woman ⊓ (≥ 3 

hasChildMan ) 

Concept of father who has exactly 2 children: Homme ⊓ ≥ 2 aEnfant ⊓ ≤ 2 

aEnfant 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

31 

 

III.3.3. Declaration of individuals in a terminology 

• In certain situations, we would like to be able to designate individuals 

in the terminology (enumeration). 

Setname≡ {a1,a2,a3 ,…,an} 

 

Example : Traffic Lights Colors   

TrafficLC  ≡ {Red, Green , Yellow} 

 

• To describe the set of individuals who are connected to a specific 

individual (a) by a relationship R 

R : a 

Example :  to represent the concept of Algerian Citizen, which is defined as 

follows: person born in Algeria 

AlgerianCitizen ≡ born: Algeria 

 

III.3.4. Description of the world (ABOX)  

1. C(a) to indicate that a is an individual belonging to the set denoted by 

the concept C.  

Example: Mohammed is a Student: Student (Mohammed)  

2. R(b; c) to indicate that b and c are linked by the relation R or, in other 

words, that individual c fulfills the role R for individual b.  

Example: aChild(Amina,Ali) to indicate that Ali is Amina’s son 

Example  

 

 

 

 

 

Exercise .  

1. Men and women are human 

 

Men  ⊑ Humain 

Women  ⊑ Humain 

2. Amina is a Woman  

Woman (Amina) 

ABOX 

hasChild(Mohamed,Amina) 

Woman(Amina) 

Person(Mohamed) 

 

TBOX 

Woman ⊑ Person 

Mother ≣ Woman ⊓ ∃hasChild.Person 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

32 

 

3. Person who does not have children: we restrict the value of the 

relationship hasChild to the impossible concept: 

 

∀hasChild. ⊥ 

 

4. The mother is a woman who has children  

Mother ≡Woman ⊓ ∃hasChild.Person 

 

5. The father is a man who has children  

Father ≡Man ⊓ ∃hasChild.Person 

6. Parent?  

Parent≡ Father ⊔ Mother 

 
7. The class of people who do not have male children 

¬∃hasChild.Men 

 

8. Grand Parent ?? 

 
9. Amina has at most two children 

(≤ 2 hasChild)(Amina) 

 

10. Mohamed has only one son Karim 

hasChild(Mohamed,Karim) 

(≤ 1 hasChild)(Mohamed) 

 

III.4. Semantics of the AL language  

The semantics of the AL language (and DLs in general) is expressed in terms 

of interpretation. It uses set theory: each concept is associated with a set of 

individuals denoted by this concept.  [14] 

In order to define the semantics of concept terms, we consider 

interpretations I = (ΔI, I), which consist of:  



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

33 

 

1. A non-empty set ΔI (the interpretation domain).  

2. An interpretation function I assigning:  

• for each atomic concept A, a set AI, such that AI ⊆ ΔI 

• for each atomic role R, a binary relation RI, such that RI ⊆ 

ΔI x ΔI 

Here is how this interpretation function is defined for the other possible 

descriptions: 

 

• Ensemble ≡ {a1,a2,a3 ,…,an}   

I({a1,a2,a3 ,…,an}) = {I(a1), I(a2) , I(a3) ,…, I(an)} 

 

Example : 

Let the domain interpretation Δ 

Δ= {Mohamed, Amine; Ibrahim; Fatima; Sara; hp, Dell } 

 

Example of interpretations: 

• I(Person) = {mohamed; amine; ibrahim; fatima; sara} 

• I(Man ) = {mohamed; amine; Ibrahim} 

• I(hasChild) = {(mohamed; amine); (mohamed; sara), (fatima; sara);  

                       (amine; ibrahim) } 

• I(∃hasChild.Person) = {mohammed; amine; Fatima} 

•  I(∀hasChild.Man) = {amine} 

 

Equivalence of concepts:  Two concepts C and D are equivalent, denoted 

C≡D, if we have I(C) = I(D), By definition we have the following 

equivalences: 

• T≡ ¬⊥ 

• ¬T≡⊥ 

• C⊓¬ C≡⊥ 

• C⊔¬ C≡T 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

34 

 

Inclusion of concepts:  The concept C includes the concept D, noted C ⊑ D, 

iff we have I(C) ⊑ I(D), By definition, for any concept C we have: C ⊑ T 

Exercise : 

Let  the following definitions: 

Δ={a,b,c,d,e,f,g} 

I(man)={a,b,c,g} 

I(hasChild)={(a,c),(b,d),(b,e),(c,g)} 

I(marryWith)={(b,f),(f,b)} 

Parent ≡∃hasChild. ┬ 

ParentOfWoman ≡∃hasChild.T ⊓ ∀hasChild. ¬Man 

Single≡ ∀marrywith. ┴ 

Marriedman ≡ Man⊓ ∃ marrywith.T  

 

Specify an interpretation for each of the classes defined above? 

 

III.5. Description logic properties 

In description logic, there are four properties to prove for a Tbox T: 

1. Satisfaction: a concept is satisfiable if there exists at least one entity 

of the described world which can belong to the set described by this 

concept 

• A concept C is satisfiable if there exists an 

interpretation I such that: CI≠Ø 

Example: I(Man ⊓ ￢Man) =Ø ➔ It  is unsatisfiable 

2. Subsumption: A concept C1 is subsumed by a concept C2 if for any 

interpretation I: I(C1) ⊆ I(C2) 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

35 

 

Example : I(Mother) ⊆ I(Woman.)   Mother is subsumed by Woman. 

3. Equivalence: Two concepts C and D are if for any interpretation I if 

I(C) = I(D) 

 

4. Disjunction: Two concepts C and D are disjointed if for any 

interpretationI:  

I(C) ∩ I(D) = ∅. 

Example:  I(C) ∩ I(D) = ∅       Father and Mother are disjointed 

Exercise: Consider the following description in descriptive logic: 

A≡∀R.A  ⊓ ∃R.T ⊓  B 

Say, for each of the following interpretations, whether it satisfies this 

description (justify!!): 

Interpretation 1: 

— I(A) = {a; b; c; d} 

— I(B) = {e; f} 

— I(R) = {(a; b); (b; c); (c; d); (d; a); (e; a); (f; a)} 

Interpretation 2 : 

— I(A) = {a; b; c} 

— I(B) = {e} 

— I(R) = f(a; a); (a; b); (a; c); (b; a); (b; c); (c; a); (e; e) 

 

 

 

 

 

 

 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

36 

 

 

 

Chapter III : Web 

Ontology Language  

-OWL- 

 

 
 

 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

37 

 

I. Introduction 

OWL is not a real acronym. "Web Ontology Language" should have used 

"WOL", but the Working Group did not wish to keep this abbreviation and 

therefore decided to use OWL. The design of OWL took into account the 

distributed nature of the Semantic Web and, as such, incorporated the 

possibility of extending existing ontologies, or of employing various existing 

ontologies to complete the definition of a new ontology. The more complete a 

tool is, the more complex it is. OWL has three sub-languages offering 

increasing expression capabilities and, naturally, intended for different 

communities of users: 

• OWL Lite: is the simplest OWL sublanguage. It is intended for users 

who need a simple hierarchy of concepts. 

 

• OWL DL: is more complex than OWL Lite. It allows for much greater 

expressiveness. OWL DL is based on description logic (hence its name, 

OWL Description Logics). Despite its relative complexity compared to 

OWL Lite, OWL-DL guarantees the completeness of the reasoning and 

their decidability. 

 

• OWL Full: is the most complex version of OWL, but also the one that 

allows the highest level of expressiveness. OWL Full is intended for 

situations where it is more important to have a high level of 

description ability. 

There is a dependency of a hierarchical nature between these three 

sublanguages: any valid OWL Lite ontology is also a valid OWL DL 

ontology, and any valid OWL DL ontology is also a valid OWL Full ontology. 

II. Structure of an OWL document (Syntax) 

OWL is based on RDF and uses RDF's XML syntax. The general structure of 

an owl document is presented as follows [15]: 

 

 

 

 

 

<rdf:RDF 

[namespace declaration]> 

 <owl :Ontologie   rdf :about= ‘ ‘>                    [Header of the Ontology] 

                 [class declaration] 

   [declaration of properties and relationships] 

                 [instance declaration] 

                </owl :ontologie>    

/rdf : RDF> 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

38 

 

 

II.1. Namespace Declaration  (header): 

Namespaces were introduced in XML in order to be able to mix several vocabularies 

within the same document. The initial component of an ontology includes a set of 

XML namespace declarations, contained within  an rdf:RDF opening tag. 

 

 

 

 

 

 

Fig 12. Namespace Declaration (header) [15] 

Namespace of the current Ontology: 

1. xmlns ="URI#": the default namespace. Used to qualify elements that are not 

qualified (are not prefixed). for example <name>  <Person: name> 

2.  xmlns:prefixename ="URI#": identify the namespace of the current ontology 

with the prefix prefixename 

3. xmlns:base ="URI#": identify the base URI address of this document 

Example: Header of the Humanite Ontology in which we will integrate the Alive 

Ontology. 

<rdf:RDF 

.      xmlns   = "http://domain.tld/path/humanite#" 

      xmlns:humanite= "http://domain.tld/path/humanite#" 

      xmlns:base = "http://domain.tld/path/humanite#" 

      xmlns:alive = "http://otherdomain.tld/otherpath/alive#" 

      xmlns:owl = "http://www.w3.org/2002/07/owl#" 

      xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

      xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#" 

      xmlns:xsd = "http://www.w3.org/2001/XMLSchema#"> 

> 

 

 

<rdf:RDF 

xmlns     ="URI#"   

xmlns:prefixename ="URI#"        

xmlns:base  ="URI#" 

xmlns:prefixename2="URI2"     

xmlns:owl ="http://www.w3.org/2002/07/owl#" 

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

xmlns:xsd =http://www.w3.org/2001/XMLSchema# 

> 

 

Namespace of the current Ontology 

Namespaces of other 

languages 

Namespaces of other Ontologies: 1 line /Ontology 

Namespace of the current Ontology 

Namespaces of other 

languages 

Namespaces of other Ontologies: 

 

http://www.w3.org/2001/XMLSchema


Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

39 

 

 

II.2. Header of the Ontology 

The owl:Ontology tag groups together a set of assertions about ontology. 

<owl:Ontology rdf:about=""> 

<rdfs:comment> "Comments describing the Ontology" </rdfs:comment> 

<owl:imports> the inclusion of other ontologies (1 line/ ontology) </owl:imports> 

<rdfs:label>Ontology Label</rdfs:label> 

Note: If the URI is not specified in the base attribute, it must be mentioned in the 

about attribute. 

Example : 

<owl:Ontology rdf:about=""> 

<rdfs:comment>Ontology describing humanity</rdfs:comment> 

<owl:imports 

   rdf:resource="http://otherdomain.tld/otherpath/vivant"/> 

<rdfs:label>Ontology on humanity</rdfs:label> 

 

II.3. Elements of language 

 

 

Fig 13: OWL: Elements of language [16] 

 

 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

40 

 

II.3. 1. The Class: 

There are two predefined classes which are: 

• owl:Thing: (TOP or universal) Each individual in the OWL world is a member 

of the owl:Thing class. Each user-defined class is therefore implicitly a 

subclass of owl:Thing 

• owl: noThing (impossible or empty): subclass of all classes owl (class without 

instances) 

A class can be declared in six different ways: Class identification, Instance 

Enumeration, Property Restriction, Unio, Intersection, Complement  

1. Class identification:  Classes are defined with owl:Class (Subclass of 

rdfs:Class).  

 

Syntax: <owl:Class rdf:ID="Term" /> 

The class can be called within the document by #Term 

 

Example: <owl:Class rdf:ID="Human" /> 

The Human class can be called by #Human 

 

The subClassOf property is used to express inheritance. For example to express the 

inheritance between the document and mail classes: 

<owl:Class rdf:ID="Document "/> 

 

<owl:Class rdf:ID="Mail"> 

<rdfs:subClassOf rdf:resource="#Document" /> 

</owl:Class> 

 

2. Instance Enumeration (OWL DL and OWL FULL) 

This type of description is done by listing the instances of the class, using the 

owl:oneOf property: 

Syntax: 

<owl:Class> 

<owl:oneOf rdf:parseType="Collection"> 

<owl:Thing rdf:about="#A"/> 

<owl:Thing rdf:about="#C"/> 

... 

</owl:oneOf> 

</owl:Class> 

 

Example : 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

41 

 

<owl:Class> 

<owl:oneOf rdf:parseType="Collection"> 

<owl:Thing rdf:about="#Mohamed" /> 

<owl:Thing rdf:about="#Amine" /> 

<owl:Thing rdf:about="#Alia" /> 

</owl:oneOf> 

</owl:Class> 

 

3. Property Restriction 

A property restriction is a kind of class description. It defines a class composed of all 

instances of owl:Thing that satisfy one or more properties (restriction). OWL 

distinguishes two kinds of restrictions: value constraints and cardinality constraints. 

Property restrictions have the following general form: 

 

 

 

 

 

 

 

3.1.Value constraints (hasValue, allValues From, someValuesFrom) 

A value constraint is exerted on the value of a certain property of the individual 

 

• allValuesFrom: class for which all the values of a property come from another 

class 

 

Example: Individuals of an anonymous class whose parents are People. 

 

<owl:Restriction> 

<owl:onProperty rdf:resource="#hasParent" /> 

<owl:allValuesFrom rdf:resource="#Person" /> 

</owl:Restriction> 

 

• someValuesFrom: at least some property values come from a specific class 

 

Example: Individuals from an anonymous class of which some parents are Women. 

 

<owl:Restriction> 

<owl:onProperty rdf:resource="#haveParent" /> 

<owl: someValuesFrom rdf:resource="#Female" /> 

</owl:Restriction> 

<owl:Restriction> 

<owl:onProperty rdf:resource="(some property) " /> 

(specifying a value or cardinality constraint) 

</owl:Restriction> 

 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

42 

 

 

• hasValue: the defined class can only have one value for the targeted property 

 

Example: The class of individuals whose parent is the individual Amel 

<owl:Restriction> 

<owl:onProperty rdf:resource="#hasParent" /> 

<owl:hasValue rdf:resource="#Amel" /> 

</owl:Restriction> 

 

3.2. Cardinality constraints: (minCardinality, Cardinality, maxCardinality) 

relates to the number of values that a property can take. The following example 

describes a class of individuals having at least one parent. 

 

 

 

 

 

 

 

 

Example : 

Write in OWL the class of people with two brothers. 

 

<owl:Restriction> 

<owl:onProperty rdf:resource="#aForBrother" /> 

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:cardinality> 

</owl:Restriction> 

 

4. Union: Declare a class by union of two or more classes: 

<owl:Class> 

<owl:unionOf rdf:parseType="Collection"> 

<owl:Class rdf:about="#class1" /> 

… 

<owl:Class rdf:about="#classen" /> 

</owl:unionOf> 

</owl:Class> 

 

5. Intersection: Declare a new class by intersection of two or more 

classes: 

<owl:Class> 

<owl:intersectionOf rdf:parseType="Collection"> 

<owl:Class rdf:about="#class1"/> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#hasParent" /> 

<owl:minCardinality rdf:datatype="&xsd; nonNegativelnteger">l 

</owl:minCardinality> 

</owl:Restriction> 

 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

43 

 

….. 

<owl:Class rdf:about="#classen"/> 

</owl:intersectionOf> 

</owl:Class> 

 

6. Complement: Declare a class that contains all individuals in the 

speech domain not belonging to another class. 

<owl:Class rdf:ID="Nonclass"> 

<owl:complementOf rdf:resource="#class"/> 

</owl:Class> 
 

Example: the expression “not student” can be written: 

<owl:Class> 

<owl:complementOf rdf:about=“#Student”/> 

</owl:Class> 

 

Exercise: write in OWL the class of students with two brothers 

<owl:Class> 

<owl:intersectionOf rdf:parseType="Collection"> 

<owl:Class rdf:about="#students" /> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#aForBrother" /> 

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 

2 

</owl:cardinality> 

</owl:Restriction> 

</owl:intersectionOf> 

</owl:Class> 

 

II.3.2. Properties  

OWL distinguishes between two types of properties: 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

44 

 

1. Object properties (owl:ObjectProperty): object properties allow you to link 

instances to other instances:  it is necessary to specify the domain and the image of 

the property. 

Example: the property lives has the Human class as its domain and the Country 

class as its image: it connects instances of the Human class to instances of the 

Country class. 

<owl:ObjectProperty rdf:ID="SubmittedBy"> 

<rdfs:domain rdf:resource="#mail"/> 

<rdfs:range rdf:resource="#issuer"/> 

</owl:ObjectProperty> 

 

Data type properties (owl:DatatypeProperty): in the case of a data type property, the 

image of the property can be a data type 

Example: declaration of the object property of the Mail class 

<owl:DatatypeProperty rdf.id="object"> 

<rdfs:domain rdf:resource="#mail" /> 

<rdfs:range rdf:resource="&xsd:string"/> 

</owl:DatatypeProperty> 

 

Data Types: 

String & its 

derivatives 
xsd: string              xsd:normalizedString              

xsd:token 

xsd:language             xsd:NMTOKEN                         

xsd:Name 

xsd: NCName 

Boolean  xsd: boolean 

Digital data xsd: decirnal           xsd: float                         xsd: 

double 

xsd:integer       xsd:positivelnteger      

xsd:nonPositivelnteger 

xsd:negativelnteger                       

xsd:nonNegativelnteger 

xsd: long      xsd: int    xsd: short     xsd:byte       

xsd:unsignedLong         xsd:unsignedlnt       

xsd:unsignedShort        xsd:unsignedByte 

Time-related 

types 

xsd:dateTirne,          xsd:tirne                 xsd: date 

xsd:gYearMonth      xsd:gYear    xsd:gMonthDay 

 xsd:gDay        xsd : gMonth 

 Table 2: OWL data type 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

45 

 

II.3. 3. The Instances 

Simply declare that an instance belongs to a class: 

Syntax: 

<Class_ID rdf: ID= "Individual_ID" /> 

 

Example : 

<Mail rdf:ID="Mail14582"/> 

Properties of individuals 

 

Syntax: 

<Class_ID rdf: ID= "Individual_ID" > 

< property1> property-value < /property1> 

</ Class_ID > 

 

Example : 

<Mail rdf:ID="Mail14582"> 

<object>presidentialvisit</object> 

<mail_num>14582</mail_num> 

</Mail> 

 

II.3.6. Relationships between properties:  

 

– owl:equivalentProperty: the two properties have the same extension, but are 

not identical. 

– owl:inverseOf: one property is the inverse of the other.  

<owl:ObjectProperty rdf:ID="child"> 

 <owl:inverseOf rdf:resource="#parent"/>  

</owl:ObjectProperty>  

Logical constraints:  

– owl:SymmetricProperty (husband)  

– owl:TransitiveProperty (ancestor) 

 

Exercise: Express the following expressions in Owl: 

 

1. Classes: Person, Man, Woman: (Man and Woman are Persons and Man and 

Woman are disjointed) 

2. A person has a name, age and nationality 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

46 

 

3. A person is the parent of another person 

4. A woman is a person's mother 

5. The parent class: instances of this class are parents of at least one person 

6. Class Father  

7. ClassMother  

8. Farid, 40, son of Ahmed, of Algerian nationality 

9. A herbivore is an animal that feeds mainly on plants, 

 

 

Exercises: Express the following expressions in Owl: 

 

1. Classes: Person, Man, Woman: (Man and Woman are Persons and Man and 

Woman are disjointed) 

 

<owl:Class rdf:ID=" Person"/> 

 

<owl:Class rdf:ID="Man "> 

<rdfs:subClassOf rdf:resource="# Person " />  

<  owl:disjointWith rdf: resource = " # Woman " /> 

</owl:Class> 

 

<owl:Class rdf:ID="Woman "> 

<rdfs:subClassOf rdf:resource="# Person " /> 

</owl:Class> 

 

2. A person has a name, age and nationality 

 

<owl: DatatypeProperty rdf:ID=" nom "> 

                                <rdfs:domain rdf:resource="# Personne" /> 

                                <rdfs:range rdf:resource="&xsd;String" /> 

</owl:DatatypeProperty> 

 

<owl: DatatypeProperty rdf:ID=" age "> 

                                      <rdfs:domain rdf:resource="# Personne" /> 

<rdfs:range rdf:resource="&xsd;Integer" /> 

</owl:DatatypeProperty> 

 

<owl: DatatypeProperty rdf:ID=" nationalité "> 

    <rdfs:domain rdf:resource="# Personne" /> 

<rdfs:range rdf:resource="&xsd;String" /> 

</owl:DatatypeProperty> 



Textual Knowledge Engineering 
Web Ontology Language  -OWL- 
 

 

 
 
 
 

 

47 

 

 

3. A man is a person's father 

<owl:ObjectProperty rdf:ID="fatherOf"> 

<rdfs:domain rdf:resource="# man " /> 

<rdfs:range rdf:resource="# Person " /> 

</owl:ObjectProperty>



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

48 

 

 

 

 

 

 

 

 

 

 

Chapter IV: Mapping 

and alignment of 

ontologies 

 

 

 

 

 



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

49 

 

I. Introduction  

Semantic interoperability between information sources is an important issue due to the 

increasing number of information sources available on the web. The user often faces several 

problems when trying to use independently developed ontologies, or when existing 

ontologies are adapted for new purposes.  

 

Incompatibilities between concepts in different ontologies can exist on two levels [17]: 

 

Level 1: Language incompatibility: Language-level incompatibilities occur when 

ontologies written in different ontology languages are combined. 

 

Level 2: Incompatibility at the ontology level:   For example : 

 

• Concept structuring: Concerns the difference in the design of ontologies, for 

example one person can use the concept “address” as a single entity while 

others can separate it over several entities: City , Street name (number) , 

House Number …  

• Synonymous terms: Multilanguage incompatibilities occur when using 

different synonyms for the same concept,  

Example : “house” and “home  .”; Human and Person , … 

• Homonymous Terms: This is called overlapping terminology. For example, 

“table” can be a piece of furniture or a list of information arranged in columns 

and rows. 

• Coding: incompatibilities occur when the Ontologies are built in different 

formats such as a date represented by “dd/mm/yyyy” or “dd-mm-yyyy”. 

 

Ontology mapping is seen as a promising solution for making heterogeneous systems 

and semantic web applications (where information is presented by ontologies) 

interoperable. 

 

II. Mapping: is the formal expression of a semantic relationship between two entities 

belonging to two different ontologies. Ontology mapping can be seen as a process that 

semantically links two different vocabularies. 

The result of the mapping process is called an alignment which represents the set of 

functions that connect the concepts of different ontologies.  There are six types of 

mapping cardinalities (1:1), (1:n), (n:1), (1:null), (null:1), and (n:m). For example: the 

entity "Name" corresponds to two entities "First name" and "Last name": 

 



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

50 

 

 

 

III. Alignment:  

An ontology alignment is a set of correspondences between the entities (classes, 

properties, predicates, etc.) forming ontologies. The alignment process called 

Matching is the action which allows  to find these correspondences which are relation 

such as equivalence (≡), subsumption (more general (⊇), more specific (⊆)) and 

disjunction (⋁). 

 

An alignment is described by a quintuple A: <id,e1,e2,r,n> such that:  

 

1. Id: unique identifier of an alignment,  

2.  e: an entity to align belonging to O (ontology 1): class, property, constraint, 

instance  

3. é: an entity to align belonging to O’ (ontology 2) 

4. r a relation linking e and é (=,⊑,⊥..)  

5. n: the confidence measure of the relationship r. 

 

The following figure shows an example of alignment of two ontologies: 

 

 

Fig 14: Example of alignment of two ontologies 

 



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

51 

 

IV. Steps in a mapping process 

 

The mapping process can be defined in a generalized way as being a series of steps 

illustrated in the following figure: 

 

 

Fig 15: Mapping Process [18] 

 

• Input: A pair of ontologies for which we want to establish alignment. It is 

possible to have an alignment at the start that helps find other alignments. 

• Features Selection  : the set of characteristics to be compared (for example, 

we can consider the labels of the concepts, the instances, etc.); The result of this 

step is the set of characteristics to be compared in the search and selection 

phases and calculation of similarity. 

• Search and selection: In this step, the choice of entities that will be taken 

into account. For example, we can compare all the entities of the source 

ontology with those of the target ontology or compare only similar entities 

(concepts with concepts, properties with properties, relations with relations or 

instances with instances ). The result of this step are the candidate entities for 

the similarity calculation. 

• Similarity calculation: this is a semantic similarity. In general, these 

measurements return values that belong to the interval [0,1]. The application 

of a single measurement produces an individual matching. 

• Similarity aggregation: The results produced in the previous phase (in the 

case of multiple matching) are aggregated using aggregation functions such as 

Max, Average, weighted sum, weighted product etc. 

• Interpretation: Interpretation uses individual or aggregated matching results 

to derive relevant alignments between entities. 

• Iteration: depending on the results obtained, we can decide to do another 

iteration in order to  refine the results obtained in the previous iteration 

 



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

52 

 

V. Alignment Approaches: 

 

There are several alignment approaches. The following example shows an approach to 

merging ontologies using the hierarchical concept classification technique 

 

 

Example : 

 

 

 

Hierarchical classification of concepts and construction of the SYN set: Use of a 

similarity measure to calculate the similarity between two concepts. Each class 

contains the synonymous concepts of the different ontologies 

SYN={ 

{F.Sciences, F.sciences, F.science}, {Person,Person,MAN}, 

{Department, Department, Department}, {Student, Student, Student}, 

{Teacher, Teacher, Teacher}, {Employee, Employee},{Course, 

Course},{Research,Research}, {Admin}, {Domain}} 

 

 

• Construction of the SYN set which contains the “Global” concepts (Maintain the 

link between new concepts and those of local ontologies.) 

 

SYNGlobal={F.Sciences, Person, Department, Student, Teacher, Employee, 

Course, Admin, Research, Domain} 

 

• For each ontology, we deduce the set SUBi of pairs (father, son) 

Course  Research 

Person 
Department  

Teacher  

 Student 



Textual Knowledge Engineering 
Mapping and alignment of ontologies 

 

 
 
 
 

 

53 

 

 
SUB2={(F.sciences, Person), (F.sciences,Department),(Person, Teacher),(Person,Student), 

(Department,Course), (Department, Research)} 

• SUBG: We merge the SUBi sets to have the total SUB set which contains all pairs of 

all ontologies. 

SUBG = {(F.sciences, Person), (F.sciences, Department), (Person, Employee), (Person, 

Student), (Department, Course), (Department, Research), (Employee, Admin.), (Employee, 

Teacher), (F.sciences, Person), (F.sciences,Department),(Person, Teacher), (Person,Student), 

(Department,Course), (Department, Research), (F.sciences , MAN), 

(F.sciences,Department),(F.sciences, Field), (Man, Employee), (MAN, Student), (MAN, 

Teacher) } 

 

• In the SUBG set, we replace each concept with the equivalent concept plus Global 

from the SYN set 

• Removal of redundant pairs in the SUB set 

SUBG = {(F.sciences, Person), (F.sciences, Department), (Person, Employee), (Person, 

Student), (Department, Course), (Department, Research), (Employee, Admin.), (Employee, 

Teacher), (Person, Teacher), (F.sciences, Field)} 

 

 

 



 

 
 
 
 

 

54 

 

GENERAL CONCLUSION 

 

 . 

 

 This handout highlights the crucial significance of knowledge representation. 

By examining ontologies, knowledge graphs, descriptive logic, and OWL, we gain 

valuable insights into structured methods for arranging and disseminating 

information. The mapping and alignment of ontologies is crucial for the integration of 

disparate data sources, thereby facilitating seamless communication between 

systems. 

         In general, mastering these concepts equips us with the capabilities to 

construct more intelligent systems capable of comprehending and utilizing intricate 

knowledge, ultimately propelling advancements in fields such as artificial 

intelligence, data science, and semantic web technologies. This fundamental 

knowledge is imperative for effectively addressing real-world challenges that 

necessitate efficient information sharing and collaboration.



Textual Knowledge Engineering 
Annex : Tutorial Practical 

 

 
 
 
 

 

55 

 

 

TP 1 :  

 

1. Downloaded the Pizza ontology:  (http://protege.stanford.edu/ontologies/ pizza/pizza.owl),  

2. Load it into Protégé  

3. Identify :  the main classes,  the properties and  the complex classes 

4. Check the consistency of the ontology and propose solutions to remove inconsistencies if 

there are any. 

 

TP2: 

The goal of this work is to design an ontology for e-Learning. 

This ontology allows: 

• to provide a conceptual vocabulary that can be shared between the community of 

teachers and students 

• to annotate and search for educational documents on a distance learning platform. 

 

Required work : 

• A report explaining the components of the proposed ontology (Concepts, intensions, 

relationships, etc.) 

• editing the ontology with “Protégé” or another Ontology editor 

 

 

 

 

 

 

 

 



Textual Knowledge Engineering 
Annex : Tutorial Practical 

 

 
 
 
 

 

56 

 

 

TP3 :  

The objective is  to build an that  aims to model art works. 

Specifications : 

• Classes :  

1. It contains three first-level classes: Artist, Collection and Work, disjoint from each 

other. 

2. Collection contains two disjoint subclasses Private and Museum. Any instance of 

Collection is necessarily an instance of one of these two subclasses.  

3. Work contains two subclasses Painting and Sculpture.  

• Properties (object properties) : 

1. The author property links a Work to one or more Artist(s) who created it.  

2. The creation property links an Artist to each of the Works he/she has created. 

3. The contains property links a Collection to each of the Works it contains.  

4. The collaborator property links two Artists each time they have created a Work 

together. In other words, an Artist has as collaborators the authors of his 

creations.  

5. Every Work has at least one author.  

6. Every Artist has at least one creation.  

7. Every Collection contains at least one Work.  

• Instances  

1. Louvre is an instance of Museum.  

2. Monalisa and Baptism are instances of Painting.  

3. grancavallo is an instance of Sculpture.  

4. Rachida-Haddad, Leonardo and Yerrocchio are instances of Artist.  

5. louvre contains monalisa; monalisa, grancavallo and baptism all have leonardo 

as author. baptism has verrocchio as author.  

• Defined Classes  

1. Anything that has created a Painting is a Painter.  

2. Anything that has created a Sculpture is a Sculptor.  

3. Anything that has created a Painting and something that is not a Painting is a 

PainterVersatile. 

4.  Any Collection that contains only Paintings is a Gallery 

Questions : 

Provide the DL query that answers to.  

• Q1: Is it possible to be both a Painter and a Sculptor? 

• Q2:  Is it possible to be an Artist without having created any Painting or Sculpture? 

• Q3: Is it possible for a Gallery to contain a Work whose author is a Sculptor?  

• Q4:  Is it possible for an Artist to have no collaborators?  



Textual Knowledge Engineering 
Bibliography 

 

 
 
 
 

 

57 

 

Bibliography 

• [1] Hans Muller & Christiaan Maasdorp (2011). The data, information, and 

knowledge hierarchy and its ability to convince. Research Challenges in Information 

Science (RCIS). 

• [2]  Dr. Roman & V Belavkin (2012). Lecture 1: Data, Information and Knowledge. 

Middlesex University, UK · 

• [3] J. M., & McElroy, M. W. (2003). Key issues in the new knowledge management. 

KMCI Press. 

•  [4] Jean Charlet, (2003). ‘knowledge engineering Developments, results and 

perspectives For medical knowledge management’ . Dissertation qualification for 

supervising research. 

• [5]  Dr. Roman & V Belavkin (2012). Lecture 8: Ontologies. Middlesex 

University, UK. 

• [6 ] Razika Driouche (2017), Towards Ontology Lifecycle: Building, Matching 

and Evolution to Semantically Integrate Application Ontologies, International 

Journal of Computer Applications Technology and Research ,Volume 6–Issue 2, 

109-116, 2017, ISSN:-2319–8656  

• [7]  https://perso.liris.cnrs.fr/amille/enseignements/DEA-

ECD/ontologies/construction_ontologie.htm    visited 17.11.2023 

• [8] Extensible Markup Language (XML) 1.0 , W3C Recommendation 10-Feb-98 

• [9] https://www.w3.org/TR/rdf-schema/ visited 07.09.2023 

• [10]P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, Knowledge graphs: new 

directions for knowledge representation on the Semantic Web (dagstuhl 

seminar 18371). Dagstuhl Rep. 8(9), 29–111 (2019) 

• [11] Hollunder, B., & B. R. (1999). Description Logics: An Overview. In 

Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 4). 

• [12]Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, 

P. F. (2003). The Description Logic Handbook: Theory, Implementation, and 

Applications. Cambridge University Press. 

• [13] Markus Krötzsch and all ,(2013), Description Logics, University of Oxford, 

UK. 

• [14] Leif Harald Karlsen,(2015) Description Logic 1: Syntax and Semantics. 

• [15] https://www.w3.org/TR/owl-ref/ visited 2.3. 2023 

• [16] https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf  

visited 2.3. 2023 

• [17] Jérôme Euzenat, (2007) , Introduction to ontology matching and 

alignment, Montbonnot, France. 

• [18]  Helen L  And All ,(2007), A Fault Model For Ontology Mapping, 

Alignment, And Linking Systems, Pacific Symposium On Biocomputing 12:233-

268 

https://perso.liris.cnrs.fr/amille/enseignements/DEA-ECD/ontologies/construction_ontologie.htm
https://perso.liris.cnrs.fr/amille/enseignements/DEA-ECD/ontologies/construction_ontologie.htm
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/
https://iaoa.org/isc2012/docs/Guarino2009_What_is_an_Ontology.pdf

