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Preamble

The study of thermodynamics transcends mere scienti�c curiosity; it holds
fundamental importance in understanding and shaping our world. This cor-
nerstone module equips you with the knowledge to unlock the mysteries of
energy and its transformations, o�ering a profound perspective on the very
dynamics that govern our physical universe.

Thermodynamics delves into the intricate dance of energy transfer and
conversion. By unraveling the principles of heat, work, and energy �ow,
it empowers scientists and researchers to gain deep insights into natural
phenomena, from the behavior of substances under varying conditions to the
intricate workings of mechanical systems. This knowledge forms the very
bedrock of engineering and physics, driving advancements in diverse �elds
like energy production, environmental science, and mechanical engineering.

But the power of thermodynamics extends far beyond mere comprehen-
sion. It serves as a springboard for innovation, fueling the development of
sustainable energy technologies and groundbreaking engineering solutions.
By harnessing the principles of energy conservation and entropy, we can de-
sign e�cient and sustainable systems and processes. This empowers us to
create a better future, from developing renewable energy sources to optimiz-
ing industrial processes for minimal environmental impact.

This tutorial booklet serves as your trusted companion on your journey
into the fascinating world of thermodynamics. It's speci�cally designed for
students embarking on their �rst years in science and technology programs,
mechanical engineering, or environmental science and chemical engineering.
Additionally, it proves valuable for preparatory school students and those
seeking a solid foundation in energy principles.

The exercises and problems meticulously chosen from various universities
in Western Algeria and renowned textbooks provide a practical learning ex-
perience. The manual, meticulously structured around the curriculum estab-
lished by the Algerian Ministry of Higher Education and Scienti�c Research,
ensures a comprehensive and consistent learning journey.
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Each chapter is thoughtfully crafted to begin with a concise review of key
concepts, ensuring a strong foundation for tackling the problems that follow.
The appendix provides all necessary data and constants, arming you with
the tools you need to succeed. The selection and quantity of exercises are
carefully balanced, employing both objective-based and competency-based
approaches to cater to diverse learning styles and maximize your understand-
ing.
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Introduction

Studying thermodynamics is of signi�cant importance for engineers across
various disciplines. Here are several reasons why the study of thermodynam-
ics is crucial for engineers:

1. Understanding Energy Conversion: Thermodynamics is the study of
energy and its transformations. Engineers often work with systems that
involve the conversion of energy from one form to another. Whether it's
designing engines, power plants, or electronic devices, a solid understanding
of thermodynamics is essential for optimizing energy conversion processes.

2. E�ciency Improvement: Engineers aim to design systems and pro-
cesses that are e�cient. Thermodynamics provides the principles and tools
to analyze and optimize the e�ciency of various engineering systems. This
is critical in �elds such as mechanical engineering, chemical engineering, and
electrical engineering.

3. Heat Transfer Applications: Many engineering systems involve heat
transfer, whether it's for heating or cooling purposes. Thermodynamics pro-
vides the foundation for understanding heat transfer mechanisms and design-
ing systems to manage heat e�ectively. This is crucial in �elds like HVAC
(heating, ventilation, and air conditioning) systems, thermal management in
electronics, and more.

4. Combustion and Propulsion Systems: For engineers working in aerospace,
automotive, or marine industries, a deep understanding of thermodynamics
is necessary. It's crucial for designing combustion engines, jet propulsion sys-
tems, and other forms of propulsion where the conversion of chemical energy
to mechanical work is involved.

5. Material Selection and Behavior: Thermodynamics is also relevant in
materials engineering. Engineers need to understand how materials behave
under di�erent temperature and pressure conditions. This knowledge is vital
for selecting appropriate materials for speci�c applications and ensuring the
reliability and safety of structures.

6. Environmental Considerations: As sustainability becomes a more sig-
ni�cant concern, thermodynamics plays a role in understanding and minimiz-
ing the environmental impact of engineering processes. This includes con-
siderations related to energy e�ciency, waste heat recovery, and the overall
ecological footprint of engineering systems.
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7. Problem-Solving Skills: Thermodynamics involves complex mathe-
matical and conceptual challenges. Studying thermodynamics helps engi-
neers develop strong problem-solving skills that can be applied across vari-
ous engineering disciplines. The ability to analyze and solve thermodynamic
problems is a valuable skill for engineers in their professional careers.

In summary, thermodynamics provides the fundamental principles and
tools necessary for engineers to analyze, design, and optimize a wide range
of systems, making it a cornerstone of engineering education.
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Chapter 1

Generalities on
Thermodynamics

Thermodynamics is a fascinating branch of physics that studies the relation-
ships between heat, work, temperature, and energy. It governs how energy
�ows and transforms, dictating the possibilities and limitations of everything
from steam engines to refrigerators to the stars themselves.

Here's a brief overview of some key concepts in thermodynamics:
1. Systems and surroundings:

◦ System: Any part of the universe we choose to focus on for our study.
It can be a simple gas con�ned in a piston-cylinder, a complex chemical
reaction, or even an entire galaxy. (Image of a piston-cylinder system)
◦ Surroundings: Everything outside the system. It can exchange en-

ergy with the system in the form of heat, work, or matter. (Image of heat
transfer between a system and its surroundings)

2. Energy and its forms:

◦ Energy: The ability to do work. It exists in various forms, including:
• Thermal energy: Associated with the temperature of a system. (Image
of thermal energy transfer)
• Mechanical energy: Associated with the motion of an object. (Image
of mechanical energy transfer)
• Chemical energy: Stored in the bonds of molecules. (Image of chemical
energy transfer)
• Electromagnetic energy: Carried by light and other waves. (Image of
electromagnetic energy transfer)
3. Laws of thermodynamics:

◦ First law: Energy cannot be created or destroyed, only transferred or
transformed. In simpler terms, the total energy of a closed system remains
constant. (Image of the �rst law of thermodynamics)
◦ Second law: Entropy, a measure of disorder, always increases in a

closed system over time. This means that processes tend to move towards
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greater randomness and less usable energy. (Image of the second law of
thermodynamics)
◦ Zeroth law: Two systems in thermal equilibrium with a third system

are in thermal equilibrium with each other. This allows us to de�ne and
measure temperature. (Image of the zeroth law of thermodynamics)

4. Applications:

Thermodynamics has countless applications in various �elds, including:
◦ Engineering: Design of e�cient engines, power plants, and refrigera-

tion systems. (Image of a power plant)
◦ Chemistry: Understanding chemical reactions and predicting their

feasibility. (Image of a chemical reaction)
◦ Cosmology: Studying the evolution of stars and galaxies. (Image of

a galaxy)
◦ Biology: Understanding energy �ow in living organisms. (Image of

energy �ow in a cell)
This is just a glimpse into the vast and fascinating world of thermo-

dynamics. I encourage you to explore further and delve deeper into this
fundamental science that governs the universe around us.

Remember, these are just some basic concepts. As you delve deeper
into thermodynamics, you'll encounter more complex ideas and applications.
But hopefully, this brief overview has given you a starting point for your
exploration!

12



1.1 Introduction

Thermodynamics (from the Greek "Thermos" meaning heat and "Dunamis"
meaning power) is a science that focuses on the study of energy transforma-
tions in various forms (chemical, nuclear, mechanical, thermal, etc.), espe-
cially the conversion of heat into work and vice versa.

The emergence of thermodynamics is attributed to the development of
steam engines in the 2nd century, marking the transformation of heat into
usable work. It plays a crucial role in numerous �elds such as chemistry,
chemical engineering, biology, physics, biochemistry, and thermal machines
(engines, heat pumps, etc.). In chemistry, it holds signi�cance as it explores
the energy balance of chemical reactions and addresses topics central to
modern chemistry, such as the study of reactions at equilibrium.

The system evolves through changes in easily measurable parameters
such as temperature, pressure, volume, and chemical composition. Thermo-
dynamics investigates the exchange of matter and energy between a material
medium known as the "system" and its surrounding environment referred to
as the "external."

Classical thermodynamics only involves macroscopic, experimentally mea-
surable quantities such as temperature, pressure, volume, and composition.
The principles of thermodynamics facilitate the integration of this science
with mathematics, incorporating mathematical concepts like di�erentials.

1.2 Mathematical Concepts

1.2.1 Di�erential of a function with one variable

Let f be a function with a single variable x (f(x)), the di�erential of this
function is:

df =

(
∂f

∂x

)
dx

1.2.2 Function with several variables. Partial derivatives

The partial derivative of the function f with respect to x is:
(
∂f
∂x

)
y

It is the ordinary derivative of f with respect to x, assuming that y is
constant.

The partial derivative of the function f with respect to x is:
(
∂f
∂x

)
x

1.2.3 Function with several variables. Total derivatives

Let f be a function of several variables. For three variables, it is denoted by
f(x, y, z); the total di�erential of f is de�ned as:
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df =
(
∂f
∂x

)
y,z
dx+

(
∂f
∂y

)
x,z
dy +

(
∂f
∂z

)
x,y
dz

The functions denoted as ∂f
∂x ,

∂f
∂y , and

∂f
∂z are the partial derivatives of f with

respect to x, y, and z, respectively.

1.2.4 Di�erential of a state function (Second cross partial
derivative)

As the second derivatives of state functions are continuous, when calculating
a second cross partial derivative, the result is independent of the order in
which the derivative is taken. Let f be a state function with two variables:

∂2f

∂x∂y
=

∂2f

∂y∂x

1.3 De�nitions of Thermodynamic Systems and the
External Environment:

Concept of a System:

In thermodynamics, the object under study is referred to as a "system."
By de�nition, a system Ω is a part of the universe with a speci�ed mass,
delimited by a closed surface. It is composed of a large number of con-
stituents or elements (atoms, molecules, ions, etc.). The rest of the universe
constitutes the external environment.

The combination of the system and the external environment forms the
entirety of the Universe.

A system can undergo exchanges with the external environment in the
form of energy (thermal or heat Q and work W) or matter. The energies
exchanged with the external environment will be positive when received by
the system and negative otherwise. A system can be open, closed, or isolated.

1.3.1 Open System

An open system is a system in which both matter and energy can be ex-
changed with the external environment.

Examples:
- Boiling water in a beaker.
- Living organisms are open systems.

1.3.2 Closed System

A closed system is a system that exchanges only energy with the external
environment and does not exchange matter.

Example:
- The gas contained in a cylinder closed by a piston is a closed system.
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1.3.3 Isolated System

An isolated system is a system that cannot exchange either matter or energy
with the external environment.

Examples:
- The universe is an isolated system.
- Thermos
- Calorimeter

Figure 1.1: Types of Thermodynamic System

1.4 Description of a Thermodynamic System

1.4.1 State of a Thermodynamic System

A system, before undergoing a transformation, exists in a certain state. The
state of a system at a given moment is described by a set of macroscopic
properties, such as temperature, volume, pressure, density, viscosity, ther-
mal and electrical conductivity, mass, concentration, density, molar quantity,
partial pressure, etc. All these properties are referred to as state variables.

1.4.2 State Variables (Parameters or Quantities)

The state of a system at a given moment is de�ned by a set of macroscopic
variables known as "state variables." The state variables characterizing a
system include temperature (T ), pressure (P ), volume (V ), mass (m), con-
centration, density, molar quantity (n), and partial pressure. In thermody-
namics, the state variables are T , P , and V . They are divided into two
types:

15



1.4.2.1 Extensive Variables

Extensive variables are proportional to the quantity of matter.
Example: Mass, volume, etc.

1.4.2.2 Intensive Variables

Intensive variables are independent of the quantity of matter.
Example: Temperature, pressure, density, etc.

1.4.3 State Function

State variables are not always independent; some of them may be related
by equations known as equations of state or state functions of the form:
f(p, V, T ) = 0. These are mathematical relationships. The most well-known
examples include:

• The equation of state for an ideal gas: pV = nRT ;

• The Van der Waals equation for n moles of gas.

(P + n2 a

V 2
)(V − nb) = nRT

The variation of a state function depends only on the initial and �nal
states of the system and not on how the modi�cation is carried out.

1.4.4 Equilibrium State

A system is said to be in a thermodynamic equilibrium state if all its state
variables remain constant over time, and there is no transfer of matter and
energy (isolated system).

1.4.4.1 Mechanical Equilibrium

The resultant forces acting on the system are zero (P = Pe).

1.4.4.2 Thermal Equilibrium

The temperature of the system is uniform (the temperature is the same at
every point and does not change over time, i.e., T = Te).

1.4.4.3 Chemical Equilibrium

No variation in the composition of the system.
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1.5 Transformations of the state of a system

A transformation of a thermodynamic system is the transition from an initial
equilibrium state 1 to another �nal equilibrium state 2. This transformation
involves changes in one or more state variables, leading to an exchange of
energy in the form of heat (Q) and work (W) with the external environment.
Various types of transformations are distinguished :

1.5.1 Isothermal Transformation

The transformation of a system that occurs at a constant temperature T1 =
T2 (the temperature of the �nal state T2 is equal to the temperature of the
initial state T1 is called an isothermal transformation. Isothermal transfor-
mations can occur through compression or expansion.

1.5.2 Isobaric Transformation

This is a transformation that occurs at a constant pressure P1 = P2 (the
pressure of the �nal state P2 is equal to the pressure of the initial state P1).

1.5.3 Isochoric Transformation

The transformation of a system is isochoric if it is carried out at constant
volume V1 = V2 (the volume of the �nal state V2 is equal to the volume of
the initial state V1).

1.5.4 Adiabatic Transformation

The transformation is adiabatic if it occurs without the exchange of heat
with the external environment (Q = 0). Therefore, the system is said to be
thermally isolated.

17



Figure 1.2: Adiabatic expansion

Figure 1.3: Adiabatic compression
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Figure 1.4: Isochoric transformation

Figure 1.5: Isobaric transformation
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Figure 1.6: Transformation States Diagram

1.5.5 Open Transformation

An open transformation is a transformation where the �nal state of the
system is di�erent from the initial state.

Figure 1.7: Open Transformation Diagram
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1.5.6 Closed (Cyclic) Transformation

A closed transformation is a transformation where the �nal state of the
system is identical to the initial state.

Figure 1.8: Closed (Cyclic) Transformation Diagram

1.5.7 Spontaneous Transformation

It is a transformation that does not require energy from the external envi-
ronment to occur.

Example: acid-base reaction

1.5.8 Non-Spontaneous Transformation

It is a transformation that requires energy from the external environment.
Example: water vaporization

1.5.9 Mono-thermal Transformations

The system is in contact with only one heat source, which enforces equality
between the initial and �nal temperatures of the system.

1.5.10 In�nitesimal Transformation

A transformation is called in�nitesimal when the initial and �nal equilibrium
states are in�nitely close.

1.5.11 Quasi-Static Transformation

A transformation of a system is quasi-static if the system is at every instant
in�nitely close to an internal equilibrium state.
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1.5.12 Reversible Transformation

A transformation is called reversible (or ideal) if it satis�es two conditions:

• It must be in�nitely slow.

• It must be reversible, i.e., it occurs in both directions (from A −→ B
and similarly in the opposite direction, B −→ A). In a reversible trans-
formation, the system evolves through a series of closely spaced equi-
librium states. This assumes the absence of friction, di�usion (mass
transfer), and system inhomogeneity (heat transfer). These phenom-
ena are the causes of the irreversibility of the system.

For example, a gradual heating or cooling of a system by coming into contact
with an in�nite number of heat sources (T = T + dT , etc.).

Figure 1.9: Reversible Transformation Diagram

1.5.13 Irreversible Transformation

An irreversible transformation is a real transformation that does not go
through a series of equilibrium states; hence, it cannot be described in both
directions. It is a rapid (abrupt) transformation.

Example: life processes, explosive reactions.
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Figure 1.10: Irreversible Transformation Diagram

1.6 Graphical Representation of Ideal Gas Trans-
formations

1.6.1 Ideal Gases

A gas is considered ideal if it is subjected to low pressure at room temper-
ature. At low pressure, the Van der Waals forces are negligible, suggesting
that the shape of atoms and molecules is spherical.

The ideal gas is a theoretical model based on the following assumptions:

• There is no interaction between molecules (molecules are far apart).

• Molecules are treated as point masses.

• Collisions between molecules or with the walls of the container are
perfectly elastic.

The behavior of an ideal gas is described by the equation: PV = nRT
where:

• P : pressure of the gas

• V : volume occupied by the gas

• n: number of moles of gas

• T : temperature in Kelvin

R: constant = 0.082 L.atm.mol−1 K−1 = 8.314 J.mol−1 K−1 = 1.987
cal.mol−1 K−1.
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1.6.2 Clapeyron Diagram: P = f(V ) in the (P, V ) plane

The Clapeyron diagram is a graph representing the evolution of transforma-
tions at constant temperature. In this diagram, pressure (P) is plotted on
the ordinate axis, and volume (V) is plotted on the abscissa axis.

1.6.3 Amagat's Diagram: pV = f(p) in the (pV, p) plane

Amagat's diagram is a thermodynamic graph that represents, at constant
temperature, the variation of the product of pressure (P) and volume (V) as
a function of pressure. It can also depict the evolution of the compressibility
factor as a function of pressure. This diagram is named after the French
physicist Émile Amagat. Amagat's diagram is used to graphically represent
the deviation in behavior of a real gas compared to an ideal gas.

1.7 Review of the Laws of Ideal Gases

1.7.1 Boyle's Law (Mariotte's Law)

In 1662, Robert Boyle and Edme Mariotte demonstrated that the product of
the pressure P of a gas by its volume V depends only on the temperature. It
was stated that at constant temperature (T = Constant), the pressure P of

a given mass m of gas is inversely proportional to its volume V (P =
nRT

V
).

The product P · V remains constant. When the gas is taken between two
states, the equation is expressed in the form:

P1V1 = P2V2 = nRT = Constant

1.7.1.1 Gay-Lussac's Law

In 1800, Louis Joseph Gay-Lussac demonstrated that at constant pressure
(P = Constant), the volume occupied by a speci�c quantity of an ideal gas
is proportional to the absolute temperature.

V

T
= nRT ⇒ V1

T1
=
V2

T2
= nRT = Constant
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Figure 1.11: Gay-Lussac's Law Diagram

1.7.2 Charles's Law

For a given mass of gas at constant volume (V = Constant), the pressure P

of the gas is directly proportional to its absolute temperature T (P =
nRT

V
).

P

T
= nRT ⇒ P1

T1
=
P2

T2
= nRT = Constant

Figure 1.12: Charles's Law Diagram

1.7.3 Dalton's Law

Dalton's Law, or the law of partial pressures, is a thermodynamic law formu-
lated by John Dalton in 1801. This law states that the pressure of a mixture
of ideal gases is equal to the sum of the partial pressures of its components.
It is named in honor of John Dalton.

For a mixture of gases assumed to be ideal with the total number of
moles n where:
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n =
∑
i

ni ⇒ n = n1 + n2 + n3 + ......+ nk

The law of ideal gases applied to this mixture is expressed in the form:

PV = nRT ⇒ P =
nRT

V
⇒ P =

n1 + n2 + n3 + ...nk
V

This equation is thus presented in the following form:

P =
n1RT

V
+
n2RT

V
+
n3RT

V
+ ...+

nkRT

V

The terms that make up this pressure are merely forms of pressure known
as partial pressures of the gas, with:

Pi =
niRT

V

The total pressure is therefore: P =
∑

i Pi
The ratio between partial pressure and total pressure represents the molar

fraction of the gas.

Pi
P

=

niRT

V∑
niRT

V

=
n∑
ni
⇒ Pi

P
= χi

Pi = Pχi

This is Dalton's law with χi representing the molar fraction.
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Exercise 1:

The following �gure represents the three main temperature scales:

Figure 1.13: The three main temperature scales

1- Complete this �gure. Explain, knowing that the transformation from
one scale to another is linear.

2- What is the temperature in ◦C of a healthy person with 98.6◦F?
3- At what temperature will the thermometer graduated in ◦F and the

thermometer graduated in degrees Celsius indicate the same value? What is
this temperature in Kelvin?

Solution:

We have the linear relationship :θ = ax+ b
The relationship between the Kelvin sclae and the Celsius sclae:

T (K) = a · T (◦C) + b⇒
{

273.15 = a · 0 + b;
373.15 = a · 100 + b.

We solve the system of two equations and �nd :
T (K) = T (◦C) + 273.15 or T (◦C) = T (K)− 273.15
The relationship between the Celsius scale and the Fahrenheit scale :

T (◦C) = a · T (◦F ) + b⇒
{

0 = a · 32 + b;
100 = a · 212 + b.

After solving the two equations, we �nd that :
T (◦C) = 10

18T (◦F )− 320
18 or T (◦F ) = 1.8T (◦C) + 32

The relationship between the Fahrenheit scale and the Kelvin scale :

T (◦F ) = a · T (◦K) + b⇒
{

32 = a · 273.15 + b;
212 = a · 373.15 + b.

After solving the two equations, we �nd that :
T (◦F ) = 1.8T (K)− 459.67 or T (K) = 10

18T (◦F ) + 255.37
Calculating the temperature in ◦C corresponding to T = 98.6 ◦F
T (◦C) = 10

18T (◦F )− 320
18 ⇒ T (◦C) = 10

18 · 98.6− 320
18 ⇒ T (◦C) = 37◦C
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Calculating the temperature when T (◦C) = T (◦F )
We use the relationship :
T (◦C) = 10

18T (◦F )− 320
18

⇒ T (◦C) = 10
18T (◦C)− 320

18
⇒ T = −40◦C = −40◦F
T (K) = T (◦C) + 273.15
⇒ T (K) = −40 + 273.15
⇒ T (K) = 233.15K
Exercise 02:

Provide the dimensions of the ideal gas constant (R) and determine its
value when expressed in:

1. L · atmmol−1 ·K−1

2. J/mol−1 ·K−1

3. L ·mmHgmol−1 ·K−1

4. Cal/mol−1 ·K−1

Solution:

Provide the dimensions of the ideal gas constant (R) and determine its
value when expressed in:

1. L · atmmol−1 ·K−1

The ideal gas constant R has the dimensions of volume pressure divided
by temperature times the amount of substance. Its value when expressed in
liters, atmospheres, moles, and kelvin (L · atmmol−1 ·K−1) is approximately
0.0821.

2. J/mol−1 ·K−1

To convert from L·atmmol−1·K−1 to J/mol−1·K−1, we use the conversion
factor 1 atm = 101.325 kPa and 1L = 0.001m3. Thus, R = 8.314 J/mol−1 ·
K−1.

3. L ·mmHgmol−1 ·K−1

To convert from L · atmmol−1 ·K−1 to L ·mmHgmol−1 ·K−1, we use the
conversion factor 1 atm = 760mmHg. Thus, R = 62.36L·mmHgmol−1 ·K−1.

4. Cal/mol−1 ·K−1

To convert from L · atmmol−1 · K−1 to Cal/mol−1 · K−1, we use the
conversion factor 1 J = 0.239 cal. Thus, R = 1.987Cal/mol−1 ·K−1.

Exercise 03:

It is found that a mass of 0.896 g of a gaseous compound containing
only nitrogen and oxygen occupies a volume of 524 cm3 at a pressure of 730
mm Hg and a temperature of 28◦C. What is the molar mass and chemical
formula of this compound?

Solution :

Given: Mass of the compound NxOy, m = 0.896 g Volume of the com-
pound, V = 524 cm3 Pressure, P = 730 mm Hg Temperature, T = 28◦C =
28 + 273.15 K

The molar mass of the compound : M =
m

n

28



We assume that this compound is an ideal gas; we apply the ideal gas

law : PV = nRT ⇒ n =
PV

RT
We substitute the number of moles (n) into the molar mass relation, and

we �nd :

M =
mRT

PV
=

0.869 · 63.36

730 · 524 · 10−3
= 43.97g/mol

The molar mass of the compound NxOyis M = 14x + 16y = 43.97 g/mol
With x and y being integers, the suitable pair is x = 2 and y = 1.
Therefore, the chemical formula is: N2O
Exercise 04:

A gas mixture consists of 0.2 g of H2, 0.21 g of N2, and 0.51 g of NH3 at
a pressure of one atmosphere and a temperature of 27◦C. Calculate:

1. The mole fractions.
2. The partial pressure of each gas.
3. The total volume.
Data: M(H) = 1 g·mol−1 and M(N) = 14 g·mol−1.
Solution :

Given:

• Mass of hydrogen (H2), mH2 = 0.2 g

• Mass of nitrogen (N2), mN2 = 0.21 g

• Mass of ammonia (NH3), mNH3 = 0.51 g

• Pressure, P = 1 atm

• Temperature, T = 27◦C = 27 + 273.15 K

• Molar mass of hydrogen, M(H) = 1 g/mol

• Molar mass of nitrogen, M(N) = 14 g/mol

To �nd:

1. Mole fractions of each gas.

2. Partial pressure of each gas.

3. Total volume of the gas mixture.

1. Mole fractions:

The number of moles of each gas can be calculated using the formula:

ni =
mi

Mi

where mi is the mass of gas i and Mi is its molar mass.
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For hydrogen:

nH2 =
0.2 g

1 g/mol
= 0.1mol

For nitrogen:

nN2 =
0.21 g

28 g/mol
≈ 0.0075mol

For ammonia:

nNH3 =
0.51 g

17 g/mol
≈ 0.03mol

The total number of moles, ntotal, is the sum of the moles of each gas:

ntotal = nH2 + nN2 + nNH3 = 0.1375mol

Mole fraction (Xi) of each gas is given by:

Xi =
ni

ntotal

The mole fraction of H2 is XH2 =
0.1

0.1375
= 0.727

The mole fraction of N2 is XN2 =
0.0075

0.1375
= 0.055

The mole fraction of NH3 is XNH3 =
0.03

0.1375
= 0.218

Calculate Xi for each gas using the calculated moles.
2. Partial pressures:

Partial pressure (Pi) of each gas is given by the formula:

Pi = Xi · Ptotal

where Ptotal is the total pressure of the gas mixture.
Calculate Pi for each gas using the calculated mole fractions and the

given total pressure (Ptotal = 1 atm).
3. Total volume:

The ideal gas law states:

PV = nRT

We rearrange it to �nd the total volume (V ) of the gas mixture:

V =
ntotalRT

Ptotal

Substitute the values of ntotal, R, T , and Ptotal to calculate V .
Perform the calculations for each part to �nd the answers.
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Exercise 05:

Consider a mass of 80 g of a gaseous mixture of nitrogen and methane,
consisting of 31.14% by weight of nitrogen and occupying a volume of 0.995
liters at 150◦C.

1. Calculate the total pressure of the gas mixture.
2. Calculate the partial pressures of each gas.
Solution :

Given:

• Mass of the gaseous mixture, m = 80 g

• Nitrogen content by weight, wN2 = 31.14%

• Volume of the gas mixture, V = 0.995 L

• Temperature, T = 150◦C = 150 + 273.15 K

We are asked to:

1. Calculate the total pressure of the gas mixture.

2. Calculate the partial pressures of each gas.

1. Total pressure of the gas mixture:

We'll �rst calculate the number of moles of nitrogen (nN2) and methane
(nCH4) in the mixture.

Given that the mixture is 31.14% nitrogen by weight, we can calculate
the mass of nitrogen (mN2) as:

mN2 = 0.3114× 80 g = 24.912 g

To �nd the number of moles of nitrogen, we use its molar mass MN2 =
28 g/mol:

nN2 =
mN2

MN2

=
24.912 g
28 g/mol

≈ 0.889mol

The mass of methane (mCH4) can be calculated as the di�erence between
the total mass and the mass of nitrogen:

mCH4 = 80 g− 24.912 g = 55.088 g

To �nd the number of moles of methane, we use its molar mass MCH4 =
16 g/mol:

nCH4 =
mCH4

MCH4

=
55.088 g
16 g/mol

≈ 3.443mol

The total number of moles of the gas mixture is the sum of the moles of
nitrogen and methane:

ntotal = nN2 + nCH4
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Now, we can use the ideal gas law to �nd the total pressure (Ptotal) of
the gas mixture:

PV = nRT

PtotalV = ntotalRT

Ptotal =
ntotalRT

V

Substitute the given values for V , T , and the gas constant R = 0.0821L ·
atm/mol ·K to calculate Ptotal.

Ptotal = 151.049 atm

2. Partial pressures of each gas:

Once we have the total pressure (Ptotal), we can use the mole fractions
of nitrogen and methane to calculate their partial pressures.

The mole fraction of nitrogen (XN2) is given by:

XN2 =
nN2

ntotal

Similarly, the mole fraction of methane (XCH4) is given by:

XCH4 =
nCH4

ntotal

Now, the partial pressure (Pi) of each gas is given by:

Pi = Xi · Ptotal

Calculate PN2 and PCH4 using their respective mole fractions and the
total pressure.

Perform the calculations to �nd the answers for each part.
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Chapter 2

Exchanged Energies (Heat and
Work) and Calorimetry

Exchanged Energies: Heat and Work

Energy is never lost or created, it only transforms! Understanding how
energy changes form is crucial in various �elds, from physics and chemistry to
biology and engineering. We encounter two main forms of energy exchange:
heat and work. Heat is transferred between objects at di�erent temperatures.
Imagine a hot cup of co�ee next to a cold ice cube. Heat �ows from the co�ee
(higher temperature) to the ice cube (lower temperature) until they reach
thermal equilibrium (same temperature). This �ow of thermal energy is
what we call heat.

Work involves a force acting through a distance. For example, lifting a
book against gravity requires work. The energy used to do this work can be
converted into other forms, like heat. Imagine rubbing your hands together.
The friction generates heat due to the work done by the force of your rubbing
against each other.

Calorimetry is the science of measuring heat. Calorimeters are instru-
ments designed to isolate a system and measure the heat exchanged during a
process. They often involve containers with good thermal insulation to min-
imize heat loss to the surroundings. By measuring the temperature changes
and masses of the substances involved, we can calculate the amount of heat
transferred.
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2.1 Notion of temperature

2.1.1 Thermometry

Thermometry is the �eld of measuring temperature using instruments called
thermometers. If the thermometer is in thermal equilibrium with the body
whose temperature we want to measure, the temperature measured by the
thermometer is that of the considered body. The temperature, denoted as
T, is a macroscopic quantity that measures the degree of heat in a system.
From a microscopic point of view, it represents the "motion" or agitation of
molecules and atoms within the considered system.

2.1.2 The zeroth law of thermodynamics

The zeroth law states that two bodies A and B, when brought into contact,
tend towards a state of thermal equilibrium. They are thus characterized by
the same temperature. Two bodies in thermal equilibrium with a third are
in thermal equilibrium with each other.

Figure 2.1: Thermal equilibrium

2.1.3 Centesimal Scale

The centesimal scale is a linear scale de�ned by the thermodynamic function:

t = aX + b (2.1)

Where a and b are determined by two �xed points, de�ned as follows:
- When the thermometer is in melting ice under normal atmospheric

pressure (1 atm), the temperature is t = 0,
- When the thermometer is in boiling water vapor under normal atmo-

spheric pressure, the temperature is t = 100.
If we designate by: t, t0, and t100 the thermometric values corresponding

to temperatures t, 0, and 100, respectively, the relation 2.1 is then written
as follows :

0 = aX0 + b (2.2)
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100 = aX100 + b (2.3)

Then we deduce :

a =
100

X100 −X0
and b = 100

−X0

X100 −X0
When we substitute a and b into relation 2.1, it follows that :

t =
100(X −X0)

X100 −X0
⇒ t =

100

X100 −X0
X +

100

X0 −X100
X0

Celsius Scale

The Celsius scale, denoted as ◦C, with reference points 0 and 100 corre-
sponding respectively to the melting point and boiling point of water under
atmospheric pressure. This scale was developed by the Swedish astronomer
Anders Celsius (1701�1744).

2.1.4 Kelvin Absolute Scale

This is the universal scale also known as the Kelvin degree, denoted as K,
the "SI unit of temperature." This scale was proposed by Lord Kelvin (1824-
1907), where the lower temperature corresponds to absolute zero, which is
-273.15 ◦C.

The relationship between the Kelvin scale and the Celsius scale is given
by the relation:

The relation de�nes the absolute temperature scale (K) in kelvin in terms
of Celsius as follows :T (K) = T (◦C) + 273.15.

Denoted as ◦F, on this scale, the temperature of the melting and boiling
points of water under atmospheric pressure are 32 ◦F and 212 ◦F, respec-
tively. The relationship between the Celsius and Fahrenheit scales is given
by the expression: T (◦F ) = 1.8T (◦C) + 32.

However, the relationship between the Kelvin and Fahrenheit scales is:
T (◦F ) = 1.8T (K)− 460.3

2.1.5 Operating Principle of a Thermometer

When thermal equilibrium is established following temperature variations
between two bodies, several physical phenomena related to the functioning
mode of the used thermometer can occur, namely:

� Expansion of a liquid (volume change): alcohol thermometers, mercury
thermometers

� Change in electrical resistance (R): Resistance thermometer, thermistor
(Platinum resistors usable between 200 to 630 ◦C and semiconductor
resistors in Germanium (Ge) for T < 77 K)

� Emission of radiation (radiated energy E): optical pyrometers (Optical
pyrometers above 1063 ◦C)
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� Variation in potential di�erence between two metals: Thermocouple, ex-
ample: Pt�Pt rhodium (Thermocouples based on the Seebeck e�ect
from 600 to 1300 ◦C)

For each thermometric quantity x, there is an associated temperature
change ∆T .

2.2 Pressure

Pressure, denoted as P, is de�ned as the pressing force dF exerted by a �uid

in equilibrium on a surface element dS : P =
dF

dS
dF is normal to the surface element dS.
From a microscopic perspective, pressure is solely due to the collisions

of molecules or atoms on the system's walls. The unit of pressure in the
International System of Units (SI) is the Pascal (Pa).

Pa =
N

m−3

1 atm = 1.013 · 105Pa = 1.013 bar = 760 mmHg = 760Torr

2.3 Concept of Heat and Work

During a transformation, a system can exchange energy with the external
environment in the form of heat and mechanical work.

2.3.1 Work of Pressure Forces (W)

Work is another form of energy (mechanical energy) required to move or
deform a body.

On a microscopic scale, it is an energy exchanged in an orderly manner
(thanks to displacement, for example, of a piston that imparts a certain
direction to the atoms).

Mechanical work results from a change in the volume of the deformable
(non-rigid) system due to the pressure forces acting on that system.

Work is not a state function; it depends on the path taken.
Consider a system contained in a cylinder closed by a piston. Apply a

pressure force to the piston.
The work done on a piston (2.2 is the force (F) multiplied by the dis-

placement (dy):

dW = Fext dy

Pressure is :
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P =
F

S
=⇒ F = P · S

dW = Pext · S dy

The volume of the cylinder is (S: Surface) :

V = S · y =⇒ dV = S · dy
dW = Pext · dV

By convention, the received work dW is greater than 0, and for a compression
dV less than 0; therefore :

dW = −Pext dV

After integration, we �nd : W = −
∫ 2

1 PextdV
[W] = Pa.m3 = Joules
[W] = l. atm 1 l.atm = 101.325 J
[W] = Cal 1 Cal = 4.185 J
If the volume increases (expansion dV > 0): W < 0 (the system does

work on the external surroundings).
If the volume decreases (compression dV < 0): W > 0 (the system re-

ceives work from the external surroundings).

Figure 2.2: Work done on a piston

2.3.1.1 Reversible Transformation Work:

For a reversible transformation (during which all intermediate states are
de�ned): the pressure of the gas P is equal to the external pressure.
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We have: P = Pext
As a result,: Wrev = −

∫ 2
1 PdV ⇒Wrev = −P

∫ V2
V1
dV

2.3.1.2 Irreversible Transformation Work

For irreversible transformations that are rapid and spontaneous: P 6=Pext,
the work is given by the equation

Wirrev = −
∫ 2

1 PdV ⇒Wirrev = −P
∫ V2
V1
dV

2.3.1.3 Pressure work of an ideal gas

In the case of an ideal gas, several types of transformations can be distin-
guished, where the work received or released by the system can be calculated
each time during these transformations :

a Isothermal transformation (T = Constant)
For an isothermal transformation of an ideal gas from the initial state
(1) to a �nal state (2), only the variables P and V change. If the
pressure P increases, the volume V decreases, and vice versa.

The initial state (1) : V1, P1, and T1

The final state(2) : V2, P2, and T2


P1V1 = nRT1

P2V2 = nRT2

T1 = T2 = T
⇒
{
P1V1 = nRT
P2V2 = nRT{

P1V1 = P2V2 = PV = nRT = constant
{
P1V1 = P2V2 = PV = nRT = constant

⇒ V1

V2
=
P2

P1
Reversible case :

Figure 2.3: Reversible case diagram
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dWrev = −P dV , PV = nRT =⇒ P =
nRT

V

dWrev = −nRT dV

V
, Wrev =

∫ V2

V1

−nRT dV

V

Wrev = −nRT
∫ V2

V1

dV

V
, Wrev = −nRT [lnV ]V2V1

Wrev = −nRT [lnV2 − lnV1] , Wrev = −nRT
[
ln
V2

V1

]
Wrev = −nRT ln

V2

V1
, Wrev = nRT ln

V1

V2
, Wrev = nRT ln

P2

P1
Irreversible case:

dWirrev = −Pext dV , δWirrev =
∫ V2
V1
−Pext dV , Wirrev =

−Pext[V ]V2V1 , Wirrev = −Pext(V2 − V1)

PV = nRT → V =
nRT

P
, Wirrev =

−Pext
(
nRT

P2
− nRT

P1

)
, Wirrev = −Pext · nRT

(
1

P2
− 1

P1

)
b Isochoric transformation (V = Constant)

In the isochoric transformation of an ideal gas from the initial state (1)
to a �nal state (2), only the variables P and T change. The pressure
P is proportional to the temperature T.
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Figure 2.4: Isochoric transformation

dW = −PdV →W =
∫ V2
V1
−PdV = constant→ dV = 0⇒W = 0

b Isobaric transformation (P = Constant)
In the isobaric transformation of an ideal gas from the initial state (1)
to a �nal state (2), only the variables V and T change. The volume V
is proportional to the temperature T.

Figure 2.5: Isobaric transformation
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The system evolving from the initial state (1) to the �nal state (2)
leads to: P1= P2=Pext (The pressure at state 1 equals the pressure at
state 2 equals the external pressure).

dW = −PdV =⇒ W =
∫ V2
V1
−PdV ,W = −P (V2 − V1) =⇒ W =

−PV2 + PV1 ,W = −nRT2 + nRT1 =⇒ W = nR(T2 − T1)

2.3.2 Heat or Heat Quantity (Q)

Heat, denoted as Q, is the amount of energy transferred from a hot medium
to a cold medium (at a lower temperature). Therefore, the quantity of heat
Q is proportional to the temperature di�erence between the hotter medium
and the medium with the lowest temperature. It is expressed in joules [J] or
[kcal].

On a microscopic scale, heat re�ects the variation in the kinetic energy
of molecules (energy exchanged due to molecular agitation). Heat is not a
state function.

The exchange of heat between the system and the external environment
is characterized by either:

� A change in the temperature of the system
� A change in the physical state of the matter constituting the system.

2.3.2.1 Temperature Change

The quantity of exchanged (or transferred) heat is proportional to the amount
of matter (mass or number of moles) and the temperature di�erence of the
system. It is a speci�c form of energy expressed in joules (J) or calories
(cal).

This results in a proportional relationship between the elementary heat
received (δQ) and the elementary temperature change (dT ) for a transfor-
mation.

For n moles we have: δQ = nc dT
With: n is the number of moles, dT is the temperature change, c is the

molar heat (molar heat capacity) in J ·mol−1 ·K−1.
The total quantity of heat is:

Q =

∫ T2

T1

nc dT

If c is constant, ⇒ Q = nc(T2− T1)
For a mass m we have: δQ = mcm dT
With: m is the mass, dT is the temperature change, cm is the speci�c

heat (speci�c heat capacity) in J · kg−1 ·K−1.
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The total quantity of heat is:

Q =

∫ T2

T1

ncm dT

If cm is constant: ⇒ Q = mcm(T2− T1).

a Speci�c heat or molar heat of a pure substance
Speci�c heat, denoted as c or cm, is a physical property of pure sub-
stances. It is de�ned as the amount of heat energy required to raise
the temperature of one unit of mass (1 kg or 1 g) or one mole of a pure
substance by 1 degree Kelvin (or 1 degree Celsius).

[c] : cal g−1 ◦C−1 or calmol−1 ◦C−1

Example:

c (liquid water) = 1 cal g−1 ◦C−1 = 18 cal mol−1 ◦C−1

c (solid water) = 0.45 cal g−1 ◦C−1 = 8.1 cal mol−1 ◦C−1

Case of pure substances in the gaseous state
For pure substances in the gaseous state, we de�ne the speci�c heat or
molar heat at constant pressure denoted as cp, and the speci�c heat or
molar heat at constant volume denoted as cv : cp 6= cv

The values of speci�c heat (or molar heat) at constant pressure and
constant volume for monoatomic and diatomic gases are represented
in the following table

Gas cv cp
Monoatomic (3/2)R (5/2) R
Diatomic (5 /2)R (7/2) R

• Case of pure substances in the liquid or solid state:
For pure substances in the solid and liquid state, we de�ne the
speci�c heat or molar heat: cp = cv = c.

b Thermal heat capacity
The heat capacity or thermal capacity, denoted as C, of a pure sub-
stance is de�ned as the product of its speci�c heat or molar heat and
its mass or number of moles, respectively: C = n · c = m · cm. The
thermal heat capacity is expressed in J ·K−1, J ·K−1, or cal ·◦ C−1.
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Calculation of the heat quantity for the various transforma-

tions of an ideal gas :

Isochoric transformation For an isochoric transformation of a gas,
we have dV = 0 (V = constant), consequently, the amount of heat
involved is :

δQv = ncvdT =⇒ Q =
∫ T2
T1
ncv dT

If cv is constant between T1 and T2, then :

Qv = Cv
∫ T2
T1
dT = ncv

∫ T2
T1
dT = mc′v

∫ T2
T1
dT

Then

Qv = Cv(T2 − T1) = ncv(T2 − T1) = mc′v(T2 − T1)

Isobaric transformation For an isobaric transformation of a gas,
we have dP = 0 (P constant), consequently, the amount of heat
involved is:

δQP = ncPdT =⇒ Q =

∫ T2

T1

ncP dT

If cP is constant between T1 and T2 then:

QP = CP

∫ T2

T1

dT = ncP

∫ T2

T1

dT = mc′P

∫ T2

T1

dT

Then:

QP = CP (T2 − T1) = ncP (T2 − T1) = mc′P (T2 − T1)

2.3.2.2 Change of the physical state of matter

When the exchanged heat does not cause a variation in temperature but
rather a change of state (phase transition), which corresponds to modi�ca-
tions in the particulate structure of matter (solidi�cation, fusion, boiling).
A change of state occurs at constant temperature. The diagram below illus-
trates the various state changes.
In this case, we refer to the latent heat of the phase change L, which cor-
responds to the amount of heat required to transform one mole (or 1 kg) of
the substance. Thus, Q is expressed as: Q = n× L

L: Molar latent heat (J · kg−1).
Or: Q = m× L′
L′: Speci�c latent heat (J ·mol−1).
There are three types of latent heats related to the six physical state

changes (Lsub, Lvap, and Lf ), for each type of substance.
Where Lsub, Lvap, or Lf: are the molar or speci�c latent heats associated

respectively with sublimation, vaporization, and fusion.
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S −→ L : Latent heat of fusion; Lf > 0
L −→ S : Latent heat of solidi�cation; Ls = −Lf < 0
L −→ G : Latent heat of vaporization; Lvap > 0
G −→ L : Latent heat of liquefaction; Lliq = −Lvap < 0
S −→ G : Latent heat of sublimation; Lsub > 0
G −→ S : Latent heat of condensation; Lcond = −Lsub < 0

Example:
The latent heat of fusion of water (at 0 ◦C under 1 atm) = 80.4 cal/g
The latent heat of vaporization of water (at 100 ◦C under 1 atm) = 535

cal/g)

Figure 2.6: The various state changes

2.4 Heat Balance Concept

2.4.1 Heating of a Pure Substance

Consider a pure substance with mass m in the solid state at temperature T1.
This substance receives a quantity of heat Q, leading it to the gaseous state
at temperature T2. We have recorded the temperature evolution over time.
The result of calculating the heat quantities during the heating of a solid is
represented in the graph below.
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Figure 2.7: Heat quantities during the heating of a solid

In this graph, we observe the existence of �ve domains.
Domain I: From T1 to Tf , the temperature increases; this is the heating

of the solid phase.
Domain II: Presence of a temperature plateau at Tf , indicating the phase

change from solid to liquid; this is fusion (a phase change occurs at constant
temperature).

Domain III: From the melting temperature (Tf ) to the vaporization tem-
perature (TVap), the temperature increases again; this is the heating of the
liquid phase.

Domain IV: Presence of a vaporization temperature plateau. Phase
change from the liquid state to the gaseous state; this is vaporization (a
phase change occurs at constant temperature).

Domain V: From TVap to T2, again, the temperature increases; this is the
heating of the gaseous phase.

The amount of heat required for this mass to go from Ti to Tf is :
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Q = Q1 +Q2 +Q3 +Q4 +Q5

Q1 =

∫ Tf

T1

mcP,Solid dT +mcP,Solid(Tf − T1)

Q2 = mLf

Q3 =

∫ TVap

Tf

mcP,Liquid dT +mcP,Liquid(TVap − Tf )

Q4 = mLVap

Q5 =

∫ T2

TVap

mcP,Gas dT +mcP,Gas(T2 − TVap)

2.4.2 Mixing of Pure Substances

Consider a body A with mass mA at temperature TA and a body B with
mass mB at temperature TB, where TA > TB. Let's bring body A into
contact with body B. After a certain time, both bodies will reach the same
temperature Teq (equilibrium temperature).

Heat Balance:
Body A cools down by giving heat to body B and reaches temperature

Teq.
Body B heats up by receiving heat from body A and reaches temperature

Teq.
The heat given by body A = The heat received by body B.

−QA = QB

−mAcA(Teq − TA) = mBcB(Teq − TB)

mAcA(Teq − TA) +mBcB(Teq − TB) = 0

Teq =
mAcATA +mBcBTB
mAcA +mBcB

If n bodies are put in contact, we have:

Q1 +Q2 +Q3 + . . .+QN = 0

m1c1(Teq − T1) +m2c2(Teq − T2) +m3cA(Teq − TA) + . . .+mNcN (Teq − TN ) = 0

N∑
i=1

micPi(Teq − Ti) = 0

=⇒ Teq =

∑N
i=1micPiTi∑N
i=1micPi
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2.4.3 Calorimetry

One technique we can use to measure the amount of heat involved in a
chemical or physical process is known as calorimetry. Calorimetry is used to
measure amounts of heat transferred to or from a substance. To do so, the
heat is exchanged with a calibrated object (calorimeter). The temperature
change measured by the calorimeter is used to derive the amount of heat
transferred by the process under study. The measurement of heat transfer
using this approach requires the de�nition of a system (the substance or
substances undergoing the chemical or physical change) and its surroundings
(all other matter, including components of the measurement apparatus, that
serve to either provide heat to the system or absorb heat from the system).

A calorimeter is a device used to measure the amount of heat involved
in a chemical or physical process. For example, when an exothermic reac-
tion occurs in solution in a calorimeter, the heat produced by the reaction
is absorbed by the solution, which increases its temperature. When an en-
dothermic reaction occurs, the heat required is absorbed from the thermal
energy of the solution, which decreases its temperature. The temperature
change, along with the speci�c heat and mass of the solution, can then be
used to calculate the amount of heat involved in either case.

Qe +Qc +Qs = 0

Qe: Heat received by the water in the calorimeter

Qc: Heat received by the accessories of the calorimeter (the vessel, the stirrer,
and the thermometer)

Qs: Heat released by the solid body

mece(Teq − Te) +mccc(Teq − Tc) +mscs(Teq − Ts) = 0

Te = Tc, cc = ce,

mece(Teq − Te) +mccc(Teq − Te) +mscs(Teq − Ts) = 0

(mece +mcce)(Teq − Te) +mscs(Teq − Ts) = 0

mcce = Ccal,

(mece + Ccal)(Teq − Te) +mscs(Teq − Ts) = 0
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Figure 2.8: In a calorimetric determination, either (a) an exothermic process
occurs and heat, q, is negative, indicating that thermal energy is transferred
from the system to its surroundings, or (b) an endothermic process occurs
and heat, q, is positive, indicating that thermal energy is transferred from
the surroundings to the system.

Calorimetry measurements are important in understanding the heat trans-
ferred in reactions involving everything from microscopic proteins to massive
machines. During her time at the National Bureau of Standards, research
chemist Reatha Clark King performed calorimetric experiments to under-
stand the precise heats of various �uorine compounds. Her work was impor-
tant to NASA in their quest for better rocket fuels.

Scientists use well-insulated calorimeters that all but prevent the trans-
fer of heat between the calorimeter and its environment, which e�ectively
limits the �surroundings� to the nonsystem components with the calorime-
ter (and the calorimeter itself). This enables the accurate determination of
the heat involved in chemical processes, the energy content of foods, and so
on. General chemistry students often use simple calorimeters constructed
from polystyrene cups (Figure 2.8). These easy-to-use �co�ee cup� calorime-
ters allow more heat exchange with the outside environment, and therefore
produce less accurate energy values.
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Figure 2.9: A simple calorimeter can be constructed from two polystyrene
cups. A thermometer and stirrer extend through the cover into the reaction
mixture..

Commercial solution calorimeters are also available. Relatively inexpen-
sive calorimeters often consist of two thin-walled cups that are nested in
a way that minimizes thermal contact during use, along with an insulated
cover, handheld stirrer, and simple thermometer. More expensive calorime-
ters used for industry and research typically have a well-insulated, fully en-
closed reaction vessel, motorized stirring mechanism, and a more accurate
temperature sensor (Figure 2.10).
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Figure 2.10: Commercial solution calorimeters range from (a) simple, inex-
pensive models for student use to (b) expensive, more accurate models for
industry and research..

Before discussing the calorimetry of chemical reactions, consider a sim-
pler example that illustrates the core idea behind calorimetry. Suppose we
initially have a high-temperature substance, such as a hot piece of metal (M),
and a low-temperature substance, such as cool water (W). If we place the
metal in the water, heat will �ow from M to W. The temperature of M will
decrease, and the temperature of W will increase, until the two substances
have the same temperature�that is, when they reach thermal equilibrium
(Figure 2.11). If this occurs in a calorimeter, ideally all of this heat transfer
occurs between the two substances, with no heat gained or lost by either its
external environment. Under these ideal circumstances, the net heat change
is zero:

qsubstanceM + qsubstanceW = 0

This relationship can be rearranged to show that the heat gained by sub-
stance M is equal to the heat lost by substance W:

qsubstanceM = −qsubstanceW

The magnitude of the heat (change) is therefore the same for both substances,
and the negative sign merely shows that qsubstance M and qsubstance W are
opposite in direction of heat �ow (gain or loss) but does not indicate the
arithmetic sign of either q value (that is determined by whether the matter
in question gains or loses heat, per de�nition). In the speci�c situation
described, qsubstance M is a negative value and qsubstance W is positive, since
heat is transferred from M to W.
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Figure 2.11: In a simple calorimetry process, (a) heat, q, is transferred from
the hot metal, M, to the cool water, W, until (b) both are at the same
temperature.

When we use calorimetry to determine the heat involved in a chemical
reaction, the same principles we have been discussing apply. The amount of
heat absorbed by the calorimeter is often small enough that we can neglect
it (though not for highly accurate measurements, as discussed later), and
the calorimeter minimizes energy exchange with the outside environment.
Because energy is neither created nor destroyed during a chemical reaction,
the heat produced or consumed in the reaction (the �system�), qreaction, plus
the heat absorbed or lost by the solution (the �surroundings�), qsolution, must
add up to zero:

qreaction + qsolution = 0

This means that the amount of heat produced or consumed in the reaction
equals the amount of heat absorbed or lost by the solution:

qreaction = −qsolution
This concept lies at the heart of all calorimetry problems and calculations.

If the amount of heat absorbed by a calorimeter is too large to neglect
or if we require more accurate results, then we must take into account the
heat absorbed both by the solution and by the calorimeter.

The calorimeters described are designed to operate at constant (atmo-
spheric) pressure and are convenient to measure heat �ow accompanying
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processes that occur in solution. A di�erent type of calorimeter that oper-
ates at constant volume, colloquially known as a bomb calorimeter, is used to
measure the energy produced by reactions that yield large amounts of heat
and gaseous products, such as combustion reactions. (The term �bomb�
comes from the observation that these reactions can be vigorous enough to
resemble explosions that would damage other calorimeters.) This type of
calorimeter consists of a robust steel container (the �bomb�) that contains
the reactants and is itself submerged in water (Figure 2.12). The sample is
placed in the bomb, which is then �lled with oxygen at high pressure. A
small electrical spark is used to ignite the sample. The energy produced by
the reaction is absorbed by the steel bomb and the surrounding water. The
temperature increase is measured and, along with the known heat capacity
of the calorimeter, is used to calculate the energy produced by the reaction.
Bomb calorimeters require calibration to determine the heat capacity of the
calorimeter and ensure accurate results. The calibration is accomplished us-
ing a reaction with a known q, such as a measured quantity of benzoic acid
ignited by a spark from a nickel fuse wire that is weighed before and after the
reaction. The temperature change produced by the known reaction is used to
determine the heat capacity of the calorimeter. The calibration is generally
performed each time before the calorimeter is used to gather research data.

Figure 2.12: (a) A bomb calorimeter is used to measure heat produced by
reactions involving gaseous reactants or products, such as combustion. (b)
The reactants are contained in the gas-tight �bomb,� which is submerged
in water and surrounded by insulating materials. (credit a: modi�cation of
work by �Harbor1�/Wikimedia commons)

Since the �rst one was constructed in 1899, 35 calorimeters have been
built to measure the heat produced by a living person.2 These whole-body
calorimeters of various designs are large enough to hold an individual human
being. More recently, whole-room calorimeters allow for relatively normal
activities to be performed, and these calorimeters generate data that more
closely re�ect the real world. These calorimeters are used to measure the
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metabolism of individuals under di�erent environmental conditions, di�erent
dietary regimes, and with di�erent health conditions, such as diabetes.

For example Carla Prado's team at University of Alberta undertook
whole-body calorimetry to understand the energy expenditures of women
who had recently given birth. Studies like this help develop better recom-
mendations and regimens for nutrition, exercise, and general wellbeing dur-
ing this period of signi�cant physiological change. In humans, metabolism
is typically measured in Calories per day. A nutritional calorie (Calorie)
is the energy unit used to quantify the amount of energy derived from the
metabolism of foods; one Calorie is equal to 1000 calories (1 kcal), the amount
of energy needed to heat 1 kg of water by 1 ◦C.
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Exercise 01

A calorimeter contains m1 = 95 g of water at T1 = 20◦C. We add
m2 = 71 g of water at T2 = 50◦C.

a- What would be the equilibrium temperature Teq if we could neglect
the thermal capacity of the vessel and its accessories?

b- The actual equilibrium temperature is Teq = 31.3◦C, deduce the value
of the water me of the vessel and its accessories.

c- The same calorimeter now contains m′1 = 100 g of water at T ′1 = 15◦C.
We immerse a metallic sample of mass m = 25 g coming out of an oven at
T ′2 = 95◦C. The equilibrium temperature is T ′eq = 16.7◦C. Calculate the
speci�c heat capacity of the metal, with the speci�c heat capacity of water
being cw = 4.185 J · g−1 ·◦ C−1.

Solution: a) To �nd the equilibrium temperature Teq when neglecting
the thermal capacity of the vessel and its accessories, we use the principle of
conservation of energy:

m1cw(Teq − T1) +m2cw(Teq − T2) = 0

Substituting the given values:

95× 4.185(Teq − 20) + 71× 4.185(Teq − 50) = 0

Expanding, simplifying and Combining like terms:

Teq =≈ 32.83◦C

b) Given Teq = 31.3◦C, we deduce the value of me using the equation:

m1cw(Teq − T1) +m2cw(Teq − T2) +mecw(Teq − T1)

Substituting the given values and solving for me:

me ≈ 22.5 g

c) To calculate the speci�c heat capacity of the metal, we can use the
principle of conservation of energy again. The equation for this case would
be similar to part (b).

Exercise 02:

What is the �nal temperature obtained by mixing 1 kg of ice at 0◦C with
9 kg of water at 50◦C?

We add 5 kg of steam at 100◦C to 250 kg of water at 4◦C. Find the �nal
temperature of the mixture.

Data:

• Heat of fusion of ice (Lf at 0◦C) = 3.3× 105 J/kg
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• Heat of vaporization of water (Lvap at 100◦C) = 2.25× 103 J/kg

• Speci�c heat capacity of liquid water cw = 4.185× 103 J/kg◦C

Solution :

I. The liquid water (m1 = 9Kg) with T1 = 50◦C + The ice (m2 = 1Kg)
with T2 = 0◦C (water in solid state).

After thermal equilibrium, the liquid mixture with Teq.

Ice(S, 0◦)
Fusion Liquide−−−−−−−−−−→ (0◦, C)

Heating Mixture−−−−−−−−−−−→ (Liq, Teq)
Cooling←−−−−− 9 kg water

We have :

Q1 = m1Cw(Teq − T1) Cooling of hot water

Q2 = m2Lf Ice fusion

Q3 = m2Cw(Teq − T2)

∑
Qi = 0 =⇒ Q1 +Q2 +Q3 = 0

W �nd that Teq = 37.12 ◦ C

II. Liquid water (m1 = 250Kg) with T1 = 4◦C + Water vapor (m2 =
5Kg) with T2 = 100◦C (water in solid state).

After thermal equilibrium, liquid mixture with Teq.

V apor(g, 100◦C)
Liquefaction−−−−−−−−→ (100◦, C)

Mixture−−−−−→ (Liq, Teq)← 250 kg water

Q1 = m1Cw(Teq − T1)
Liquefaction of vapor (Lliq = −Lvap) : Q2 = m2Lliq

Q3 = m2Cw(Teq − T2)∑
Qi = 0 ; we found that Teq = 5.89◦C

Exercise 03:

A calorimeter contains a mass m1 = 250 g of water, the initial tempera-
ture of the system is T1 = 18◦C. We add a mass m2 = 300 g of water at the
temperature T2 = 80◦C.

1- What would be the thermal equilibrium temperature Teq of the sys-
tem if the thermal capacity C of the calorimeter and its accessories were
negligible?

2- We actually measure a thermal equilibrium temperature Teq = 50◦C,
determine the thermal capacity C of the calorimeter and its accessories.

Data: Speci�c heat capacity of liquid water: cw = 4185 J/kg◦C.

Solution :
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Since the thermal capacity of the calorimeter and its accessories are neg-
ligible, the heat gained by the cooler water (Q1) will be equal to the heat
lost by the hotter water (Q2) when they reach thermal equilibrium.

Using the principle of conservation of energy:

m1cw(Teq − T1) = −m2cw(Teq − T2)

Solving for Teq:

250× 4185× (Teq − 18) = −300× 4185× (Teq − 80)

250× 4185× Teq − 250× 4185× 18 = −300× 4185× Teq + 300× 4185× 80

250× 4185× Teq + 300× 4185× Teq = 300× 4185× 80 + 250× 4185× 18

Teq =
300× 4185× 80 + 250× 4185× 18

250× 4185 + 300× 4185

Teq =
300× 80 + 250× 18

250 + 300

Teq =
24000 + 4500

550

Teq =
28500

550

Teq ≈ 51.82◦C

So, the thermal equilibrium temperature Teq ≈ 51.82◦C.
2- We actually measure a thermal equilibrium temperature Teq = 50◦C,

determine the thermal capacity C of the calorimeter and its accessories.
Now, considering the measured thermal equilibrium temperature Teq =

50◦C, we can determine the thermal capacity C of the calorimeter and its
accessories.

Using the equation derived in part 1, but rearranging it to solve for C:
So, the thermal capacity C ≈ 130.78 J/◦C.
Exercise 04:

A brass calorimeter with a mass M1 = 200 g contains a mass of water
M0 = 280 g at the temperature T0 = 20◦C. We introduce a massMg = 100 g
of ice at the temperature Tg = −5◦C. When thermal equilibrium is reached,
we notice that there is still some ice remaining.

56



Give the equilibrium temperature Tf and determine the mass of the un-
frozen ice.

Given:

- The respective speci�c heats of brass C1 = 0.09 cal/g◦C, of ice Cg =
0.5 cal/g◦C, and of water C0 = 1 cal/g◦C.

- The latent heat of fusion of ice: L = 80 cal/g.
Solution:

To solve this exercise, we will use the principle of conservation of energy,
which states that the total energy lost by the hot objects (brass calorimeter
and initial water) must be equal to the total energy gained by the cold object
(ice) and the energy required for melting a portion of the ice.

Let Tf be the �nal equilibrium temperature, and Mw be the mass of the
melted ice (water).

When thermal equilibrium is reached, there is still some ice remaining,
which implies that there is an equilibrium between the ice and the liquid
water. Therefore, the equilibrium temperature Teq must be equal to 0◦C,
which implies Tf = 0◦C.

The energy lost by the brass calorimeter and the initial water is given
by: Qlost = M1C1(Tf − T1) +M0C0(Tf − T1)

The energy gained by the ice and the energy required for melting a por-
tion of the ice is given by: Qgained = MgCg(0− Tg) +MwL

According to the principle of conservation of energy, Qlost +Qgained = 0,
we have:

Substituting the given values, we get:
Mw = 71.43 g The mass of unfrozen ice = 100 - 71.43 = 28.57 g

Exercise 05:

A 360.0-g piece of rebar (a steel rod used for reinforcing concrete) is
dropped into 425 mL of water at 24.0 ◦C. The �nal temperature of the water
was measured as 42.7 ◦C. Calculate the initial temperature of the piece of
rebar. Assume the speci�c heat of steel is approximately the same as that
for iron , and that all heat transfer occurs between the rebar and the water
(there is no heat exchange with the surroundings).

Solution:

The temperature of the water increases from 24.0 ◦C to 42.7 ◦C, so the
water absorbs heat. That heat came from the piece of rebar, which initially
was at a higher temperature. Assuming that all heat transfer was between
the rebar and the water, with no heat �lost� to the outside environment, then
heat given o� by rebar = - heat taken in by water, or:

qrebar = −qwater

Since we know how heat is related to other measurable quantities, we have:
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(c×m×∆T )rebar = −(c×m×∆T )water

Letting f = �nal and i = initial, in expanded form, this becomes:

crebar ×mrebar × (Tf,rebar − Ti,rebar) = −cwater ×mwater × (Tf,water − Ti,water)

The density of water is 1.0 g/mL, so 425 mL of water = 425 g. Noting that
the �nal temperature of both the rebar and water is 42.7 ◦C, substituting
known values yields:

(0.449 J/g ◦C)× (360.0 g)× (42.7◦C− Ti,rebar) =
−(4.184 J/g ◦C)× (425 g)× (42.7◦C− 24.0◦C)

Ti,rebar =
(4.184 J/g ◦C)× (425 g)× (42.7◦C− 24.0◦C)

(0.449 J/g ◦C)× (360.0 g)
+ 42.7◦C

Solving this gives Ti,rebar = 248◦C, so the initial temperature of the rebar
was 248◦C.
Check Your Learning

A 248-g piece of copper is dropped into 390 mL of water at 22.6◦C. The
�nal temperature of the water was measured as 39.9◦C. Calculate the initial
temperature of the piece of copper. Assume that all heat transfer occurs
between the copper and the water.
ANSWER:The initial temperature of the copper was 335.6 ◦C.
Check Your Learning

A 248-g piece of copper initially at 314◦C is dropped into 390 mL of water
initially at 22.6◦C. Assuming that all heat transfer occurs between the cop-
per and the water, calculate the �nal temperature.
ANSWER:The �nal temperature (reached by both copper and water) is
38.7 ◦C.

Exercise 06:

A 59.7 g piece of metal that had been submerged in boiling water was quickly
transferred into 60.0 mL of water initially at 22.0◦C. The �nal temperature
is 28.5◦C. Use these data to determine the speci�c heat of the metal. Use
this result to identify the metal.

Solution:

Assuming perfect heat transfer, heat given o� by metal = − heat taken
in by water, or:

qmetal = −qwater
In expanded form, this is:

cmetal×mmetal× (Tf,metal−Ti,metal) = −cwater×mwater× (Tf,water−Ti,water)
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Noting that since the metal was submerged in boiling water, its initial
temperature was 100.0◦C; and that for water, 60.0mL = 60.0 g; we have:

(cmetal)(59.7 g)(28.5◦C−100.0◦C) = −(4.18 J/g ◦C)(60.0 g)(28.5◦C−22.0◦C)

Solving this:

cmetal = −(4.184 J/g ◦C)(60.0 g)(6.5◦C)

(59.7 g)(−71.5◦C)
= 0.38 J/g ◦C

Comparing this with known values , our experimental speci�c heat is
closest to the value for copper (0.39 J/g ◦C), so we identify the metal as
copper.
Check Your Learning

A 92.9-g piece of a silver/gray metal is heated to 178.0◦C, and then quickly
transferred into 75.0mL of water initially at 24.0◦C. After 5 minutes, both
the metal and the water have reached the same temperature: 29.7◦C. De-
termine the speci�c heat and the identity of the metal. (Note: You should
�nd that the speci�c heat is close to that of two di�erent metals. Explain
how you can con�dently determine the identity of the metal).
ANSWER:cmetal = 0.13 J/g ◦C

This speci�c heat is close to that of either gold or lead. It would be
di�cult to determine which metal this was based solely on the numerical
values. However, the observation that the metal is silver/gray in addition to
the value for the speci�c heat indicates that the metal is lead.

Exercise 06:

When 50.0mL of 1.00MHCl(aq) and 50.0mL of 1.00MNaOH(aq), both
at 22.0◦C, are added to a co�ee cup calorimeter, the temperature of the
mixture reaches a maximum of 28.9◦C. What is the approximate amount of
heat produced by this reaction?

HCl(aq) + NaOH(aq) −→ NaCl(aq) + H2O(l)

Solution:

To visualize what is going on, imagine that you could combine the two
solutions so quickly that no reaction took place while they mixed; then after
mixing, the reaction took place. At the instant of mixing, you have 100.0mL
of a mixture of HCl and NaOH at 22.0◦C. The HCl and NaOH then react
until the solution temperature reaches 28.9◦C.

The heat given o� by the reaction is equal to that taken in by the solution.
Therefore:

qreaction = −qsolution
(It is important to remember that this relationship only holds if the

calorimeter does not absorb any heat from the reaction, and there is no heat
exchange between the calorimeter and the outside environment.)
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Next, we know that the heat absorbed by the solution depends on its
speci�c heat, mass, and temperature change:

qsolution = (c×m×∆T )solution

To proceed with this calculation, we need to make a few more reason-
able assumptions or approximations. Since the solution is aqueous, we can
proceed as if it were water in terms of its speci�c heat and mass values.
The density of water is approximately 1.0 g/mL, so 100.0mL has a mass of
about 1.0× 102 g (two signi�cant �gures). The speci�c heat of water is ap-
proximately 4.184 J/g◦C, so we use that for the speci�c heat of the solution.
Substituting these values gives:

qsolution = (4.184 J/g◦C)× (1.0× 102 g)× (28.9◦C− 22.0◦C) = 2.9× 103 J

Finally, since we are trying to �nd the heat of the reaction, we have:

qreaction = −qsolution = −2.9× 103 J

The negative sign indicates that the reaction is exothermic. It produces
2.9 kJ of heat.)
Check Your Learning

When 100mL of 0.200MNaCl(aq) and 100mL of 0.200MAgNO3(aq), both
at 21.9◦C, are mixed in a co�ee cup calorimeter, the temperature increases
to 23.5◦C as solid AgCl forms. How much heat is produced by this precipi-
tation reaction? What assumptions did you make to determine your value?
ANSWER:1.34 × 103 kJ; assume no heat is absorbed by the calorimeter,
no heat is exchanged between the calorimeter and its surroundings, and that
the speci�c heat and mass of the solution are the same as those for water.

Exercise 07:

When solid ammonium nitrate dissolves in water, the solution becomes
cold. This is the basis for an �instant ice pack�. When 3.21 g of solid NH4NO3

dissolves in 50.0 g of water at 24.9◦C in a calorimeter, the temperature de-
creases to 20.3◦C.

Calculate the value of q for this reaction and explain the meaning of its
arithmetic sign. State any assumptions that you made.

Solution :

We assume that the calorimeter prevents heat transfer between the solu-
tion and its external environment (including the calorimeter itself), in which
case:

qrxn = −qsoln
with "rxn" and "soln" used as shorthand for "reaction" and "solution," re-
spectively.
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Assuming also that the speci�c heat of the solution is the same as that
for water, we have:

qrxn = −qsoln = −(c×m×∆T )soln = −[(4.184 J/g·◦C)×(53.2 g)×(20.3 ◦C−24.9 ◦C)]

= −[(4.184 J/g · ◦C)× (53.2 g)× (−4.6 ◦C)] = +1.0× 103 J = +1.0 kJ

The positive sign for q indicates that the dissolution is an endothermic
process.
Check Your Learning

When a 3.00 g sample of KCl was added to 3.00× 102 g of water in a co�ee
cup calorimeter, the temperature decreased by 1.05◦C. How much heat is
involved in the dissolution of the KCl? What assumptions did you make?
ANSWER:1.33 kJ; assume that the calorimeter prevents heat transfer be-
tween the solution and its external environment (including the calorimeter
itself) and that the speci�c heat of the solution is the same as that for water.

Exercise 08:

When 3.12 g of glucose, C6H12O6, is burned in a bomb calorimeter,
the temperature of the calorimeter increases from 23.8◦C to 35.6◦C. The
calorimeter contains 775 g of water, and the bomb itself has a heat capacity
of 893 J/◦C. How much heat was produced by the combustion of the glucose
sample?

Solution :

The combustion produces heat that is primarily absorbed by the water
and the bomb. (The amounts of heat absorbed by the reaction products
and the unreacted excess oxygen are relatively small and dealing with them
is beyond the scope of this text. We will neglect them in our calculations.)
The heat produced by the reaction is absorbed by the water and the bomb:

qrxn = −(qwater + qbomb)

= − [(4.184 J/g ◦C)× (775 g)× (35.6◦C − 23.8◦C) + 893 J/◦C× (35.6◦C − 23.8◦C)]

= −(38, 300 J + 10, 500 J)

= −48, 800 J = −48.8 kJ

This reaction released 48.8 kJ of heat when 3.12 g of glucose was burned.
Check Your Learning

When 0.963 g of benzene, C6H6, is burned in a bomb calorimeter, the temper-
ature of the calorimeter increases by 8.39 ◦C. The bomb has a heat capacity
of 784 J/◦C and is submerged in 925 mL of water. How much heat was
produced by the combustion of the benzene sample?
ANSWER:qrx = −39.0 kJ (the reaction produced 39.0 kJ of heat)
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Chapter 3

The �rst principle of
thermodynamics

3.1 Introduction

Thermodynamics is based on four principles that stem from observation and
experience. The �rst principle of thermodynamics states that the amount
of energy exchanged between the system and the surrounding environment
in the form of work and heat is constant regardless of the transformation
undergone.

Q+W = ∆E = Constant

Where ∆E denotes the change in the total energy of the system.

∆E = ∆Ec + ∆Ep + ∆U

With:
- ∆Ec: Variation of the kinetic energy of the system (motion) - ∆Ep:

Variation of the potential energy of the system (position) - ∆U : Variation
of the internal energy of the system

If the system is at rest: ∆Ec = ∆Ep = 0
It follows that: Q+W = ∆U
The internal energy U represents the sum of energies (kinetic and poten-

tial) of all particles on a microscopic scale (atoms and/or molecules). U is
an extensive quantity.

[U ] : J or cal
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3.2 Other statements of the �rst principle

3.2.1 Conservation principle

For an isolated system, we have: Q = W = 0, consequently:

Q+W = ∆U = 0 =⇒ U1 = U2

The internal energy of an isolated system remains constant. This means
that the isolated system can undergo energy transformations from one form
to another, but the sum of the di�erent forms of energy remains constant.

3.2.2 Equivalence principle

Consider a closed system undergoing a cyclic transformation. The initial
state and the �nal state coincide. Therefore: U1 = U2

Figure 3.1: Equivalence principle

According to the expression of the �rst principle, we have: Q + W =
∆U = 0 =⇒ Q = −W Work is equivalent to heat.

3.2.3 Principle of initial and �nal states

According to the statement of the �rst principle, the variation in internal
energy ∆U remains constant regardless of the nature of the transformation.
Consider a set of transformations that take a system from an initial equilib-
rium state 1 to a �nal equilibrium state 2.
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Figure 3.2: Principle of initial and �nal states

• Path A: U2 − U1 = QA +WA

• Path B: U2 − U1 = QB +WB

• Path C: U2 − U1 = QC +WC

U2 − U1 = QA +WA = QB +WB = QC +WC

This equality does not necessarily imply that:
QA = QB = QC and WA = WB = WC

Therefore, when there are multiple types of transformations to take a
system from an equilibrium state 1 to an equilibrium state 2, the sum of
energiesW +Q is independent of the type of transformation "path followed"
and depends only on the initial and �nal states. This principle implies that
internal energy U is a state function, meaning that the change in internal
energy U depends only on the initial and �nal states. But Q and W are not
state functions.

3.3 First Law of Joule: Variation of the internal
energy of an ideal gas

Consider a rigid cylinder perfectly insulated, separated by a partition into
two compartments C1 and C2. C1 contains an ideal gas in the initial state
characterized by the variables P1, T1, V1, and C2 is empty. The partition is
removed, and the gas expands to occupy the entire cylinder. At equilibrium,
the gas is in a �nal state characterized by P2, T2, V2.
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Figure 3.3: Ideal gas expansion

At constant temperature (T1 = T2), it is observed that P2 < P1 and
V2 > V1. The cylinder is rigid and perfectly insulated, so W = 0 and Q = 0.

Q+W = ∆U = U2 − U1.
This results in ∆U = 0 (U remains constant). At constant tempera-

ture, the change in internal energy of an ideal gas is zero. Consequently,
the internal energy of an ideal gas depends only on its temperature and is
independent of pressure and volume. According to the �rst law of Joule, the
change in internal energy is therefore:

dU = ncvdT

∫
dU =

∫ T2

T1

ncvdT =⇒ ∆U = ncv(T2 − T1) =⇒ ∆U = ncv∆T

3.4 Transformation of ideal gases "Closed System"

3.4.1 Isothermal transformation: Q + W = ∆U

An isothermal transformation is a transformation with constant internal en-
ergy.

We have T = Const. hence

∆U = ncV

∫ T2

T1

dT

T
= 0 = QT +W

Therefore,

QT = −W = nRT ln

(
V2

V1

)
W = −nRT ln

(
V2

V1

)
; QT = +nRT ln

(
V2

V1

)
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3.4.2 Isochoric transformation (V1 = V2 = V )

∆U = Q+W
For an isochoric transformation (constant volume (V = constant =⇒

dV = 0)), hence the work: W = 0, consequently, the heat exchanged (QV )
is equal to the change in internal energy (∆U): QV = ∆U

QV = ∆U =

∫ T2

T1

ncvdT = ncv(T2 − T1)

3.4.3 Isobaric transformation (P2 = P1 = P )

∆U = Q+W
We have P = const. hence W = −P (V2 − V1). After substitution, we

�nd:
Q− P (V2 − V1) = U2 − U1

It follows that:
QP = (U2 + P2V2)− (U1 + P1V1)

3.4.3.1 Enthalpy Function

We de�ne a new thermodynamic function, enthalpy, denoted by H.
H is a state function and an extensive quantity.
H = U + PV
It follows that: QP = H2˘H1 = ∆H

3.4.3.2 Second Law of Joule

At constant temperature, the change in enthalpy of an ideal gas is zero.
Consequently, the enthalpy of an ideal gas depends only on its temperature;
it is independent of pressure and volume.

Hence: dH = ncpdT∫
dH =

∫ T2
T1
ncpdT =⇒ ∆H = ncp(T2 − T1) =⇒ ∆H = ncp∆T

3.4.4 Relationship between QP and QV

The �rst law of thermodynamics leads to: ∆U = W +QP → QP = ∆U−W
For an isochoric transformation: ∆U = QV , QP = QV −W
As well as:

QP
QV

=
∆H

∆U
=
ncp(T2 − T1)

ncv(T2 − T1)
=
cp
cv

= γ
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3.4.5 Mayer's Relation

Consider an ideal gas undergoing an isobaric transformation from equilibrium
state 1 to equilibrium state 2. According to the �rst law of thermodynamics,
∆U = Q+W . By assumption, "isobaric transformation":

H = U + PV

dH = d(U + PV )

dH = dU + d(PV )
dH = dQ = ncPdT

dU = ncV dT

(PV ) = nRT

=⇒ dH = d(U + PV )

After substitution, we �nd that:

ncPdT = ncV dT + nRdT =⇒ ncP (T2 − T1) = ncV (T2 − T1) + nR(T2 − T1)

Therefore,

cP = cV +R and cP − cV = R

We have:

R = cP − cV and γ =
cP
cV

We �nd that:

cp =
R

(γ − 1)
and cv =

Rγ

(γ − 1)

3.4.6 Adiabatic transformation of an ideal gas

Consider an ideal gas undergoing an adiabatic transformation, meaning the
system is thermally isolated δQ = 0, the only exchange with the surroundings
is in the form of work.

According to the �rst principle:
we have; δU = δw + δQ
Therefore;

dU = δw

dU = ncvdT = n

(
R

γ − 1

)
dT and δW = −PdV =

−nRT
V

dV
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n

(
R

γ − 1

)
dT = −nRT dV

V
=⇒ dT

T
= −(γ − 1)

dV

V

=⇒
∫ T2

T1

dT

T
= −(γ − 1)

∫ V2

V1

dV

V

=⇒ ln
T2

T1
= −(γ − 1) ln

V2

V1
=⇒ ln

T2

T1
= ln

(
V1

V2

)(γ−1)

=⇒ T2

T1
= ln

(
V1

V2

)(γ−1)

Therfore:
T2

T1
=

(
V1

V2

)(γ−1)

We will then have this formula which describes the equation of state for
adiabatics:

T1V
γ−1

1 = T2V
γ−1

2 = Constant

We can also describe this equation in terms of pressure and volume as
well as temperature in terms of pressure.

We have: PV = nRT =⇒ T = PV
nR

T1V
γ−1

1 = T2V
γ−1

2 = Constant

P1V1

(nR)
V γ−1

1 =
P2V2

(nR)
V γ−1

2

Therefore;

P1V
γ

1 = P2V
γ

2 = Constant

This formula is called Laplace's formula.
Also we have;

P
(1−γ)
γ

1 T1 = P
(1−γ)
γ

2 T2

Calculation of work done by pressure forces during an adiabatic

(reversible) transformation of an ideal gas:

The work is;

W1→2 = −P
∫ 2

1
dV

We have: dU = δW + δQ
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Since: δQ = 0 so dU = δW = ncvdT

=⇒W1→2 = ∆U =

∫ 2

1
dU = nCv

∫ 2

1
dT = nCv(T2 − T1)

cv =
R

(γ − 1)
So W = ∆U = n

R

(γ − 1)
(T2−T1) or W = ∆U =

nRT2 − nRT1

(γ − 1)

=⇒W = ∆U =
P2V2 − P1V1

γ − 1
.
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Exercise 01

10 liters of nitrogen at 20 ◦ C and 1 atm: the temperature is raised to 100
◦C with constant volume.

• Calculate the pressure as well as the quantities of energy exchanged in
the form of work and heat.

• Same question if the transformation occurs at constant pressure.

Solution: I. The initial state is characterized by: V1 = 10 liters; P1 =
1 atm; T1 = 20◦C.

a. Isochoric transformation (dV = 0):
V1 = V2 = 10 liters; the �nal temperature is T2 = 100◦C.
Calculation of the �nal pressure :

P1

T1
=
P2

T2
=⇒ P2 =

P1T2

T1
=⇒ P2 =

1 · 100

20
=⇒ P2 = 5 atm

Calculation of the work :

W =

∫
−PdV =⇒ W = 0

Calculation of the quantity of heat:

Q = ncv

∫ T2

T1

dt =⇒ Q = ncv(T2 − T1)

P1V1 = nRT1 =⇒ n =
P1V1

RT1
=⇒ n =

1 atm× 10 L
0.082× (20 + 273)

=⇒ n = 0.42 mol

Nitrogen is a diatomic gas, therefore :

cv =
5

2
R and cp =

7

2
R

Q = 0.42(
5

2
)8.314(373− 293) =⇒ Q = 419.026Joule

b. Isobaric transformation: (dP = 0)

P1 = P2 = 1atm

Calculation of the �nal volume :

V1

T1
=
V2

T2
=⇒ V2 =

V1 · T2

T1
=⇒ V2 =

10 · 100

20
=⇒ V2 = 50 liters

Calculation of the work :

W =

∫
−PdV =⇒ W = −P

∫ V2

V1

dV =⇒ W = −P (V2 − V1)
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W = 1 · 1.013 · 105(50− 10) · 10−3 =⇒ W = −4052 Joules

Exercise 02

The initial state A of one mole of monoatomic ideal gas is characterized by
PA = 2.105 Pascals and VA = 14 liters. This gas undergoes successively the
following three transformations:
• A→B: An isobaric expansion, doubling its volume.
• B→C: An isothermal compression, returning it to its initial volume.
• C→A: An isochoric cooling, returning it to the initial state (PA, VA).
1) At what temperature does the isothermal compression occur? Deduce

the maximum pressure reached. Represent the transformation cycle in the
P-V diagram.

2) Calculate the work, heat, and change in internal energy exchanged by
the system during each transformation? Perform the cycle balance (∆UTOT,
WTOT, QTOT).

Given: R = 8.314 J.mol−1.K−1, CV = 3
2R, CP = 5

2R.
Solution:

(1) The isothermal compression is performed at the temperature TB =
TC .

- The state variables at A are: PA = 2.105 Pascals, VA = 14 liters, and
TA =?.

PA·VA = n·R·TA =⇒ TA =
PA · VA
n ·R

=⇒ TA =
2.105 Pa · 14× 10−3 m3

1 · 8.314
=⇒ TA = 336.78K
- The state variables at B are: VB = 2·VA =⇒ VB = 28 liters = 28×10−3

m3.
The transformation from state A to state B is an isobaric expansion (the

pressure is constant), so: PB = PA = 2.105 Pascals.
Let's calculate the temperature at state B:

PB · VB = n · R · TB =⇒ TB =
PB · VB
n ·R

=⇒ TB =
PB · 2 · VA
n ·R

=⇒
TB = 2 · TA =⇒ TB = 673.56 K.

Therefore, the isothermal compression occurs at the temperature TB =
673.56 K.

- The state variables at C are: TC = TB = 673.56 K; VC = 14 liters.
Let's calculate the pressure at state C:

PC ·VC = n·R·TC =⇒ PC =
n ·R · TC

VC
=⇒ PC =

1 · 8.314 · 673.56

14× 10−3
=⇒

PC = 4× 105 Pascals.
Therefore, the maximum pressure is that of state C, PC = 4×105 Pascals.
2) Calculation of the energies exchanged, in the form of work, heat, and

the change in internal energy, by the system during each transformation.
a- An isobaric expansion from A to B
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The work: W1

W1 = −
∫ VB
VA

PAdV =⇒ W1 = −PA(VB − VA)

=⇒ W1 = −2.105(28− 14)× 10−3 =⇒ W1 = −2800 J (joules).
The quantity of heat: Q1

Q1 = QP = ncP

∫ TB

TA

dT

T

=⇒ Q2 = ncP (TB − TA)

=⇒ Q1 = 1.52× 8.314(673.56− 336.78) =⇒ Q1 = 6999.97 Joules

The change in internal energy: ∆U1

∆U = Q+W = ncv

∫ TB

TA

dT

T

=⇒ ∆U1 = Q1 +W1 = ncv(TB − TA)

=⇒ ∆U1 = 6999.99− 2800

=⇒ ∆U1 = 4199.99 Joules

b- An isothermal compression from B to C (dT = 0)
The work: W2

W2 = −
∫ VC

VB

P dV = −nRTB ln

(
VC
VB

)
= −1× 8.314× 673.56× ln

(
14

28

)
= 3881.61 Joules

The change in internal energy: ∆U2

∆U2 = ncv

∫ TC

TB

dT

T
=⇒ ∆U2 = 0

The quantity of heat: Q2

∆U2 = Q2 +W2

=⇒ 0 = Q2 +W2

=⇒ Q2 = −W2

=⇒ Q2 = −3881.61 Joules

c- An isochoric cooling from C to A (dV = 0)
The work: W3

W3 = −
∫ VB

VA

P dV = 0
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The change in internal energy ∆U3 and the quantity of heat Q3

∆U3 = ncv

∫ TC

TA

dT

T
= Q3 +W3 =⇒ Q3 = ∆U3 = ncv(TA − TC)

=⇒ Q3 = ∆U3 = 1×3

2
×8.314×(336.78−673.56) =⇒ Q3 = ∆U3 = −4199.99 Joules

d- For the cycle :

The work: WT

WTOT = Wcycle = W1 +W2 +W3 =⇒ Wcycle = 2081.61 Joules

The quantity of heat: QT

QTOT = Qcycle = Q1 +Q2 +Q =⇒ Qcycle = −1081.61 Joules

The change in internal energy: ∆UT

∆UTOT = ∆Ucycle = Wcycle +Qcycle = 0

Exercise 03

Consider one mole of a diatomic gas (assumed to be perfect, Cp = 7
2R,

Cv = 5
2R, and γ = 1.4) in an initial thermodynamic state A de�ned by

PA = 1 atm and TA = 293K. This gas undergoes a series of four reversible
transformations represented on a (T, V) diagram by the rectangle (ABCD)
in the following �gure.

Figure 3.4: Diagram transformation

The pressure of state B is PB = 6 atm and the temperature of state C is
TC = 439.5K.

1. Identify the nature and direction of these four transformations.

2. Calculate the variables for each state.
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3. Qualitatively represent this cycle on a P − V diagram.

4. Calculate, for each transformation and for the cycle, the work W , the
heat Q, the internal energy ∆U , and the enthalpy ∆H. Is the �rst law
of thermodynamics satis�ed?

Solution :

1) The nature and direction of each transformation are as follows:

• Transformation from state A to state B (A→B) is an isothermal com-
pression.

• Transformation from B to C (B→C) is an isochoric heating.

• Transformation from C to D (C→D) is an isothermal expansion.

• Transformation from D to A (D→A) is an isochoric cooling.

2) Calculation of the Variables for Each State :

- State A: PA = 1 atm; TA = 293K;

Calculating the volume of state A:

PA · VA = n ·R · TA =⇒ VA =
n ·R · TA

PA

=⇒ VA =
1 · 0.082 · 293

1
=⇒ VA = 24 liters

- State B: TB = TA = 293K; PB = 6 atm

For an isothermal transformation, we have:

- State A to State B:

PA · VA = PB · VB =⇒ VB =
PA · VA
PB

=⇒ VB =
1 · 24

6
=⇒ VB = 4 liters

- State C: TC = 439.5K; VC = VB = 4 liters

For an isochoric transformation, we have:
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- State C to State D:

PC
TC

=
PB
TB

=⇒ PC = PB ·
TC
TB

=⇒ PC = 6 · 439.5

293
=⇒ PC = 9 atm

- State D: TD = TC = 439.5K; VD = VA = 24 liters

The pressure of state D is calculated using the following relation:

PD · VD = n ·R · TD =⇒ PD =
n ·R · TD

VD

=⇒ PD =
1 · 0.082 · 439.5

24
=⇒ PD = 1.5 atm

Calculation of Work, Heat, Change in Internal Energy, and

Enthalpy:

a- Isothermal Compression from A to B (dT = 0):
The work: W1

W1 = −
∫ VB

VA

P dV

= −nRTA ln

(
VB
VA

)
= −1× 8.314× 293 ln

(
424

24

)
= 4364.73 Joules

The change in internal energy: ∆U1

∆U1 = ncv

∫ TB

TA

dT

T
= 0

The amount of heat: Q1

∆U1 = Q1 +W1

= 0

⇒ Q1 = −W1

= −4364.73 Joules

The enthalpy: ∆H1

∆H1 = ncp

∫ TB

TA

dT

T
= 0
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b- Isochoric Heating from B to C (dV = 0):
- Isothermal Expansion from C to D: The work: W2

W2 = −
∫ VC

VB

PdV =⇒ W3 = 0

- The change in internal energy ∆U2 and the amount of heat Q2

∆U2 = ncv

∫ TC

TB

dT

T

= Q2 +W2

⇒ Q2 = ∆U2 = ncv(TC − TB)

= ∆U2 = 1× (
5

2
)× 8.314× (439.5− 293)

= ∆U2 = 3045 Joules

The enthalpy: ∆H2

∆H2 = ncp

∫ TC

TB

dT

T

= ncp(TC − TB)

= 1× (
7

2
)× 8.314× (439.5− 293)

= 4263 Joules

c- D :

The work: W3

W3 = −
∫ VD

VC

P dV

= −nRTC ln

(
VD
VC

)
= −1× 8.314× 439.5 ln

(
24

4

)
= −6547.09 Joules

- The change in internal energy: ∆U3

∆U3 = ncv

∫ TD

TC

dT

T
= 0

- The amount of heat: Q3

∆U3 = Q3 +W3

= 0

⇒ Q3 = −W3

= 6547.09 Joules
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- The enthalpy: ∆H3

∆H3 = ncp

∫ TD

TC

dT

T
= 0

d- Isochoric Cooling from D to A:

• The work: W4

W4 = −
∫ VA

VD

P dV = 0

• The change in internal energy ∆U4 and the amount of

heat Q4:

∆U4 = ncv

∫ TA

TD

dT

T

= Q4 +W4

⇒ Q4 = ∆U4 = ncv(TA − TD)

= ∆U4 = 1× (
5

2
)× 8.314× (293− 439.5)

= ∆U4 = −3045 Joules

• The enthalpy: ∆H4

∆H4 = ncp

∫ TD

TA

dT

T

= ncp(TA − TD)

= 1× (
7

2
)× 8.314× (293− 439.5)

= ∆H4 = −4263 Joules

e- For the cycle:

• The work: WT

WT = Wcycle = W1 +W2 +W3 +W4

= −2182.36 Joules

• The amount of heat: QT

QT = Qcycle = Q1 +Q2 +Q3 +Q4

= 2182.36 Joules

• The change in internal energy: ∆UT

∆UT = ∆Ucycle = Wcycle +Qcycle = 0
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• The enthalpy: ∆HT

∆HT = ∆Hcycle = ∆H1 + ∆H2 + ∆H3 + ∆H4 = 0

Exercise 04

During a thermodynamic process, a system moves from state A to state B, it
is supplied with 400 J of heat and does 100 J of work. (a) For this transition,
what is the system's change in internal energy? (b) If the system then moves
from state B back to state A, what is its change in internal energy? (c) If in
moving from A to B along a di�erent path, W ′AB = 400 J of work is done on
the system, how much heat does it absorb?

Strategy

The �rst law of thermodynamics relates the internal energy change, work
done by the system, and the heat transferred to the system in a simple
equation. The internal energy is a function of state and is therefore �xed at
any given point regardless of how the system reaches the state.

Solution

From the �rst law, the change in the system's internal energy is

∆EintAB = QAB −WAB = 400 J− 100 J = 300 J.

Consider a closed path that passes through the states A and B. Internal
energy is a state function, so ∆Eint is zero for a closed path. Thus

∆Eint = ∆EintAB + ∆EintBA = 0,

and
∆EintAB = −∆EintBA .

This yields
∆EintBA = −300 J.

The change in internal energy is the same for any path, so

∆EintAB = 300 J = ∆E′intAB = Q′AB −W ′AB = Q′AB − (−400 J),

and the heat exchanged is

Q′AB = −100 J.

The negative sign indicates that the system loses heat in this transition.
Signi�cance

When a closed cycle is considered for the �rst law of thermodynamics,
the change in internal energy around the whole path is equal to zero. If
friction were to play a role in this example, less work would result from this
heat added.
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Exercise 05

A machinist polishes a 0.50-kg copper �tting with a piece of emery cloth for
2.0 min. He moves the cloth across the �tting at a constant speed of 1.0 m/s
by applying a force of 20 N, tangent to the surface of the �tting. (a) What is
the total work done on the �tting by the machinist? (b) What is the increase
in the internal energy of the �tting? Assume that the change in the internal
energy of the cloth is negligible and that no heat is exchanged between the
�tting and its environment. (c) What is the increase in the temperature of
the �tting?

Strategy

The machinist's force over a distance that can be calculated from the
speed and time given is the work done on the system. The work, in turn,
increases the internal energy of the system. This energy can be interpreted
as the heat that raises the temperature of the system via its heat capacity.
Be careful with the sign of each quantity.

Solution

The power created by a force on an object or the rate at which the
machinist does frictional work on the �tting is F · v = −Fv. Thus, in an
elapsed time ∆t (2.0 min), the work done on the �tting is

W = −Fv∆t = −(20N)(1.0m/s)(1.2× 102 s) = −2.4× 103 J.

By assumption, no heat is exchanged between the �tting and its envi-
ronment, so the �rst law gives for the change in the internal energy of the
�tting:

∆Eint = −W = 2.4× 103 J.

Since ∆Eint is path independent, the e�ect of the 2.4 × 103 J of work is
the same as if it were supplied at atmospheric pressure by a transfer of heat.
Thus,

2.4× 103 J = mc∆T = (0.50 kg)(3.9× 102 J/kg · ◦C)∆T,

and the increase in the temperature of the �tting is

∆T = 12◦C,

where we have used the value for the speci�c heat of copper, c = 3.9 ×
102 J/kg · ◦C.

Signi�cance

If heat were released, the change in internal energy would be less and
cause less of a temperature change than what was calculated in the problem.
Exercise 06

Heat is added to 1 mol of an ideal monatomic gas con�ned to a cylinder with
a movable piston at one end. The gas expands quasi-statically at a constant
temperature of 300 K until its volume increases from V to 3V . (a) What is
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the change in internal energy of the gas? (b) How much work does the gas
do? (c) How much heat is added to the gas?

Strategy

(a) Because the system is an ideal gas, the internal energy only changes
when the temperature changes.

(b) The heat added to the system is therefore purely used to do work
that has been calculated in Work, Heat, and Internal Energy.

(c) Lastly, the �rst law of thermodynamics can be used to calculate the
heat added to the gas.

Solution

We saw in the preceding section that the internal energy of an ideal
monatomic gas is a function only of temperature. Since ∆T = 0, for this
process, ∆Eint = 0.

The quasi-static isothermal expansion of an ideal gas was considered in
the preceding section and was found to be

W = nRT ln

(
V2

V1

)
= nRT ln

(
3V

V

)
= (1.00mol)(8.314 J/K ·mol)(300K) (ln 3)

= 2.74× 103 J.

With the results of parts (a) and (b), we can use the �rst law to determine
the heat added:

∆Eint = Q−W = 0,

which leads to
Q = W = 2.74× 103 J.

Signi�cance

An isothermal process has no change in the internal energy. Based on
that, the �rst law of thermodynamics reduces to Q = W .
Exercise 07

When 1.00 g of water at 100◦C changes from the liquid to the gas phase at
atmospheric pressure, its change in volume is 1.67×10−3 m3. (a) How much
heat must be added to vaporize the water? (b) How much work is done by
the water against the atmosphere in its expansion? (c) What is the change
in the internal energy of the water?

Strategy

We can �rst �gure out how much heat is needed from the latent heat of
vaporization of the water. From the volume change, we can calculate the
work done from W = p∆V because the pressure is constant. Then, the �rst
law of thermodynamics provides us with the change in the internal energy.

Solution
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With Lv representing the latent heat of vaporization, the heat required
to vaporize the water is

Q = mLv = (1.00 g)(2.26× 103 J/g) = 2.26× 103 J.

Since the pressure on the system is constant at 1.00 atm = 1.01×105 N/m2,
the work done by the water as it is vaporized is

W = p∆V = (1.01× 105 N/m2)(1.67× 10−3 m3) = 169 J.

From the �rst law, the thermal energy of the water during its vaporization
changes by

∆Eint = Q−W = 2.26× 103 J− 169 J = 2.09× 103 J.

Signi�cance

We note that in part (c), we see a change in internal energy, yet there is no
change in temperature. Ideal gases that are not undergoing phase changes
have the internal energy proportional to temperature. Internal energy in
general is the sum of all energy in the system.
Exercise 08

1g of water at 373 K is converted into steam at the same temperature. The
volume of water becomes 1671 ml on boiling. Calculate the change in the
internal energy of the system if the heat of vaporization is 540 cal/g.

Solution:

As the vaporization takes place against a constant pressure of 1 atmo-
sphere, work done for an irreversible process, w, is:

w = p(V2 − V1)

= nRT

=
1

18
× 1.987× 373

= 41 cal/g

q = 540 cal/g

∆E = q − w (First Law)

∆E = 540− 41

∆E = 499 cal/g

Exercise 09

A gas contained in a cylinder �tted with a frictionless piston expands against
a constant external pressure of 1 atm from a volume of 5 liters to a volume of
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10 liters. In doing so it absorbs 400 J thermal energy from its surroundings.
Determine ∆E for the process.

Solution:

∆E = q − w

Here, q = 400 J
w = −p(V2 − V1) = −(1)(10− 5)
= −5 atm
= −506 J [1 atm = 101.2 J]

Substituting values in (1):

∆E = 400 J− (−506 J)

= 400 + 506

= 906 J

Exercise 10

Calculate the maximum work done when pressure on 10 g of hydrogen is
reduced from 20 to one atmosphere at a constant temperature of 273 K.
The gas behaves ideally. Will there be any change in internal energy? Also,
calculate `q'.

Solution:

w = −2.303nRT log

(
P2

P1

)

n =
10

5
= 5 moles

T = 273 K

P1 = 20 atm

P2 = 1 atm

Substituting the values we get:

w = −2.303× 5× 1.987× 273 log
20

1
= −8126.65 cal.

Since there is no change in temperature:

∆E = 0

Hence:

q = ∆E + w

= 0 + (−8126.65)

= −8126.65 cal.
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Chapter 4

Applications of the �rst law of
thermodynamics to
thermochemistry

4.1 Introduction

Thermochemistry is a branch of thermodynamics that deals with the laws
governing the transformations of a system with chemical reactions. These
laws allow us to determine the amount of heat involved in a chemical reac-
tion and also provide information about the evolution of this reaction under
imposed operating conditions (temperature and pressure).

4.2 Chemical Reaction

A chemical reaction is a transformation of reactants into products under a
temperature T and atmospheric pressure (P = 1 atm):

aA+ bB → cC + dD

Such as:

• a, b, c, and d: represent stoichiometric coe�cients.

• A and B are chemical species representing the reactants (initial state
under T and P ).

• C and D are chemical species representing the products (�nal state
under T and P ).

The reaction indicates that a moles of A react with b moles of B to give
c moles of C and d moles of D.
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In general, a chemical reaction occurs at a constant temperature T ,
meaning: the temperature of the products = temperature of the reactants
(TA = TB = TC = TD = T , it is called the temperature of the chemical
reaction).

The initial state is characterized by the internal energy and enthalpy of
the reactants (U1 and H1 respectively), and the �nal state is characterized by
the internal energy and enthalpy of the products (U2 and H2). The reaction
is assumed to be complete.

4.3 Heat of a Chemical Reaction

The heat of a chemical reaction (or enthalpy of reaction) at a temperature
T is de�ned as the heat energy exchanged (released or absorbed) with the
external surroundings during the transformation of reactants into chemical
products during a chemical reaction.

If heat is supplied by the reaction (Q < 0), then this reaction is Exother-
mic (Release of heat). Conversely, if heat is absorbed by the chemical reac-
tion (Q > 0), then this reaction is Endothermic (absorbs heat).

4.3.1 Heat at Constant Volume

Consider a chemical reaction that occurs at constant volume (isochoric trans-
formation). According to the �rst law of thermodynamics, we have:

QV +W = ∆U

where the work W = 0 for an isochoric transformation (V is constant).
Therefore:

QV = ∆U = UProducts − UReactants
Example: Cl2(g) + H2(g)→ 2HCl(g)
The number of moles of gaseous species remains constant (Number of

moles of reactants in the gaseous state = number of moles of products in the
gaseous state).

4.3.2 Heat at Constant Pressure

Consider a chemical reaction that occurs at constant pressure (isobaric trans-
formation). According to the �rst law of thermodynamics, for an isobaric
transformation, we have:

QP = ∆U = UProducts − UReactants

IV-3-3- Relation between QP and QV :
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Consider the following chemical reaction that occurs in the gaseous phase
at temperature T : aA+ bB −→ cC + dD

At constant pressure, we have:

∆U = QP +W =⇒ QP = ∆U −W

We also have: ∆U = QV and W = −(PV2 − PV1)
Therefore, it follows that:

QP = QV + (PV2 − PV1)

The reactants and products are in the gaseous state (assumed ideal gas):
PV1 = nreactantsRT = (a+ b)RT and PV2 = nproductsRT = (c+ d)RT

After substitution, we �nd that:

QP = QV +RT (nproducts − nreactants)

Thus:
QP = QV + ∆nRT

Where: ∆n = nproducts − nreactants
The following relation can be established between the enthalpy of a re-

action and the change in internal energy:

∆HR = ∆U + ∆nRT

4.4 The standard state

It is necessary to specify the conditions of temperature and pressure un-
der which chemical reactions are carried out; therefore, a standard state is
de�ned.

The standard state or standard conditions of temperature and pressure
(STP) of a chemical compound taken in its pure state are de�ned under
a pressure of one atmosphere (1 atm) and at the standard temperature of
25◦C.

The standard enthalpy of the reaction is noted; it represents the change
in enthalpy of a reaction carried out at a temperature of 298K where the
reactants and products are taken in their standard states (298K and 1 atm).

4.5 The standard enthalpy of formation (∆H0
f)

4.5.1 Simple substances and compound substances

A substance is a material composed of molecules which are a union of atoms:
If the atoms are identical, then the substance is considered a simple substance
(H2, O2, N2, ...). If the atoms are di�erent, then the substance is considered
a compound substance (NH3, CH4, HCl, ...).
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4.5.2 Standard enthalpy of formation of a compound

The standard enthalpy of formation, denoted as ∆H◦f , of a chemical com-
pound is the corresponding change in enthalpy for the reaction of forming
one mole of that compound under standard conditions from its elements in
their standard states as well (P = 1 atm and T = 298K).

Note: The standard enthalpy of formation of pure simple substances in
the standard state is zero, such as:

∆H0
f (O2)g = ∆H0

f (N2)g

= ∆H0
f (H2)g

= ∆H0
f (fe)s

= ∆H0
f (Cgraphite)s

= ∆H0
f (Cl)g

= 0

Example: The standard enthalpy of formation of water in the

gaseous state.

Water is formed from hydrogen and oxygen.
In the standard state, hydrogen is in the form of H2 (g) and oxygen is in

the form of O2 (g), hence:

H2(g) +
1

2
O2(g) −→ H2O(g) ∆H0

f (H2O, 298K)g = −57.8Kcal ·mol−1

4.5.3 Enthalpy of dissociation

The energy of a chemical bond (enthalpy of dissociation of a bond) is de�ned
as the change in enthalpy of the reaction that dissociates one mole of such
bonds.

Example:
At 25◦C and 1 bar, it takes 436 kJ of heat to dissociate one mole of

dihydrogen gas entirely into two moles of hydrogen atoms:

H2(g) −→ 2H(g) ∆H = +436 kJ

The energy of the H-H bond = enthalpy of the dissociation reaction of
H2 = 436 kJ/mol

4.5.4 Enthalpy of physical state change

In thermodynamics, the enthalpy of physical state change (also known as
latent heat of state change) of a pure substance is the change in enthalpy ac-
companying the transition of the system from one physical state 1 to another
physical state 2.
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Example:

• The transition from the solid state to the liquid state is referred to as
the enthalpy of fusion (∆Hfus or Lf). The reverse of this transformation
is solidi�cation, so we talk about the enthalpy of solidi�cation (∆Hsol =
−∆Hfus).

• The transition from the liquid state to the gaseous state is referred to
as the enthalpy of vaporization (∆Hvap or Lvap). The reverse of this
transformation is liquefaction (∆Hliq = −∆Hvap).

• The transition from the solid state to the gaseous state is referred to
as the enthalpy of sublimation (∆Hsub or Lsub). The reverse of this
transformation is condensation (∆Hcond = −∆Hsub).

4.5.5 The enthalpy of a chemical reaction ∆H0
R:

The enthalpy of a chemical reaction is calculated by two methods, direct and
indirect.

4.5.5.1 Direct Method

a- Determination of the enthalpy of the reaction from the en-

thalpies of formation of the compounds:

Consider the following reaction at the temperature of 298 K:

aA+ bB → cC + dD

Knowing the enthalpies of formation of the products and reactants, we
can determine the enthalpy of the reaction using the following relationship:

∆H0
R(298K) =

∑
∆H0

f (Products)−
∑

∆H0
f (Reactants)

∆H0
R(298K) = (c∆H0

f (C) + d∆H0
f (D))− (a∆H0

f (A) + b∆H0
f (B))

Example:

C2H4(g)+H2O(liq)→ C2H5OH(liq)∆H0
R = ∆H0

f (C2H5OH)−(∆H0
f (C2H4)+∆H0

f (H2O))

b- Determination of the enthalpy of the reaction from the bond

formation energies:

A molecule is a union of atoms. When two atoms come into contact,
each atom contributes one electron to form a bond. There are several types
of bonds: single bond H −H (H2), double bond C = C (C2H4), triple bond
C ≡ C (C2H2).

87



The bond energy A−B between atoms A and B, denoted as EA−B, is the
energy released during the formation of a covalent bond from the atoms taken
in the gaseous state under standard conditions (P = 1 atm and T = 298 K).

It is equal to the enthalpy change ∆HA−B required to carry out the
formation reaction of this chemical bond.

Atome A(g) + Atome B(g)→ Molecule A˘B(g) + EA−B

EA−B = ∆HA−B(298K) (bond formation energy or bond enthalpy).
∆HA−B is expressed in cal/mol or J/mol, it is always negative (∆HA−B <

0). Therefore, bond formation is exothermic (on the contrary, bond breaking
is endothermic).

The enthalpy of any chemical reaction can be determined using bond
formation enthalpy values. It is equal to the di�erence between the bond
energies of the products and the bond energies of the reactants.

aA+ bB → cC + dD

∆H0
R(298K) = (c

∑
EC + d

∑
ED)− (a

∑
EA + b

∑
EB)

Example:
C2H2(g) + 2H2(g)→ C2H6(g)

∆H0
R(298K) = (EC−C + 6EC−H)− (EC≡C + 2EC−H + 2EH−H)

4.5.5.2 Indirect Method: Hess's Law

If we consider the reaction R → P for which we seek the enthalpy of the
chemical reaction (where R represents one or more reactants and P repre-
sents one or more products).

Knowing the enthalpies of the following secondary reactions: R → X
and X → P .

This means that the reaction from R to P occurs through the interme-
diary X.
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Figure 4.1: Indirect Method

The enthalpy ∆H is a state function; it depends only on the initial and
�nal states and not on the path followed. It follows that:

∆H0
R(298K) = ∆H1 + ∆H2

Therefore: The enthalpy of the reaction is the sum of the enthalpies of
intermediate transformations.

∆H0
R(298K) =

∑
∆Hi

Example:
We are trying to calculate ∆H0

R(298K) of the following reaction:

CH4 (g) + 2O2 (g)→ CO2 (g) + 2H2O (liq) (1) ∆H0
R(298K) =?

Knowing the enthalpies of other chemical reactions.

C (g) + 2H2 (g) + 2O2 (g)→ CO2 (g) + 2H2O (liq) (2) ∆H1

C (g) + 2H2 (g)→ CH4 (g) (3) ∆H2

We observe that reaction (2) is the sum of reactions (1) and (3).
Therefore, by conducting an energy balance, we will have:

∆H1 = ∆HR + ∆H2 =⇒ ∆HR = ∆H1 −∆H2

We have: ∆H1 = ∆H0
f (CO2(g)) + ∆H0

f (H2O(liq))
And ∆H2 = ∆H0

f (CH4(g))
Therefore:

∆HR = ∆H0
f (CO2(g)) + ∆H0

f (H2O(liq))−∆H0
f (CH4(g))
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4.5.5.3 Variation of the enthalpy of the reaction with temperature

(Kirchho�'s Law)

Consider the following reaction:

aA+ bB −→ cC + dD

Knowing the standard enthalpy of this chemical reaction at the tem-
perature 298K, we can calculate the enthalpy of this reaction at another
temperature T .

Figure 4.2: Kirchho�'s Law

We know that:
∑

∆H0
i (cycle) = 0

So: ∆H0
R(298K) + ∆H4 + ∆H3 −∆H1 −∆H2 −∆H0

R(TK) = 0

=⇒ ∆H0
R(TK) = ∆H0

R(298K) + ∆H4 + ∆H3 −∆H1 −∆H2 . . . (1)

∆H0
1 =

∫ T

298
acpAdT

∆H0
2 =

∫ T

298
bcPBdT

∆H0
3 =

∫ T

298
ccPCdT

∆H4 =

∫ T

298
dcPDdT

(1) =⇒ ∆H0
R(TK) = ∆H0

R(298K)+

∫ T

298
[(ccPC + dcPD)− (acPA + bcPB)] dT
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Then: ∆H0
R(TK) = ∆H0

R(298K) +

∫ T

298
∆cPdT (Kirchho�'s Law)

Where: ∆cP = (ccPC + dcPD)− (acPA + bcPB)

In general: ∆cP =
∑

nicpi(Products)−
∑

njcpj(Reactifs))

Exercise 1:

Calculate the standard heat of combustion ∆H0,298K
r of solid oxalic acid

(C2H2O4, s) at 25◦C and atmospheric pressure, using the standard molar
enthalpies of formation. Given that:

∆H0,298
f (C2H2O4, s) = −1822.2 kJ/mol

∆H0,298
f (CO2, g) = −393 kJ/mol

∆H0,298
f (H2O, l) = −285.2 kJ/mol

Solution:

The combustion reaction of oxalic acid is: C2H2O4(s)+12O2(g)→ 2CO2(g)+
H2O(l) We calculate the heat of combustion (enthalpy of combustion reac-
tion) using the direct method:

∆H0
r (298K) =

∑
∆H0

f (Products)−
∑

∆H0
f (Reactants)

=⇒ ∆H0
r (298K) = 2∆H0

f (CO2(g)) + ∆H0
f (H2O(l))−∆H0

f (C2H2O4(s))

=⇒ ∆H0
r (298K) = 2 · (−393) + (−286.2)− (−1822.2)

=⇒ ∆H0
r (298K) = 750 kJ

Exercise 2:

Consider the following reaction: CO(g) + 3H2(g)→ CH4(g) + H2O(g)
1- Calculate the standard enthalpy ∆H◦r,298K of this reaction. Is the

reaction endothermic or exothermic?
2- Deduce the value of the internal energy ∆U◦r,298K of the same reaction.
Given the standard enthalpies of combustion ∆H◦r,298K of CO, H2, and

CH4 :

CO(g) +
1

2
O2(g) −→ CO2(g) ∆H0

r (298K, 1) = −283 kJ

H2(g) +
1

2
O2(g) −→ H2O(g) ∆H0

r (298K, 2) = −241.8 kJ

C2H4(g) + 2O2(g) −→ CO2(g) + 2H2O(g) ∆H0
r (298K, 3) = −803.2 kJ

Solution:

1. The studied reaction is obtained by the following summation: Reaction
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1 + 3 × reaction 2 - reaction 3 Therefore:

∆H0
r (298K) = ∆H0

r (298K, 1) + 3 ·∆H0
r (298K, 2)−∆H0

r (298K, 3)

=⇒ ∆H0
r (298K) = (−283) + 3 · (−241.8)− (−803.2)

=⇒ ∆H0
r (298K) = −205.2 kJ

Since ∆H0
r (298K) < 0, the reaction is exothermic.

2. Calculation of the change in internal energy using the relation:

∆H0
r (298K) = ∆U0

r +∆n ·R ·T =⇒ ∆U0
r = ∆H0

r (298K)−∆n ·R ·T

where ∆n = nProducts − nReactants.
∆n = (1 + 1)− (3 + 1) =⇒ ∆n = −2 moles
∆U0

r = (−205.2)− (−2) · 8.314 · 10−3 · 298 =⇒ ∆U0
r = −200.25 kJ

Exercise 3:

We consider the oxidation reaction of ammonia by oxygen as follows:

2NH3(g) + 5/2O2(g) −→ 2NO(g) + 3H2O(g) ∆H0
r (298K) = −109 kJ

Calculate the standard molar enthalpy of formation of NH3 (g) knowing
the standard molar enthalpies of formation of NO (g) and H2O (g).

Given:

∆H0
f (298K;NO) = 21.5 kJ/mol and ∆H0

f (298K;H2O) = −58 kJ/mol

Solution:

We apply the following relation:

∆H0
r (298K) = 2·∆H0

f (298K;NO)+3·∆H0
f (298K;H2O)−2·∆H0

f (298K;NH3)

=⇒ ∆H0
f (298K;NH3) =

2 ·∆H0
f (298K;NO) + 3 ·∆H0

f (298K;H2O)−∆H0
r (298K)

2

=⇒ ∆H0
f (298K;NH3) =

109 + (2 · 21.5) + (3 · (−58))

2

=⇒ ∆H0
f (298K;NH3) = −11 kJ/mol

Exercise 4:

The combustion reaction of one mole of ethylene under standard pressure
and temperature conditions is given by the equation:
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C2H4(g) + 3O2(g) −→ 2CO2(g) + 2H2O(l) ∆H0
r (298K) = −1387.8 kJ

1. Calculate the standard molar enthalpy of formation of C2H4(g) know-
ing that ∆H0

f (298K;H2O) = −284.2 kJ/mol and ∆H0
f (298K;CO2) =

−393 kJ/mol.
2. Using the bond energies (presented in the table) as well as the enthalpy

of sublimation of carbon C(s) → C(g) ∆H◦sub(C, s) = 171.2 kcal mol−1,
calculate the C=C bond energy in C2H4(g).

Bond ∆h◦298 (bond) (kJ ·mol−1)
H-H -434.7
C-H -413.8
C-C -263.3

Solution :

1. We calculate the standard molar enthalpy of formation of C2H4(g)
using the following relation:

∆H0
r (298K) = 2·∆H0

f (298K;CO2)+2·∆H0
f (298K;H2O)−∆H0

f (298K;C2H4)

=⇒ ∆H0
f (298K;C2H4) = 2·∆H0

f (298K;CO2)+2·∆H0
f (298K;H2O)−∆H0

r (298K)

=⇒ ∆H0
f (298K;C2H4) = 2 · (−393) + 2 · (−284.2)− (−1387.8)

=⇒ ∆H0
f (298K;C2H4) = 33.4 kJ

2- Calculate the bond energy of C = C in C2H4 (g).

Figure 4.3

For the obtained cycle, we have:∑
∆H0

i = 0 =⇒ ∆H0
1 −∆H0

2 −∆H0
3 −∆H0

4 = 0
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∆H0
1 = ∆h0

298(C = C) + 4∆h0
298(C −H)

∆H0
2 = −∆h0

sub,298(C, s)

∆H0
3 = 2∆h0

298(H −H)

∆H0
4 = ∆H0

f (298K;C2H4)

After substitution, we �nd that:

∆h0
298(C = C) = ∆H0

f (298K;C2H4) + 2∆h0
298(H −H)

− 2 ·∆h0
sub,298(C, s)− 4∆h0

298(C −H)

= 33.4 + (2 · (−434.7))− 2 · (171.2 · 4.18)− (4 · (−413.8))

=⇒ ∆h0
298(C = C) = −612.03 kJ ·mol−1

Exercise 5:

A gummy bear contains 2.67 g sucrose, C12H22O11. When it reacts with
7.19 g potassium chlorate, KClO3, 43.7 kJ of heat are produced. Write a
thermochemical equation for the reaction of one mole of sucrose:

C12H22O11(aq) + 8KClO3(aq) −→ 12CO2(g) + 11H2O(l) + 8KCl(aq)

Solution

The present exercise does not involve the reaction of stoichiometric amounts
of reactants, and so the limiting reactant must be identi�ed (it limits the yield
of the reaction and the amount of thermal energy produced or consumed).

The provided amounts of the two reactants are:

(2.67 g)

(
1mol

342.3 g

)
= 0.00780mol C12H22O11

(7.19 g)

(
1mol

122.5 g

)
= 0.0587mol KClO3

The provided molar ratio of perchlorate-to-sucrose is then:

0.0587mol KClO3

0.00780mol C12H22O11
= 7.52

The balanced equation indicates 8 mol KClO3 are required for reaction
with 1 mol C12H22O11. Since the provided amount of KClO3 is less than
the stoichiometric amount, it is the limiting reactant and may be used to
compute the enthalpy change:
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∆H =
−43.7 kJ

0.0587mol KClO3
= −744 kJ/mol KClO3

Because the equation, as written, represents the reaction of 8 mol KClO3,
the enthalpy change is:

(−744 kJ/mol KClO3)(8mol KClO3) = −5960 kJ

The enthalpy change for this reaction is −5960 kJ, and the thermochem-
ical equation is:

C12H22O11 + 8KClO3 −→ 12CO2 + 11H2O + 8KCl ∆H = −5960 kJ

Check Your Learning

When 1.42 g of iron reacts with 1.80 g of chlorine, 3.22 g of FeCl2(s) and
8.60 kJ of heat is produced. What is the enthalpy change for the reaction
when 1 mole of FeCl2(s) is produced?

ANSWER:∆H = −338 kJ
Exercise 6:

Ozone, O3(g), forms from oxygen, O2(g), by an endothermic process.
Ultraviolet radiation is the source of the energy that drives this reaction in
the upper atmosphere. Assuming that both the reactants and products of
the reaction are in their standard states, determine the standard enthalpy of
formation, ∆H◦f , of ozone from the following information:

3O2(g)→ 2O3(g) ∆H◦ = +286 kJ

Solution

∆H◦f is the enthalpy change for the formation of one mole of a substance
in its standard state from the elements in their standard states. Thus, ∆H◦f
for O3(g) is the enthalpy change for the reaction:

3

2
O2(g)→ O3(g)

For the formation of 2 mol of O3(g), ∆H◦ = +286 kJ. This ratio,(
286 kJ

2molO3

)
, can be used as a conversion factor to �nd the heat produced

when 1 mole of O3(g) is formed, which is the enthalpy of formation for O3(g):

∆H◦ for 1 mole of O3(g) = 1molO3 ×
286 kJ

2molO3
= 143 kJ

Therefore, ∆H◦f [O3(g)] = +143 kJ/mol.
Check Your Learning
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Hydrogen gas, H2, reacts explosively with gaseous chlorine, Cl2, to form
hydrogen chloride, HCl(g). What is the enthalpy change for the reaction of
1 mole of H2(g) with 1 mole of Cl2(g) if both the reactants and products are
at standard state conditions? The standard enthalpy of formation of HCl(g)
is −92.3 kJ/mol.

ANSWER:H2(g) + Cl2(g) −−→ 2 HCl(g) ∆H◦ = −184.6 kJ
Exercise 7:

Determine the enthalpy of formation, ∆H◦f , of FeCl3(s) from the enthalpy
changes of the following two-step process that occurs under standard state
conditions:

Fe(s) + Cl2(g) −−→ FeCl2(s) ∆H◦ = −341.8 kJ

FeCl2(s) +
1

2
Cl2 (g) −−→ FeCl3(s) ∆H◦ = −57.7 kJ

Solution

We are trying to �nd the standard enthalpy of formation of FeCl3(s),
which is equal to ∆H◦ for the reaction:

Fe(s) +
3

2
Cl2 (g) −−→ FeCl3(s) ∆H◦f =?

Looking at the reactions, we see that the reaction for which we want to
�nd ∆H◦ is the sum of the two reactions with known ∆H values, so we must
sum their ∆Hs:

Fe(s) + Cl2(g) −−→ FeCl2(s) ∆H◦ = −341.8 kJ

FeCl2(s) +
1

2
Cl2 (g) −−→ FeCl3(s) ∆H◦ = −57.7 kJ

Fe(s) +
3

2
Cl2 (g) −−→ FeCl3(s) ∆H◦ = −399.5 kJ

∆H◦ = −57.7

∆H◦ = −399.5
= −399.5 kJ/mol.

The enthalpy of formation, ∆H◦f , of FeCl3(s) is −399.5 kJ/mol.
Check Your Learning

Calculate ∆H for the process:

N2(g) + 2 O2(g) −−→ 2 NO2(g)

from the following information:

N2(g) + O2(g) −−→ 2 NO(g) ∆H = 180.5 kJ

NO(g) +
1

2
O2 (g) −−→ NO2(g) ∆H = −57.06 kJ
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ANSWER:66.4 kJ
Exercise 8:

Chlorine mono�uoride can react with �uorine to form chlorine tri�uoride:

(i) ClF(g) + F2(g) −−→ ClF3(g) ∆H◦ =?

Use the reactions here to determine the ∆H◦ for reaction (i):

(ii) 2 OF2(g) −−→ O2(g) + 2 F2(g) ∆H◦(ii) = −49.4 kJ

(iii) 2 ClF(g) + O2(g) −−→ Cl2O(g) + OF2(g) ∆H◦(iii) = +214.0 kJ

(iv) ClF3(g) + O2(g) −−→ 1

2
Cl2O(g) +

3

2
OF2 (g) ∆H◦(iv) = +236.2 kJ

Solution

Our goal is to manipulate and combine reactions (ii), (iii), and (iv) such
that they add up to reaction (i). Going from left to right in (i), we �rst see
that ClF(g) is needed as a reactant. This can be obtained by multiplying
reaction (iii) by 12, which means that the ∆H◦ change is also multiplied by
12:

ClF(g)+12 O2(g) −−→ 12 Cl2O(g)+12 OF2(g) ∆H◦ = 12(214.0) = +107.0 kJ

Next, we see that F2 is also needed as a reactant. To get this, reverse and
halve reaction (ii), which means that the ∆H◦ changes sign and is halved:

1

2
O2 (g) + F2(g) −−→ OF2(g) ∆H◦ = +24.7 kJ

To get ClF3 as a product, reverse (iv), changing the sign of ∆H◦:

1

2
Cl2O(g) +

3

2
OF2 (g) −−→ ClF3(g) + O2(g)(1) ∆H◦ = −236.2 kJ

Now check to make sure that these reactions add up to the reaction we
want:

ClF(g) +
1

2
O2 (g) +

1

2
F2 (g) −−→ ClF3(g)(2) ∆H◦ = +107.0 kJ

1

2
O2 (g) +

1

2
F2 (g) −−→ OF2(g)(3) ∆H◦ = +24.7 kJ
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∆H◦ = −236.2 kJ
∆H◦ = −104.5 kJ

Reactants 1
2O2 and 1

2O2 cancel out product O2; product 1
2Cl2O cancels

reactant 1
2Cl2O; and reactant

3
2OF2 is cancelled by products 1

2OF2 and OF2.
This leaves only reactants ClF(g) and F2(g) and product ClF3(g), which are
what we want. Since summing these three modi�ed reactions yields the
reaction of interest, summing the three modi�ed ∆H◦ values will give the
desired ∆H◦:

∆H◦ = (+107.0 kJ) + (24.7 kJ) + (−236.2 kJ) = −104.5 kJ

Exercise 9:

Both graphite and diamond burn.

C(s,diamond) + O2(g) −−→ CO2(g)

For the conversion of graphite to diamond:

C(s, graphite) −−→ C(s,diamond) ∆H◦298 = 1.90 kJ

Which produces more heat, the combustion of graphite or the combustion
of diamond?

ANSWER: Diamond
Exercise 10:

Calculate ∆H for the process

Hg2Cl2(s) −−→ 2 Hg(l) + Cl2(g)

from the following information:

Hg(l) + Cl2(g) −−→ HgCl2(s) ∆H = −224 kJ

Hg(l) + HgCl2(s) −−→ Hg2Cl2(s) ∆H = −41.2 kJ

ANSWER: 265 kJ
Exercise 11: Calculate the enthalpy for this reaction:

2C(s) + H2(g)→ C2H2(g) ∆H◦ =??? kJ

Given the following thermochemical equations:

C2H2(g) +
5

2
O2 (g)→ 2CO2(g) + H2O(l) ∆H◦ = −1299.5 kJ

C(s) + O2(g)→ CO2(g) ∆H◦ = −393.5 kJ

H2(g) +
1

2
O2 (g)→ H2O(l) ∆H◦ = −285.8 kJ
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Solution:

1) Determine what we must do to the three given equations to get our
target equation:

a) �rst eq: �ip it so as to put C2H2 on the product side
b) second eq: multiply it by two to get 2C
c) third eq: do nothing. We need one H2 on the reactant side and that's
what we have.

2) Rewrite all three equations with changes applied:

2CO2(g) + H2O(l)→ C2H2(g) +
5

2
O2(g) ∆H◦ = +1299.5 kJ

2C(s) + 2O2(g)→ 2CO2(g) ∆H◦ = −787 kJ

H2(g) +
1

2
O2(g)→ H2O(l) ∆H◦ = −285.8 kJ

Notice that the ∆H values changed as well.
3) Examine what cancels:

2CO2 → �rst & second equation

H2O → �rst & third equation
5

2
O2 → �rst & sum of second and third equation

4) Add up ∆H values for our answer:

+1299.5 kJ + (−787 kJ) + (−285.8 kJ) = +226.7 kJ

Exercise 12:

Calculate the enthalpy of the following chemical reaction:

CS2(l) + 3 O2(g) −−→ CO2(g) + 2 SO2(g)

Given:

C(s) + O2(g) −−→ CO2(g) ∆H = −393.5 kJ/mol

S(s) + O2(g) −−→ SO2(g) ∆H = −296.8 kJ/mol

C(s) + 2 S(s) −−→ CS2(l) ∆H = +87.9 kJ/mol

Solution:

1) What to do to the data equations:
Leave equation 1 untouched (want CO2 as a product).

Multiply the second equation by 2 (want to cancel 2S, also want 2SO2 on
product side).
Flip the third equation (want CS2 as a reactant).
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2) The result:

C(s) + O2(g) −−→ CO2(g) ∆H = −393.5 kJ/mol

2 S(s) + 2 O2(g) −−→ 2 SO2(g) ∆H = −593.6 kJ/mol

CS2(l) −−→ C(s) + 2 S(s) ∆H = −87.9 kJ/mol

3) Add the three revised equations. C and 2S will cancel.
4) Add the three enthalpies for the �nal answer.
Exercise 13:

Given the following data:

SrO(s) + CO2(g) −−→ SrCO3(s) ∆H = −234 kJ

2 SrO(s) −−→ 2 Sr(s) + O2(g) ∆H = +1184 kJ

2 SrCO3(s) −−→ 2 Sr(s) + 2 C(s, gr) + 3 O2(g) ∆H = +2440 kJ

Find the ∆H of the following reaction:

C(s, gr) + O2(g) −−→ CO2(g)

Solution:

1) Analyze what must happen to each equation:
a) �rst eq −→ �ip it (this puts the CO2 on the right-hand side, where

we want it)
b) second eq −→ do not �ip it, divide through by two (no �ip because we
need to cancel the SrO, divide by two because we only need to cancel one
SrO)
c) third equation −→ �ip it (to put the SrCO3 on the other side so we can
cancel it), divide by two (since we need to cancel only one SrCO3)

Notice that what we did to the third equation also sets up the Sr to be
cancelled. Why not also multiply �rst equation by two (to get 2 SrO for
canceling)? Because we only want one CO2 in the �nal answer, not two.
Notice also that I ignored the oxygen. If everything is right, the oxygen will
take care of itself.

2) Apply all the above changes (notice what happens to the ∆H values):

SrCO3(s) −−→ SrO(s) + CO2(g) ∆H = +234 kJ

SrO(s) −−→ Sr(s) +
1

2
O2 (g) ∆H = +592 kJ

Sr(s) + C(s, gr) +
3

2
O2 (g) −−→ SrCO3(s) ∆H = −1220 kJ

3) Here is a list of what is eliminated when everything is added:
SrCO3, SrO, Sr, 1

2O2

The last one comes from 3
2O2 on the left in the third equation and 1

2O2 on
the right in the second equation.
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4) Add the equations and the ∆H values:

+234 + (+592) + (−1220) = −394

C(s, gr) + O2(g) −−→ CO2(g) ∆Hf = −394 kJ

Notice the subscripted f. This is the formation reaction for CO2 and its
value can be looked up, either in your textbook.

Exercise 14:

Given the following information:

2 NO(g) + O2(g) −−→ 2 NO2(g) ∆H = −116 kJ

2 N2(g) + 5 O2(g) + 2 H2O(l) −−→ 4 HNO3(aq) ∆H = −256 kJ

N2(g) + O2(g) −−→ 2 NO(g) ∆H = +183 kJ

Calculate the enthalpy change for the reaction below:

3 NO2(g) + H2O(l) −−→ 2 HNO3(aq) + NO(g) ∆H =???

Solution:

1) Analyze what must happen to each equation:
a) �rst eq −→ �ip; multiply by 3

2 (this gives 3NO2 as well as the 3NO
which will be necessary to get one NO in the �nal answer)
b) second eq −→ divide by 2 (gives two nitric acid in the �nal answer)
c) third eq −→ �ip (cancels 2NO as well as nitrogen)

2) Comment on the oxygens:
a) step 1a above puts 3

2O2 on the right
b) step 1b puts 5

2O2 on the left
c) step 1c puts 2

2O2 on the right
In addition, a and c give 5

2O2 on the right to cancel out the 5
2O2 on the left.

3) Apply all the changes listed above:

3 NO2(g) −−→ 3 NO(g) +
3

2
O2 (g) ∆H = +174 kJ

N2(g) +
5

2
O2 (g) + H2O(l) −−→ 2 HNO3(aq) ∆H = −128 kJ

2 NO(g) −−→ N2(g) + O2(g) ∆H = −183 kJ

4) Add the equations and the ∆H values:

+174 + (−128) + (−183) = −137 kJ

3 NO2(g) + H2O(l) −−→ 2 HNO3(aq) + NO(g) ∆H = −137 kJ

Exercise 15:

Calculate the value of ∆H◦ for the following reaction:
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P4O10(s) + 6 PCl5(g) −−→ 10 Cl3PO(g)

using the following four equations:
a) P4(s) + 6 Cl2(g) −−→ 4 PCl3(g) ∆H◦ = −1225.6 kJ

b) P4(s) + 5 O2(g) −−→ P4O10(s) ∆H◦ = −2967.3 kJ
c) PCl3(g) + Cl2(g) −−→ PCl5(g) ∆H◦ = −84.2 kJ
d) PCl3(g) + 1

2O2 (g) −−→ Cl3PO(g) ∆H◦ = −285.7 kJ

Solution:

1) We know that P4O10 MUST be on the left-hand side in the answer,
so let's reverse (b):

b) P4O10(s) −−→ P4(s) + 5 O2(g) ∆H◦ = +2967.3 kJ

2) We know that PCl5 MUST be on the left-hand side in the answer, so
let's reverse (c) and multiply it by 6:

c) 6 PCl5(g) −−→ 6 PCl3(g) + 6 Cl2(g) ∆H◦ = +505.2 kJ

3) We know that Cl3PO MUST have a 10 in front of it:
d) 10 PCl3(g) + 5 O2(g) −−→ 10 Cl3PO(g) ∆H◦ = −2857 kJ

4) Now, write all four equations, but incorporate the revisions:
a) P4(s) + 6 Cl2(g) −−→ 4 PCl3(g) ∆H◦ = −1225.6 kJ

b) P4O10(s) −−→ P4(s) + 5 O2(g) ∆H◦ = +2967.3 kJ
c) 6 PCl5(g) −−→ 6 PCl3(g) + 6 Cl2(g) ∆H◦ = +505.2 kJ
d) 10 PCl3(g) + 5 O2(g) −−→ 10 Cl3PO(g) ∆H◦ = −2857 kJ

5) Now, we will add all four equations as well as the ∆H◦ values. Notice
the following:

a) P4(s) cancels out (see equations a and b)
b) Cl2 cancels out (see equations a and c)
c) O2 cancels out (see equations b and d)
d) PCl3 cancels out (see equations a+c and d)

6) The ∆H◦ values added together:

−1225.6 kJ + (+2967.3 kJ) + (+505.2 kJ) + (−2857 kJ) = −610.1 kJ

7) The answer:

P4O10(s) + 6 PCl5(g) −−→ 10 Cl3PO(g) ∆H◦ = −610.1 kJ
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Chapter 5

The second law of
thermodynamics

5.1 Introduction:

Among the shortcomings of the �rst law of thermodynamics, we can men-
tion: It does not allow predicting the direction of a thermodynamic trans-
formation system. It does not distinguish between work (transfer of ordered
macroscopic energy) and heat (transfer of disordered microscopic energy).

The �rst law of thermodynamics, which is a principle of energy con-
servation (energy in the form of work and heat exchanged between a sys-
tem and the external environment is conserved), does not allow predicting
the direction of evolution of a transformation, it only allows determining
∆U and ∆H.

Example:
When a hot body and a cold body are in contact: heat passes from

the hot body to the cold body until thermal equilibrium is reached. The
reverse transformation (from the cold body to the hot body) never occurs
spontaneously, yet this transformation is not prohibited by the �rst principle,
as it only demands the conservation of energy.

A+B → mixture(A+B)

TA TB Teq

It is important to know the direction of evolution of the transformation,
which is why we have a second law of thermodynamics that can inform us
about the direction of system evolutions. It is a principle of evolution based
on the concept of entropy.
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5.2 Statement of the Second Law of Thermody-
namics

The second law arose as a necessity to explain especially irreversible phe-
nomena. Let A and B be two equilibrium states of a system. The �rst law of
thermodynamics does not predict whether the transformation of the system
proceeds from A to B or the reverse (from B to A) spontaneously. This ques-
tion can be answered using the second law of thermodynamics. It allows us
to determine the true initial state and the true �nal state and to specify the
nature of a transformation (reversible, irreversible), through a state function
called entropy (S).

Physically, entropy is an abstract quantity that allows measuring the
degree of disorder of a system at the microscopic scale.

5.3 Concept of reversibility and irreversibility

Consider a perfect gas under pressure P1 undergoing compression to the �nal
state characterized by pressure P2. This gas transitions from P1 to P2 in a
reversible (ideal) or irreversible (real) manner.

5.3.1 Reversible Transformation (Ideal)

The reversible transformation, also known as ideal, is a transformation that
continuously allows reversing the direction of the transformation by pass-
ing through the same stages of direct transformation. Therefore, it would
be possible to return from the �nal state to the initial state. It is a very
slow transformation that passes through a succession of equilibrium states.
During the evolution, we have:

P = Pe and T = Te.

5.3.2 Irreversible Transformation (Real)

The irreversible transformation, also known as real, is a rapid transformation,
during which P and T are not homogeneous; we have P 6= Pe and T 6= Te.
It would not be possible to return from the �nal state to the initial state. It
is a transformation that does not pass through a succession of equilibrium
states. This is the case for any spontaneous thermodynamic transformation
of a system left to itself.

5.4 Concept of Entropy

Entropy is an extensive quantity and is measured in J/K or J/(K·mol) when
considered for one mole of the system. For a transformation of a system in
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thermal contact with a heat source from the initial state (A) to the �nal state
(B) of the external environment, the change in entropy veri�es the following
relation:

dS ≥ dQ

T

5.4.1 Case of a Reversible Transformation

In the case of a reversible transformation, we de�ne the entropy function as
follows:

dS =
dQrev

T
Let's consider a thermodynamic cycle composed of two reversible trans-

formations from state A to state B (transformation 1) and from state B to
state A (transformation 2).

Figure 5.1: Reversible Transformation

Performing the energy balance on the cycle as follows:∑
dQT
T

=

∫ B

A

dQ(1)

T
+

∫ A

B

dQ(2)

T
= 0

=⇒
∫ B

A

dQ(1)

T
−
∫ A

B

dQ(2)

T
= 0
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=⇒
∫ B

A

dQ(1)

T
=

∫ A

B

dQ(2)

T
=

∫ B

A

δQrev
T

We conclude that for a reversible transformation, the integral
∫ B
A

δQrev
T

It only depends on the initial state (A) and the �nal state (B).
It does not depend on the path taken.

Therefore,
dQrev
T

is a state function called entropy (S).

So dS =
dQrev
T

.

The change in entropy is thus: ∆S = SB − SA =
∫ B
A

δQrev
T

5.4.2 Case of an Irreversible Transformation

Consider the irreversible cycle formed by an irreversible transformation from
the initial state (A) to the �nal state (B) and a reversible transformation
from state B to state A.

Figure 5.2: Irreversible Transformation
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The energy balance on this irreversible cycle is:∑
dQT
T

=

∫ B

A

dQirrev
T

+

∫ B

A

dQrev
T

< 0

=⇒
∫ B

A

dQirrev
T

−
∫ B

A

dQrev
T

< 0

=⇒
∫ B

A

dQirrev
T

<

∫ B

A

dQrev
T

Hence:
dQirrev
T

< dS and thus: ∆S >

∫ B

A

δQirrev
T

Entropy balance:

The term
∫ B
A

dQirrev
T

is called the change in exchange entropy (∆Sexchange).

This term corresponds to the irreversible path, i.e., the path actually fol-
lowed. For a system in thermal contact with a heat source, we have:

∆Sexchange =

∫ B

A

dQirrev
T

=
1

T

∫ B

A
dQirrev =

Qirrev
T

Entropy S is a state function, so we have: ∆S = ∆Srev + ∆Sirrev >∫ B
A

δQirrev
T

=⇒ ∆S > ∆Sexchange

Hence: ∆S = ∆Sexchange + ∆Ssystem
∆Sexchange: Corresponds to the variation of exchanged entropy with the

external environment.
∆Screated : Corresponds to the variation of entropy created due to inter-

nal transformations related to microscopic evolutions of the system.
∆S : Corresponds to the variation of entropy of the system.
• ∆Ssystem = 0 : Therefore, the transformation from initial state A to

�nal state B is reversible.
• ∆Ssystem > 0 : Therefore, the transformation from initial state A to

�nal state B is spontaneous.
• ∆Ssystem < 0 : Therefore, the transformation from initial state A to

�nal state B is not spontaneous.

5.5 Entropy as a function of the variables T and V

According to the �rst law of thermodynamics: dU = dQ+ dW

According to the second law of thermodynamics: dS =
dQrev
T

dW = −PdV and dU = nCvdT ⇒ dU = TdS − PdV ⇒ nCvdT =
TdS − PdV

According to the ideal gas law, for one mole we have: PV = nRT ⇒
P =

nRT

V
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So CvdT =
TdS − nRTdV

V

⇒ dS =
CvdT

T
+
RdV

V
. . . . . . . . . . . . . . . (1)

5.6 Entropy as a function of the variables T and P

According to the �rst law of thermodynamics: dH = dU + d(PV )
⇒ dH = dU + PdV + V dP
We have: dU = TdS − PdV ⇒ dH = TdS − PdV + PdV + V dP
⇒ dH = TdS + V dP
For one mole of ideal gas: V = RT/P ; dH = cpdT

Therefore: dH = TdS +
RT

P
dP

⇒ dS = cp
dT

T
−RdP

P
. . . . . . . . . . . . ..(2)

5.7 Entropy as a function of the variables V and P

According to expressions (1) and (2) representing the entropy variation (dS):

dS = cv
dT

T
+R

dV

V
= cp

dT

T
−RdP

P

=⇒ R
dV

V
= (cp − cv)

dT

T
−RdP

P

We know that (cp − cv) = R (Mayer's relation)

So: R
dV

V
= R

dT

T
−RdP

P

⇒ dV

V
=
dT

T
− dP

P

⇒ dT

T
=
dV

V
+
dP

P
. . . . . . . . . . . . . . . . . . .(3)

Replacing equation (3) into (1) or (2), we �nd: (1)

⇒ dS = cv

(
dV

V
+
dP

P

)
+R

dV

V
= cv

dV

V
+ cv

dP

P
+ cp

dV

V
− cv

dV

V

⇒dS = cv
dP

P
+ cp

dV

V

5.8 Calculation of entropy change without phase
change:

The entropy change of a system is calculated along the reversible path ac-
cording to the type and nature of the transformation it undergoes.

∆S =

∫ B

A

dQrev
T

=

∫ B

A

dQ

T
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5.8.1 Case of solids and liquids

We know that in the case of solids and liquids, the amount of heat is de�ned
by the relation: dQ = nCdT . Thus, the entropy change is given by:

∆S =

∫ B

A

dQ

T
=

∫ B

A

nCdT

T
= nC

∫ B

A

dT

T
=⇒ ∆S = nC ln

TB
TA

5.8.2 Case of perfect gases

In the case of perfect gases and according to the �rst law of thermodynamics,
we have: dQ = dU − dW , where: dU = nCvdT and dW = −PdV . This
results in: dQ = nCvdT + PdV .

5.8.2.1 Isochoric transformation

For an isochoric transformation, we have dV = 0, hence: dQ = nCvdT .

As a result: ∆S =
∫ B
A

dQ

T
=

∫ B

A

nCvdT

T
.

If Cv is constant between TB and TA, after integration we �nd:

∆S = nCv ln
TB
TA

.

5.8.2.2 Isothermal transformation

For an isothermal transformation, we have dT = 0, hence: dQ = PdV =

nRT
dV

V
.

As a result: ∆S =
∫ B
A

dQ

T
=

∫ B

A

nRTdV

TV
= nR

∫ B

A

dV

V
.

After integration we �nd:

∆S = nR ln
VB
VA

or ∆S = nR ln
PA
PB

.

5.8.2.3 Isobaric transformation

For an isobaric transformation, we have dQ = dH = nCpdT .

So: ∆S =
∫ B
A

dQ

T
=

∫ B

A

nCpdT

T
.

After integration we �nd: ∆S = nCp ln
TB
TA

.

5.8.2.4 Reversible adiabatic transformation

We know that for an adiabatic transformation, the heat dQ = 0, hence:
∆S = 0.
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5.8.3 Irreversible adiabatic transformation

In the case of irreversible adiabatic transformation, we have ∆S = 0; conse-
quently: ∆Sexchange = ∆Screator > 0. On the reversible path, we found that
∆Sexchange = 0. However, on the irreversible path, we have ∆Sexchange > 0.
Hence, we disagree with the principle of initial and �nal states because en-
tropy is a state function. Normally, we �nd that ∆Srev = ∆Sirrev. That's
why calculating the entropy change ∆S in the case of irreversible adiabatic
transformation is done through intermediate paths and not through a direct
path.

Figure 5.3: Irreversible adiabatic Transformation

Therefore: ∆S = ∆S1 + ∆S2

Note:

∆S = ∆Sisotherm+∆Sisobar = ∆Sisotherm+∆Sisochore = ∆Sisobar+∆Sisochore

5.8.3.1 Cyclical Transformation

For a cyclical transformation, the change in entropy ∆S = 0, because entropy
is a state function (entropy at the initial state equals entropy at the �nal
state).

∆S = 0 ≥
∫ B

A

dQ

T
=⇒

∫ B

A

dQ

T
≤ 0 (Clausius' inequality)

5.9 Calculation of the entropy change during phase
change of pure substances

The quantity of heat accompanying a change in the physical state of matter
is called latent heat. It is well known that a phase change of a pure substance
occurs at constant temperature, hence:

∆S =

∫ B

A

dQchange of phase

Tchange of phase
=

1

Tchange of phase

∫ B

A
dQchange of phase
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∆S =
Qchange of phase

Tchange of phase

Qchange of phase = Qrev = ∆H

∆S =
∆H

T
With:

∆H : Latent Heat of Vaporization, Fusion, or Sublimation.

T : Temperature of the change of the physical state of matter.

∆Sf : Change in entropy of fusion.

∆Svap : Change in entropy of vaporization.

∆Ssub : Change in entropy of sublimation.

∆Sf =
∆Hf

Tf
=
nLf
Tf

; ∆Svap =
∆Hvap

Tvap
=
nLvap
Tvap

; ∆Ssub =
∆Hsub

Tsub
=
nLsub
Tsub

5.10 Calculation of the entropy change for the mix-
ing of pure substances

5.10.1 Case of pure substances in the solid or liquid state

Let two substances A and B have temperatures TA and TB respectively.
After contact between them, the equilibrium temperature reached is Teq.
The entropy change of mixing is expressed as: ∆S = ∆SA + ∆SB =

nAcA ln

(
Teq
TA

)
+ nBcB ln

(
Teq
TB

)
.

5.10.2 Case of pure substances in the gaseous state

V-10-2- Case of pure substances in the gaseous state: Let a perfect gas A be
characterized by the initial state variables (P1, T1, and V1), and a perfect
gas B be characterized by the initial state variables (P2, T2, and V2). The
mixture of the two gases is characterized by the variables (�nal state) Pm, Tm,
and Vm. The entropy change of the mixture is expressed as: ∆S = ∆SA +
∆SB = (∆ST+∆SV )A+(∆ST+∆SV )B = (∆ST+∆SP )A+(∆ST+∆SP )B =
(∆SP + ∆SV )A + (∆SP + ∆SV )B
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5.11 Heat Engines

A heat engine is a system capable of converting thermal energy into mechan-
ical energy (work) and vice versa. This system undergoes a cyclic transfor-
mation.

Reversible heat engines must comply with the two principles of thermo-
dynamics. There are two possible cases:

• When the work is negative (W < 0): it is a heat engine.

• When the work is positive (W > 0): it is a refrigeration machine or a
heat pump.

5.11.1 Thermal Engines

These are machines that produce work, known as driving machines. A por-
tion of the heat at high temperature is converted into mechanical work and
the rest is lost, as shown in the �gure below:

Figure 5.4: Operating principle of a heat engine

Note: A heat source refers to any body or system capable of exchanging
heat while remaining at a constant temperature. Examples of thermody-
namic machines include:
• Steam engines.
• Gasoline or diesel combustion engines.
• Thermal or nuclear power plants for electricity generation.
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5.11.2 Refrigeration Machine

These are machines where heat transfer occurs from a cold source to a hot
source, with additional work done to facilitate this transfer.

Figure 5.5: Operating principle of a Refrigeration Machine

In general, thermodynamic machines operate with several successive trans-
formations and thus form a cycle. There are several thermodynamic cycles;
in the following, we mention the Carnot cycle.

5.11.3 Applications of the Carnot cycle

V-11-3- Applications of the Carnot cycle: The Carnot cycle is referred to as a
diathermic and reversible cycle, meaning two heat sources. It consists of two
isothermal transformations and two reversible adiabatic transformations.

To provide work to the external environment, a diathermic machine must
necessarily receive heat from the hot source and provide it to the cold source.
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Figure 5.6: The Carnot cycle

• AB: Isothermal transformation at temperature T1

• BC: Adiabatic transformation: from T1 to T2

• CD: Isothermal transformation at temperature T2

• DA: Adiabatic transformation: from T2 to T1

Heat Exchange Balance

Isothermal Transformation A→ B
For 1 mole: dU = nCV dT = 0 = dQ+ dW
Q1 = QAB = −WAB

PV = RT → P =
RT

V
;T = T1

WAB =
∫ VB
VA

(−RT1)

V
dV ⇒WAB = −RT1

∫ VB

VA

dV

V
⇒WAB = −RT1 ln

VB
VA

dU = CV dT = 0 = dQ+ dW ⇒⇒ Q1 = QAB = −WAB

Q1 = QAB = RT1 ln
VB
VA

Adiabatic Transformation B→ C
QBC = 0

dU = dw + dQ,

dQ = 0,

dU = nCV dT

→ dw = nCV dT
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WBC =
∫ T2
T1
CV dT ⇒WBC = CV (T2 − T1)⇒WBC = CV ∆T

Replacing CV with CV =
R

(γ − 1)
,

WBC =
R

(γ − 1)
∆T ⇒ WBC =

R

(γ − 1)
(T2 − T1)

Isothermal Transformation C→ D

dU = nCV dT = 0 = δQ+ δW ,
Q2 = QCD = −WCD

WCD = −RT2 ln
VD
VC

Q2 = QCD = RT2 ln
VD
VC

Adiabatic Transformation D→ A
QDA = 0

WDA =
R

(γ − 1)
(T1 − T2)

Heat Exchange Balance

• Isothermal Transformation AB→ Q1 = QAB = RT1[ln
VB
VA

]

• Adiabatic Transformation BC→ QBC = 0

• Isothermal Transformation CD→ Q2 = QCD = RT2[ln
VD
VC

]

• Adiabatic Transformation DA→ QDA = 0

Sign of heat quantities:

Q1 = RT1

[
ln
VB
VA

]
> 0, Q2 = RT2 ln

VD
VC

< 0

The relation between temperatures T1 and T2 and volumes VA,
VB, VC , and VD is given by:

P2V
γ

2 = P1V
γ

1 = Constant (for ideal gases)

T2V
γ−1

2 = T1V
γ−1

1 = Constant and T γ2 P
1−γ
1 = T γ1 P

1−γ
1 = Constant (for adiabatic processes)

For the adiabatic transformation B→C
we have: T1V

γ−1
B = T2V

γ−1
C .

And for the adiabatic transformation D→A,we have

T2V
γ−1
D = T1V

γ−1
A ⇒

T1V
γ−1
B

T1V
γ−1
A

=
T2V

γ−1
C

T2V
γ−1
D

⇒
V γ−1
B

V γ−1
A

=
V γ−1
C

V γ−1
D

115



⇒
(
VB
VA

)γ−1

=

(
VC
VD

)γ−1

⇒ VB
VA

=
VC
VD

.

• Q1 = RT1

[
ln
VB
VA

]
⇒ Q1

T1
= R

[
ln
VB
VA

]

• Q2 = −RT2

[
ln
VC
VD

]
⇒ Q2

T2
= −R

[
ln
VC
VD

]
= −R

[
ln
VB
VA

]
Q1

T1
= −Q2

T2

Q1

T1
+
Q2

T2
= 0

This relation is known as the Carnot-Clausius identity.

For a reversible cycle
Q1

T1
+
Q2

T2
= 0

For an irreversible cycle
Q1

T1
+
Q2

T2
< 0

5.11.4 E�ciency

1st principle: ∆U = W +Q1 +Q2 = 0→W = −(Q1 +Q2)

2nd principle:
Q1

T1
+
Q2

Q2
= 0→ Q1

T1
= −Q2

Q2

Q1

Q2
= −T1

T2

The e�ciency of the Carnot cycle depends only on the temperatures of
the cold and hot sources.

• The e�ciency of the heat engine is de�ned by the ratio of the work
done (Wdone) to the heat it received from the hot source (QHS).

ρ = −Wdone

QHS
= −−(Q1 +Q2)

Q1
= 1 +

Q2

Q1
= 1− T2

T1

ρ = 1 +
Q2

Q1
ρ = 1− T2

T1

• The e�ciency of heat engine depends only on the temperatures T1 and
T2 and not on the nature of the �uid.
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• For an irreversible heat engine: ρirrev < 1− T2

T1

• In the case of Refrigeration machines, the desired e�ect is the amount
of heat Q2 removed from the cold source. The e�ciency or coe�cient
of refrigeration e�ect is given by:

εrev =
Q2

W
=

Q2

−(Q1 +Q2)
⇒ εrév =

T2

T1 − T2
⇒ εrev =

T2

T1
− 1

117



Exercise 1:

Small glass beads with a total mass of m1 = 50g are placed in an oven
maintained at a temperature T1 = 80◦C. They are then immersed in a
calorimeter containing a mass m2 = 100g of water at a temperature T2 =
20◦C. Heat transfers take place inside the adiabatic enclosure constituting
the calorimeter under atmospheric pressure.

1. Calculate the �nal equilibrium temperature Tf .
2. Determine the variation in overall entropy.
Given data: The relevant thermal capacities are provided: Water (mass-

speci�c): cwater = 4.18 J K−1 g−1; Glass (mass-speci�c): cglass = 0.87 J K−1 g−1;
Calorimeter: C = 150 J K−1.

Solution:

1-
ΣQi = 0⇒ Qverre +Qeau +Qcal = 0 (1)

The heat quantity of the glass beads is: Qverre = m1cverre(Tf − T1)

⇒ Qverre = 50× 0.87(Tf − 353)⇒ Qverre = 43.5Tf − 15355.5

The heat quantity of the water is: Qeau = m2ceau(Tf − T2)

⇒ Qeau = 100× 4.18(Tf − 293)⇒ Qeau = 418Tf − 122474

The heat quantity of the calorimeter is: Qcal = C(Tf − T2)

⇒ Qcal = 150(Tf − 293)⇒ Qcal = 150Tf − 43950

(1)⇒ 43.5Tf − 15355.5 + 418Tf − 122474 + 150Tf − 43950 = 0

⇒ 611.5Tf − 14840 = 0⇒ Tf = 297.27K = 24.27◦C

2-
Determination of the variation in overall entropy:

∆S = ∆Sverre + ∆Seau + ∆Scal

The entropy variation of the glass beads is: ∆Sverre =

∫ T2

T1

δQverre
1

T

⇒ ∆Sverre = m1cverre ln
Tf
T1
⇒ ∆Sverre = 50× 0.87 ln

297.27

353

⇒ ∆Sverre = −7.48JK−1

The entropy variation of the water is: ∆Seau =

∫ T2

T1

δQeau
1

T

⇒ ∆Seau = m2ceau ln
Tf
T2
⇒ ∆Seau = 100× 4.18 ln

297.27

293

⇒ ∆Seau = 6.05JK−1
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The entropy variation of the calorimeter is: ∆Scal =

∫ T2

T1

δQcal
1

T

⇒ ∆Scal = C ln
Tf
T2
⇒ ∆Scal = 150 ln

297.27

293

⇒ ∆Scal = 2.17JK−1 ⇒ ∆S = 6.05 + 2.17− 7.48⇒ ∆S = 0.74JK−1

Exercise 02:

Consider 2 moles of ideal gas expanding from 30 to 50 liters in an isothermal
and irreversible manner.

1. Calculate the entropy change of the gas.

2. Calculate the created entropy.

Solution:

For the isothermal transformation (δT = 0),
we have: δU = δQ+ δW = 0⇒ δQ = −δW And δW = −PdV

1. The entropy change of the system (gas) is:

∆Ssystem =

∫ T2

T1

δQsystem

T

=

∫ T2

T1

PdV

T

=

∫ T2

T1

nRTdV

TV

=

∫ T2

T1

nRdV

V

= nR ln
V2

V1

= 2× 8.314 ln
50

30
= 8.49 J K−1
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2. The created entropy:

∆Sexchange =
Qirreversible

T
= −Wirreversible

T

= Pfinal∆V
1

T

= nRT
∆V

V2T

= nR
∆V

V2

= 2× 8.314
20

50
= 6.65 J K−1

∆Ssystem = ∆Sexchange + ∆Screated

∆Screated = ∆Ssystem −∆Sexchange

= 8.49− 6.65

= 1.84 J K−1

Exercise 03:

In an adiabatic enclosure, 360 g of water at 25◦C is mixed with 36 g of ice
at 0◦C.

1. Calculate the temperature of thermal equilibrium.

2. Calculate the entropy change accompanying this transformation.

Given: Molar speci�c heat of liquid water: Cwater(H2O, l) = 75.25 J ·
mol−1 ·K−1 Enthalpy change of fusion of ice: ∆h◦fusion,273(H2O, s) = 5.94 kJ ·
mol−1

Solution:

1- Calculation of the equilibrium temperature of the mixture:

Liquid water (m1 = 360 g) with T1 = 25◦C + Ice (m2 = 36 g) with
T2 = 0◦C (water in solid state).

After thermal equilibrium −→ liquid mixture with an equilibrium tem-
perature Teq

Ice(36g, 0◦C)
fusion−−−−→ Liquid(0◦C)

heating−−−−−→ mixture(liq, Teq)
cooling←−−−− (360g, 25◦C)water

In calculating the number of moles of liquid water: n1 =
m1

Mwater
, thus

n1 =
360

18
, therefore n1 = 20 moles of liquid water at T = 25 ◦C = 298K.
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The number of moles of ice at T = 0◦C = 273K: n2 =
m2

Mwater
, n2 =

36

18
,

n2 = 2moles.
We have: Q1 = n1cwater(Teq − T1): cooling of hot water,
Q1 = 20× 75.25(Teq − 298) = 1505Teq − 448490.
Q2 = n2Lf : ice melting,
Q2 = 2× 5.94× 103 = 11.88× 103.
And Q3 = n2cwater(Teq − T2),
Q3 = 2× 75.25(Teq − 273) = 150.5Teq − 41086.5.
ΣQi = 0→ Q1 +Q2 +Q3 = 0

⇒ 1505Teq − 448490 + 11880 + 150.5Teq − 41086.5 = 0

⇒ 1655.5Teq − 477696.5 = 0⇒ Teq = 288.55K = 15.55 ◦C

2- Calculation of the entropy change of the transformation:

∆S = ∆S1 + ∆S2 + ∆S3

The entropy change of the liquid water is:

∆S1 = n1cwater ln
Teq
T1
⇒ ∆S1 = 20×75.25 ln

288.55

298
⇒ ∆S1 = −48.50 J K−1

The entropy change of the ice is:

∆S2 =
n2Lf
Teq

⇒ ∆S2 =
2× 5.94× 103

288.55
⇒ ∆S2 = 41.17 J K−1

∆S3 = n2cwater ln
Teq
T2
⇒ ∆S3 = 2× 75.25 ln

288.55

273
⇒ ∆S3 = 8.35 J K−1

⇒ ∆S = 41.14 + 8.35− 48.50⇒ ∆S = 1.02 J K−1

Exercise 04:

Calculate ∆S◦298 for the following changes:
1. SnCl4(l)→ SnCl4(g)
2. CS2(g)→ CS2(l)
3. Cu(s)→ Cu(g)
4. H2O(l)→ H2O(g)
5. 2H2(g) + O2(g)→ 2H2O(l)
6. 2HCl(g) + Pb(s)→ PbCl2(s) + H2(g)
7. Zn(s) + CuSO4(s)→ Cu(s) + ZnSO4(s)
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ANSWER: 107 J/K; −86.4 J/K; 133.2 J/K; 118.8 J/K; −326.6 J/K;
−171.9 J/K; (g) −7.2 J/K

Exercise 04:

The entropy change for the process

H2O(s)→ H2O(l)

is 22.1 J/K and requires that the surroundings transfer 6.00 kJ of heat to the
system.

Is the process spontaneous at −10.00 ◦C?
Is it spontaneous at +10.00 ◦C?
Solution:

We can assess the spontaneity of the process by calculating the entropy
change of the universe. If ∆Suniv is positive, then the process is spontaneous.
At both temperatures, ∆Ssys = 22.1 J/K and qsurr = −6.00 kJ. At −10.00 ◦C
(263.15 K), the following is true:

∆Suniv = ∆Ssys+∆Ssurr = ∆Ssys+
qsurr
T

= 22.1 J/K−6.00× 103 J
263.15K

= −0.7 J/K

Since ∆Suniv < 0, melting is nonspontaneous (not spontaneous) at−10.0 ◦C.
At 10.00 ◦C (283.15 K), the following is true:

∆Suniv = ∆Ssys +
qsurr
T

= 22.1 J/K− 6.00× 103 J
283.15K

= +0.9 J/K

Since ∆Suniv > 0, melting is spontaneous at 10.00 ◦C.
Check Your Learning

Using this information, determine if liquid water will spontaneously freeze
at the same temperatures. What can you say about the values of ∆Suniv?
ANSWER Entropy is a state function, so ∆Sfreezing = −∆Smelting =
−22.1 J/K and qsurr = +6.00 kJ. At −10.00 ◦C, spontaneous, +0.7 J/K;
at +10.00 ◦C, nonspontaneous, −0.9 J/K.

Exercise 05:

A gas is isothermally (20◦C) compressed and the work done on the gas is
equal to −1850 J. Calculate the change of entropy which the gas experiences.

Solution :

∆S =
∫ 2

1

dQ

T
=

1

T
Q =

1

T
W = −1850

293
= −6.3 J/K.

Exercise 06:

You decide to take a nice hot bath but discover that your thoughtless room-
mate has used up most of the hot water. You �ll the tub with 195 kg of 30.0
degrees C water and attempt to warm it further by pouring in 5.00 kg of
boiling water from the stove. The heat capacity of water is 4190 J/(kg·K).
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(a) Is this a reversible or an irreversible process? Explain.
(b) Calculate the �nal temperature of the bath water.
(c) Calculate the net change in entropy of the system+surroundings (bath

water + boiling water), assuming no heat exchange with the air or the tub
itself. Explain the result.

Solution :

(a) Because the heat transfer occurs over a �nite temperature di�erence
it is irreversible.

(b) As the water mixes: heat will be transferred from the hot to the cold
water. Call the �nal temperature Tf and solve for Tf using Q = mc∆T .
mcc(Tf − Tc) = mbc(Tb − Tf ),

wheremc andmb are the masses of the cold and boiling water respectively
(same subscripts used for the temperatures). Solving yields: Tf = 31.75 ◦C.

(c) ∆S = mc ln
Tf
Ti

= mcc ln
Tf
Tc

+mbc ln
Tf
Tb

= 471 J/K. So ∆Ssystem > 0

indeed, as it should be.

Exercise 07:

A lonely party balloon with a volume of 2.40 L and containing 0.100 mol of
air is left behind to drift in the temporarily uninhabited and depressurized
International Space Station. Sunlight coming through a porthole heats and
explodes the balloon, causing the air in it to undergo a free expansion into
the empty station, whose total volume is 425 m3. Calculate the entropy
change of the air during the expansion.

Solution:

The entropy change of a free expansion is: ∆S = nR ln
Vf
Vi

= 10.0 J/K.

So ∆Ssystem > 0 (irreversible process).
A certain heat engine operating on a Carnot cycle absorbs 410 J of heat

per cycle at its hot reservoir at 135◦C and has a thermal e�ciency of 22.0%.
(a) How much work does this engine do per cycle? (b) How much heat
does the engine waste each cycle? (c) What is the temperature of the cold
reservoir? (d) Show that the total change of entropy for the Carnot cycle is
equal to 0.

Answer

1. From the de�nition of the e�ciency of a heat engine we �nd: W =
ηQH = 90.2 J per cycle.

2. For a heat engine: QH + QC = W (QC < 0 because heat leaves the
system!). So using the result from (a) we �nd QC = −320 J. So the
machine wastes 320 J every cycle.

3.
QC
QH

= −TC
TH

, so TC = −TH ·
QC
QH

= 318K.
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4. ∆S =
|QH |
TH

+
|QC |
TC

= 0. Because the entropy change is zero the Carnot

cycle must be reversible.
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Chapter 6

Statement of the Third
Principle of Thermodynamics,
Absolute Entropy at Zero
Kelvin (0 K)

6.1 Statement of the Third Principle: Absolute en-
tropy at zero Kelvin (0 K)

The third principle of thermodynamics, also known as Nernst's theorem
(1906), states that at absolute zero (-273◦C) the entropy of pure substances
(perfectly crystallized) is zero. Therefore, the third principle establishes a
reference for entropy. In the case of a pure substance, there is no thermal
agitation at this temperature, and the crystal is perfect.

6.2 The standard molar absolute entropy of a pure
substance S◦

ST
:

The value of the entropy of a substance depends on pressure (for example,
high pressure would con�ne a gas to a smaller volume, thus reducing its
entropy). Therefore, it is common to choose a standard pressure and provide
the standard molar entropy.

The third principle of thermodynamics assigns an absolute molar entropy
to any pure substance at temperature T . In the standard state, the absolute
molar entropy is denoted by S◦ST. That is, the molar entropy of a substance
in its standard state (pure substance under 1 atm).

At constant pressure, for example, p = p◦ = 1 atm, knowledge of the
heat capacity cp(T, P ), denoted by c◦p(T ), allows access, through integration,
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to S◦T :

S◦(T )− S◦(T = 0) =

∫ T

T=0
c◦p(T )

dT

T

Where:

• S◦(T ) represents the absolute molar entropy of compound A at tem-
perature T .

• S◦(T = 0) represents the absolute molar entropy of compound A at
temperature 0 K.

According to the third principle, S◦(T = 0) = 0, so:

S◦(T ) =

∫ T

T=0
c◦p(T )

T

T
dT

6.3 The change in absolute entropy during a chem-
ical reaction ∆S◦

R

The evolution of a thermodynamic system is governed by the entropy func-
tion, which can be positive or zero. In the case of chemical reactions, entropy
is positive if the reaction is spontaneous and zero if it is reversible (at equi-
librium). Consider the following reaction under standard conditions (P = 1
atm and T = 298 K):

aA + bB −→ cC + dD

∆S◦R,298K = (cS◦298K,C + dS◦298K,D)− (aS◦298K,A + bS◦298K,B)

Where S◦298K denotes the molar entropy of the chemical species expressed in
cal. K−1. mol−1. In general, the change in entropy of a chemical reaction
under standard conditions is given by the following relation:

∆S◦R,298 =
∑

niS
◦
i,298(Products)−

∑
njS

◦
j,298(Reactants)

6.4 The change in entropy of a chemical reaction
at temperature T , ∆SR(T )

Given the change in entropy of a chemical reaction ∆S◦R,298, we can calculate
the change in entropy of this reaction at another temperature T , ∆S◦R,T ,
using the Kircho�'s relation:

∆S◦R,T = ∆S◦R,298 +

∫ T

298
∆cp

dT

T

Where: ∆cp =
∑
cp,i(Products)−

∑
cp,j(Reactants).
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6.5 The Gibbs free energy of a chemical reaction

6.5.1 De�nition

• The condition of maximum entropy is a suitable criterion for the equi-
librium of an isolated system:

� ∆S > 0: Processes spontaneous (irreversible)

� ∆S = 0: Processes reversible

• In the case of a non-isolated system:

� It is necessary to consider the variations in entropy (of the system
and the external surroundings).

� It is necessary to �nd a new state function characteristic of the
system according to two criteria:

1. Criterion of maximum entropy: The system evolves towards
the state with the highest statistical probability (number of mi-
crostates).

2. Criterion of minimum energy: The system evolves towards
the state of lowest energy (the most stable).

Introduction of the state function called Free Enthalpy: G = H − TS
The free enthalpy (G) is an indispensable function for the study of chemical
reactions; it allows predicting if a chemical reaction performed at T and P
is theoretically possible and in which direction it evolves.

At constant temperature: dG = dH − TdS So: ∆G = ∆H − T∆S

6.5.2 Condition for the evolution of a system:

Consider a system that evolves spontaneously (in an irreversible way) from
an initial state to a �nal state at T = constant. In this case, we have:

dS >
dQirrev

T
=⇒ dS − dQirrev

T
> 0

. So: TdS − dQirrev > 0.
For a �nite transformation between the initial and �nal states (at con-

stant T and P ), we can write:

T∆S −∆H > 0 =⇒ ∆H − T∆S < 0

. Where: ∆G = ∆H − T∆S.
A non-isolated system at constant T and P evolves spontaneously in the

direction where ∆G < 0 (dG < 0).
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6.5.3 Calculation of the variation of free enthalpy during a
chemical reaction

Free enthalpy (G) is an essential function for the study of chemical reac-
tions; it allows predicting if a chemical reaction performed at T and P is
theoretically possible and in which direction it evolves.

6.5.3.1 Standard free enthalpy of formation ∆G◦f,T

It is the change in free enthalpy accompanying the formation of one mole of
a compound from its constituents taken in their standard reference state.

∆G◦f,T = ∆H◦f,T − T∆S◦f,T

6.5.3.2 Standard Gibbs free energy of reaction ∆G◦R,T

The following relation represents the state function known as the Gibbs
function, called free enthalpy:

∆G◦298 = ∆H◦298 − 298∆S◦298

.
∆G◦R,298 can also be calculated using the following expression:

∆G◦R,298 =
∑

∆G◦298(Products)−
∑

∆G◦298(Reactants)

.
∆G◦R,T can also be calculated at temperature T by the following relation:

∆G◦R,T = ∆H◦R,T − T∆S◦R,T

. Where ∆H◦T and ∆S◦T are calculated by applying Kirchho�'s law.
The standard free enthalpy of all simple substances is zero; ∆G◦R,T = 0.

• ∆G◦R,T < 0 implies the reaction is spontaneous.

• ∆G◦R,T > 0 implies the reaction is non-spontaneous.

• ∆G◦R,T = 0 implies the reaction is at equilibrium (there is no evolution
of the system).

6.6 Molar free enthalpy - Equilibrium

6.6.1 Variation of molar free enthalpy with pressure

During a transformation, the pressure of the system may vary. These varia-
tions do not have any in�uence on the state of condensed phases. However,
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in the case of gases, the e�ect of pressure is very important. The molar free
enthalpy G is expressed in terms of other thermodynamic functions by the
relation:

G = H − TS = U + PV − TS

dG = dU + PdV + V dP − TdS − SdT

Now, dW = −PdV and dQ = TdS for a reversible process. Hence:

dU = dQ− PdV = TdS − PdV

Thus:
dG = V dP − SdT

For an isothermal transformation, we can write:

dG = V dP

For a �nite variation in pressure from P1 to P2:

∆G = GP2
T −GP1

T =

∫ P2

P1

V dP

For n moles of ideal gas:

V =
nRT

P
=⇒ ∆G = GP2

T −GP1
T = nRT

∫ P2

P1

=⇒ GP2
T −GP1

T = nRT ln
P2

P1

If we choose P1 = 1 bar (standard state), For one mole of a pure gas, the
molar free enthalpy at pressure P is:

GPT = G◦T +RT lnP

For one mole of gas i in a mixture, the molar free enthalpy is a function of
the partial pressure Pi:

GPT = G◦T +RT lnPi

This relation is applicable in the case of ideal gases, and can be generalized
to systems with any constituents in the form:

GPT (i) = G◦T (i) +RT ln ai

where ai is the activity (concentration, pressure, etc.) of constituent i.
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6.6.2 Chemical equilibrium

6.6.2.1 De�nition

A chemical system is in equilibrium when it undergoes a reversible reaction,
that is, a reaction that is not total. The establishment of equilibrium requires
the coexistence of all constituents, products, and reactants at a constant
temperature, pressure, and with uniform compositions that remain constant
over time.

6.6.2.2 Mass action law (Guldberg and Waage relation for homo-

geneous equilibria) and equilibrium constants

A homogeneous equilibrium is any mixture that results in the formation
of a single solid, liquid, or gaseous phase. This phase is homogeneous: its
properties are identical regardless of the location within this phase. In 1865,
Guldberg and Waage, inspired by Berthollet's propositions, experimentally
demonstrated that there was a relation between the concentrations of species
present at equilibrium in solution; the equilibrium constant they de�ned was
called the Guldberg and Waage constant or the mass action law constant.
Consider a chemical reaction in solution,

aA + bB 
 cC + dD

At equilibrium, the concentrations of the constituents satisfy the relation:

Kc =
[C]c[D]d

[A]a[B]b

where Kc is the equilibrium constant relative to concentrations. [A] is the
molar concentration of constituent A.

In the case where the constituents are in the gaseous state, we use the
equilibrium constant relative to partial pressures:

KP =
P cCP

d
D

P aAP
b
B

6.6.2.3 Relation between KP and Kc

The molar concentration of a constituent:

[A] =
nA
V

=
PA
RT

; [B] =
nB
V

=
PB
RT

; [C] =
nC
V

=
PC
RT

; [D] =
nD
V

=
PD
RT

Thus : nA = a;nB = b;nC = c;nD = d

After replacing the concentrations of the di�erent constituents (in the gaseous
state) in the expression of Kc, we �nd that:

Kc =
[C]c[D]d

[A]a[B]b
= KP (RT )∆n(g)

Where: ∆n(g) = (c+ d)− (a+ b)
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6.6.2.4 Relation between the equilibrium constant and the stan-

dard free enthalpy change

Consider a chemical reaction occurring between ideal gases:

aA(g) + bB(g) 
 cC(g) + dD(g)

The change in free enthalpy between the initial state and any state before
equilibrium:

∆Gr,T = c ·GT (C) + d ·GT (D)− a ·GT (A)− b ·GT (B)

Applying for each constituent the relation:

GTP = G◦T +RT lnPi

We obtain:

∆Gr,T = ∆G◦r,T +RT ln
P cCP

d
D

P aAP
b
B

With:

∆G◦r,T = c ·G◦T (C) + d ·G◦T (D)− a ·G◦T (A)− b ·G◦T (B)

At equilibrium:

∆Gr,T = 0 =⇒ ∆G◦r,T +RT ln

(
P cC · P dD
P aA · P bB

)
= 0

=⇒ ∆G◦r,T = −RT ln

(
P cC · P dD
P aA · P bB

)
=⇒ ∆G◦r,T = −RT lnKP

lnKP = −
∆G◦r,T
RT

=⇒ KP = exp

(
−

∆G◦r,T
RT

)
The equilibrium constant depends only on the temperature and

has no dimension.

6.6.3 Displacement of the equilibrium

6.6.3.1 Le Chatelier's Principle

When a chemical system is subjected to a disturbance by changing one of
the equilibrium factors, the equilibrium shifts in a direction that reduces the
e�ect of the disturbance.

Equilibrium always tends to oppose the changes we want to impose on
it. This is the law of moderation.

We will study the e�ect of a disturbance on a system in equilibrium by
changing an equilibrium factor and predicting its evolution.
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6.6.3.2 Variation of KP with T : In�uence of Temperature: Van

't Ho� Law

∆G◦r,T = ∆H◦r − T∆S◦r = −RT lnKP

lnKP = −∆H◦r
RT

+
∆S◦r
R

If we plot lnKP against 1/T , we directly obtain the values of ∆H◦r and
∆S◦r . This relationship can be written in di�erential form:

d(lnKP )

dT
=

∆H◦r
RT 2

Van 't Ho� Law

d(lnKP ) =
dT

T 2
· ∆H◦r

R

=⇒
∫ (KP (T2))

(KP (T1))
d(lnKp) =

∫ T2

T1

dT

T 2
· ∆H◦r

R

lnkp]
kp(T2)

kp(T1) =
∆H◦

R

[
− 1

T

]T2
T1

=⇒ ln

(
KP (T2)

KP (T1)

)
=

∆H◦

R

[
1

T1
− 1

T2

]
The Vant'Ho� relation allows for an easy prediction of the in�uence of

temperature (T ) on an equilibrium. RT 2 is a term that is necessarily positive.

• If ∆H◦r < 0 (exothermic reaction): d(lnKP ) and dT have opposite
signs, so if T increases, KP decreases (and vice versa).

• If ∆H◦r > 0 (endothermic reaction): d(lnKP ) and dT have the same
signs, so if T increases, KP increases (and vice versa).

An increase in temperature (KP increases) thus favors the direction corre-
sponding to the endothermic reaction. Conversely, a decrease in temperature
(KP decreases) favors the direction corresponding to the exothermic reac-
tion.

6.6.3.3 In�uence of Partial Pressure

The equilibrium shifts in the direction of disappearance of the components
whose pressure has been increased.

KP =
P cC · P dD
P aA · P bB

= constant

• If PA increases (nA and [A] increase). For KP to remain constant, the
equilibrium shifts in direction 1 (forward direction).
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• If PC increases. For KP to remain constant, the equilibrium shifts in
direction 2 (reverse direction).

In general

• If the reactant pressures increase, the product pressures decrease {Sense
1

• If the reactant pressures decrease, the product pressures increase {Sense
2

6.6.3.4 Dissociation coe�cients in homogeneous phases

If a chemical reaction involves only one reactant (homogeneous medium),
such as: AB(g) 
 A(g) + B(g) It is called a dissociation reaction. The
dissociation rate α (dissociation coe�cient), ranging from 0 to 1, is de�ned
as follows:

α =
n′

n0

where n′ is the number of moles dissociated and n0 is the initial number of
moles.

AB(g) 
 A(g) +B(g)

at t = 0 : n0, 0, 0 at equilibrium: n0 − n′, n′, n′, KP =
PAPB
PAB

Total number of moles at equilibrium: nt = nAB +nA+nB = (n0−n′)+
n′ + n′ n′ = n0α

So: nt = (n0−n0α)+n0α+n0α = n0+n0α = n0(1+α) α = 0%→ 100%
t AB A B a
0 n0 0 0 0

à l'équilibre n0(1− α) n0α n0α α

nt n0(1 + α) 1

KP =
PAPB
PAB

⇒ lnKP = −∆G◦

RT

PA = XAPt =
nA
nt
Pt =

n0α

n0(1 + α)
Pt =

α

1 + α
Pt

PB = XBPt =
nB
nt
Pt =

n0α

n0(1 + α)
Pt =

α

1 + α
Pt

PAB = XABPt =
nAB
nt

Pt =
n0(1− α)

n0(1 + α)
Pt =

1− α
1 + α

Pt

KP =

(
α

1 + α
Pt

)(
α

1 + α
Pt

)
/

(
1− α
1 + α

Pt

)
=

α2Pt
(1 + α)(1− α)

=
α2Pt

1− α2

KP =
α2Pt

1− α2
⇒ α2 = KP (1− α2) = α2Pt ⇒ KP = α2(KP + Pt)

α2 =
KP

KP + Pt
⇒ α =

√
KP

KP + Pt
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Exercise 01

1. What is the standard molar absolute entropy of water at 25◦C, knowing
that:

s◦273(H2O, s) = 10.26 cal ·mol−1 ·K−1

∆h◦fusion, 273(H2O, s
 H2O, l) = 1440 cal ·mol−1

Cp(H2O, l) = 11.2 + 7.17× 10−3T cal ·mol−1 ·K−1.
2. What is the standard molar entropy of formation of water at 25◦C,

knowing that:
s◦298(H2, g) = 31.21 cal ·mol−1 ·K−1

s◦298(O2, g) = 49.00 cal ·mol−1 ·K−1.
Solution:

1−Calculation of the absolute molar entropy of water at 25◦C:

S0
298(H2O, l)

H2O (s, 273 K)→ H2O (l, 273 K)→ H2O (l, 298 K)

∆S0 = S0
298(H2O, l)− S0

273(H2O, s)

S0
298(H2O, l) = ∆S0 + S0

273(H2O, s)

∆S0 = ∆S0(273, fusion) + ∆S0(heating)

∆S0(273, fusion) =
∆H0

273,fusion

Tfusion
; ∆S0(heating) =

∫ 298

273
Cp(H2O, l)

dT

T

S0
298(H2O, l) =

∆H0
273,fusion

Tfusion
+

∫ 298

273
Cp(H2O, l)

dT

T
+ S0

273(H2O, s)

S0
298(H2O, l) = 10.26 +

1440

273
+

∫ 298

273
(
11.2

T
+ 7.17× 10−3)dT

S0
298(H2O, l) = 15.54 + 11.2 ln

298

273
+ 1.17× 10−3(298− 273)

S0
298(H2O, l) = 15.66 cal ·mol−1 ·K−1

Calculation of the standard entropy of formation of water at 298 K:∆Sf,298(H2O, l)

H2(g) +
1

2
O2(g) −→ H2O (l) at 298 K

∆S0
r,298 = ∆S0

f,298(H2O, l) =⇒ ∆S0
f,298(H2O, l) = S0

298(H2O, l)− S0
298(H2, g)− 1

2
S0

298(O2, g)

∆S0
f,298(H2O, l) = 15.66− 31.21− 1

2
× 49

∆S0
f,298(H2O, l) = −40.05 cal ·mol−1 ·K−1
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Exercise 02

Consider the formation reaction of one mole of MgO:

Mg (s) +
1

2
O2(g) −→ MgO (s)

Assume that ∆H0
r = −602 kJ and ∆S0

r = −108 J · K−1 are independent of
temperature.

1. Calculate ∆G0
r for the formation of MgO (s) at 0 ◦C. Is the reaction

possible or impossible at this temperature?

2. At what temperature is the formation of MgO impossible?

Solution:

1- Calculation of the standard Gibbs free energy of formation of MgO:

∆G0
r = ∆H0

r − T∆S0
r

∆G0
r = −602− 273× (−108× 10−3)

∆G0
r = −572.52 kJ

We observe that ∆G0
r < 0, so the formation reaction of MgO is possible.

2- Calculation of the temperature at which formation is impossible:
The reaction is impossible, so ∆G0

r = 0:

∆H0
r − T∆S0

r = 0

T∆S0
r = ∆H0

r

T =
∆H0

r

∆S0
r

T =
−602

−108× 10−3

T = 5574.07K

Therefore, the reaction is impossible, i.e., non-spontaneous at T > 5574.07K.
Exercise 03

Calculate the standard entropy change for the combustion of methanol,
CH3OH at 298 K:

2CH3OH(l) + 3O2(g) −→ 2CO2(g) + 4H2O(l)

Solution
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The value of the standard entropy change is equal to the di�erence be-
tween the standard entropies of the products and the entropies of the re-
actants scaled by their stoichiometric coe�cients. The standard entropy of
formations are found in speci�c Table.

∆S0 = ∆S0
298

=
∑

νS0
298(products)−

∑
νS0

298(reactants)

= [2S0
298(CO2(g)) + 4S0

298(H2O(l))]− [2S0
298(CH3OH(l)) + 3S0

298(O2(g))]

= [(2× 213.8) + (4× 70.0)]− [(2× 126.8) + (3× 205.03)]

= −161.6 J/mol ·K

Exercise 03

Calculate the standard entropy change for the combustion of methanol,
CH3OH:

2CH3OH(l) + 3O2(g)→ 2CO2(g) + 4H2O(l)

Solution

Calculate the entropy change using standard entropies as shown above:

∆S◦ =
∑

νS◦(products)−
∑

νS◦(reactants)

[2mol× S◦(CO2(g)) + 4mol× S◦(H2O(l))]− [2mol× S◦(CH3OH(l)) + 3mol× S◦(O2(g))]

= [2(213.8) + 4× 70.0]− [2(126.8) + 3(205.2)]

= −161.6 J/K

Check Your Learning

Calculate the standard entropy change for the following reaction:

Ca(OH)2(s)→ CaO(s) + H2O(l)

ANSWER: 24.7 J/K
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