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« Les Solutions Régularisées des Problémes Inverses en Imagerie Médicale »

Résumé :

Cette thése a contribué au développement de méthodes mathématiques et informatiques pour résoudre les
problémes inverses de traitement d'images, en mettant I'accent sur les applications d'imagerie médicale, y compris
la restauration d'images médicales, la déconvolution, le filtrage et 'amélioration du contraste. Ce travail vise a
montrer que la régularisation joue un réle crucial dans la précision et la stabilité des solutions régularisées de
probléemes inverses en imagerie médicale. En plus de cela, nous avons étudié l'estimation des parameétres de
régularisation, qui est une étape critique dans le processus de régularisation. Les contributions principales de cette

thése peuvent étre résumées comme suit :

 Proposer une nouvelle approche de restauration d'images médicales basée sur un algorithme d'optimisation
d'essaim de particules a comportement quantique gaussien et un filtre inverse régularisé amélioré avec estimation
des parametres de régularisation. Ce modéle controle 1'opération de restauration du défloutage et du débruitage de

I'image médicale avec une estimation de régularisation pour une meilleure qualité et netteté de I'image médicale.

« Une nouvelle méthode de déconvolution d'images médicales par ultrasons nommeée basée sur la régularisation L2
et l'algorithme d'optimisation des colonies d'abeilles artificielles est proposée. L'objectif de ce travail est d'étudier
I'impact de 1'estimation des parametres de régularisation sur le processus de déconvolution avec interférence de

flou et de bruit.

« Etude de 1'impact du choix des paramétres de régularisation sur la variation généralisée totale du débruitage de
second ordre. Nous proposons notre algorithme intelligent pour estimer la valeur stable hautement significative du

parameétre de régularisation pour I'opération de débruitage d'image la plus performante.

« Proposer une nouvelle méthode d'amélioration d'images médicales. Ce modele est basé sur 'utilisation de POA

pour estimer la limite de clip, qui controle les performances de 1'opération d'amélioration a 1'aide de CLAHE. Le



processus d'estimation améliore 1'efficacité de 1'opération et fournit des résultats supérieurs en termes de qualité

d'image et de contraste.

Mots clés: Probleme inverse, solutions régularisées, estimation de régularisation, probléme d'optimisation,

algorithmes d'optimisation bio-inspirés, problématiques de traitement d'images.

« Regularized Solutions to Inverse Problems in Medical Imaging »

Abstract:

This thesis has contributed to the development of mathematical and computational methods to solve inverse

image-processing problems, with a focus on medical imaging applications, including medical image restoration,

deconvolution, filtering, and contrast enhancement. This works aims to show that regularization plays a crucial

role in the accuracy and stability of regularized solutions to inverse problems in medical imaging. In addition to

that, we have investigated the estimation of regularization parameters, which is a critical step in the regularization

process. The major contributions of this thesis can be summarized as follows:

Proposing a novel approach to medical image restoration based on a Gaussian Quantum-Behaved Particle
Swarm Optimization algorithm and Enhanced Regularized Inverse Filter with regularization parameter
estimation. This model controls the medical image deblurring and denoising restoration operation with
regularization estimation for better medical image quality and sharpness.

A novel method for ultrasound medical image deconvolution named based on L2 regularization and
artificial bee colony optimization algorithm is proposed. The aim of this work is to study the impact of
regularization parameter estimation on the deconvolution process with blur and noise interference.
Investigating the impact of regularization parameter choice on the total generalized variation of second-
order denoising. We propose our intelligent algorithm to estimate the highly significant stable value of the
regularization parameter for the best performance image denoising operation.

Proposing a novel medical image enhancement method. This model is based on using POA to estimate the
clip-limit, which controls the performance of the enhancement operation using CLAHE. The estimation
process improves the efficiency of the operation and provides superior results in terms of image quality

and contrast.

Keywords: Inverse problem, regularized solutions, regularization estimation, optimization problem, bio-inspired

optimization algorithms, image processing issues.
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Chapitre 1 : Introduction



Chapitre 1. Introduction

1.1 Cadre de la Recherche

L'imagerie médicale a révolutionné la pratique de la médecine. Il est devenu un outil essentiel
pour le diagnostic, la planification du traitement et le suivi de diverses maladies. Les techniques
d'imagerie médicale telles que les rayons X, la tomodensitométrie, I'IRM et la TEP générent
des images en mesurant différentes propriétés physiques du corps humain, telles que la densite,
la magnétisation et la radioactivité. Cependant, les images produites par ces techniques sont

souvent bruitées, incompletes et déformées, ce qui rend l'interprétation de ces images difficile.

Les problemes inverses sont des problemes mathématiques qui surviennent lorsque nous
essayons de reconstruire (obtenir) les propriétés physiques sous-jacentes d'un objet ou d'un
systéme a partir de mesures indirectes. En imagerie médicale, des problémes inverses se posent
lorsque I'on cherche a reconstruire I'image d'un objet a partir des mesures obtenues par la
technique d'imagerie. La reconstruction de I'image a partir des mesures est un probleme mal
posé car le nombre de mesures est souvent inférieur au nombre d'inconnues a estimer. Par
conséquent, la solution du probléme inverse est souvent instable et tres sensible au bruit et aux

autres sources d'erreur.

La régularisation est une technique mathématique utilisée pour stabiliser la solution du
probleme inverse mal-posé. La régularisation introduit des connaissances ou des hypotheses
préalables sur la solution et aide a contraindre la solution a un espace physiquement plausible.
Les méthodes de régularisation ont été largement utilisées en imagerie médicale pour améliorer
la qualité des images obtenues et réduire les artefacts causés par le bruit et d'autres sources

d'erreurs.

Le probleme de régularisation en traitement d'image peut étre exprimé comme un probléeme
d'optimisation, ou la fonction objective est minimisée sous réserve d'une contrainte de
régularisation. La contrainte de régularisation introduit des informations ou des hypothéses
préalables sur la solution, ce qui aide a stabiliser la solution et a réduire les effets du bruit et
d'autres sources d'erreur. Le choix du terme de régularisation et du parameétre de régularisation
dépend du probleme spécifique et du type d'informations préalables ou d'hypothéses sur la

solution.

Les algorithmes d'optimisation sont largement utilisés dans I'estimation régularisée et les
problemes inverses en imagerie, et ils jouent un rdle crucial dans la résolution du probléeme de

régularisation. Ces algorithmes sont utilisés pour trouver le paramétre de régularisation optimal
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et pour minimiser la fonction objective soumise a la contrainte de régularisation. Les
algorithmes d'optimisation peuvent étre classés en deux catégories : déterministes et
stochastiques.

Les algorithmes d'optimisation déterministes, tels que la descente de gradient, le gradient
conjugué et la méthode de Newton, sont largement utilisés dans les probléemes inverses en
imagerie. Ces algorithmes sont basés sur le calcul du gradient de la fonction objectif et utilisent
cette information pour mettre a jour la solution de maniére itérative. Ces algorithmes sont
efficaces et peuvent converger rapidement vers la solution optimale si la fonction objective est
lisse et convexe. Cependant, dans les problemes inverses en imagerie, la fonction objective est

souvent non convexe et non lisse, ce qui peut rendre le probléeme d'optimisation difficile.

Les algorithmes d'optimisation stochastique, tels que la descente de gradient stochastique, sont
congus pour traiter des fonctions objectives non convexes et non lisses. Ces algorithmes
utilisent un sous-ensemble aléatoire des données pour calculer le gradient de la fonction objectif
et mettre a jour la solution de maniére itérative. Les algorithmes d'optimisation stochastique
sont efficaces et peuvent converger vers une bonne solution méme si la fonction objective est
non convexe et non lisse. Cependant, ces algorithmes nécessitent un réglage minutieux du taux

d'apprentissage et d'autres parametres pour assurer la convergence.

Les algorithmes d'optimisation bio-inspirés ont acquis une attention considérable dans la
résolution des probléemes de traitement d'image ces derniéres années. Ces algorithmes
s'inspirent des systéemes biologiques et des phénomeénes naturels et se sont avérés fournir des
solutions efficaces a des problémes d'optimisation complexes. En plus de cela, ces algorithmes
d'optimisation ont montré un grand potentiel dans la résolution de problémes inverses
d'imagerie et d'estimation de régularisation. Ces algorithmes sont basés sur des phénomenes

naturels et ont la capacité de gérer des probléemes d'optimisation difficiles.
1.2 Contributions a la Recherche

Cette these propose plusieurs algorithmes pour résoudre les problemes inverses de traitement
d'images médicales, notamment la restauration d'images médicales, la déconvolution, le filtrage
et I'amélioration de contraste. Les principales contributions de cette these peuvent étre résumeées

comme suit ;

e Je présente une revue des systéemes d'imagerie médicale, des problemes inverses et de

la régularisation. (Chapitre 2)
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e Plusieurs méthodes sont presentées comme solutions aux problémes inverses en
imagerie. En plus d'explorer des cadres d'optimisation bio-inspirés et des modeles et
applications récents dans ce domaine. (Chapitre 3)

e Je propose une nouvelle approche de restauration d'images médicales nommée ERIF-
GQPSO basée sur un algorithme d'optimisation d'essaim de particules a comportement
quantique et gaussien et un filtre inverse régularisé amélioré avec 1’estimation des
parametres de régularisation. Ce modele contr6le I'opération de restauration du
défloutage et du débruitage de I'image meédicale avec une estimation de régularisation
pour une meilleure qualité et netteté de I'image médicale. (Chapitre 4, Section 1)

e Une nouvelle méthode de déconvolution d'images médicales par ultrasons nhommée
basée sur la régularisation L2 et l'algorithme d'optimisation des colonies d'abeilles
artificielles est proposée. L'objectif de ce travail est d'étudier I'impact de I'estimation des
parametres de régularisation sur le processus de déconvolution avec interférence de flou
et de bruit. (Chapitre 4, Section 2)

e «J'étudie I'impact du choix des parameétres de régularisation sur la variation généralisée
totale du debruitage de second ordre. Je propose notre algorithme intelligent pour
estimer la valeur stable hautement significative du parameétre de régularisation pour
I'opération de débruitage d'image la plus performante. (Chapitre 4, Section 3)

e Je propose une nouvelle méthode d'amélioration d'images médicales. Ce modele est
basé sur l'utilisation de POA pour estimer la limite de clip, qui contr6le les performances
de l'opération d'amélioration a l'aide de CLAHE. Le processus d'estimation améliore
I'efficacité de I'opération et fournit des résultats supérieurs en termes de qualité d'image
et de contraste. L'utilisation du présent algorithme permet d'obtenir un impact visuel
supérieur sur l'image traitée ainsi que d'augmenter le taux de conformité dans le
diagnostic clinique. (Chapitre 4, Section 4)

1.3 Structure de la These

Cette thése est composeée d'une collection d'articles et de travaux qui sont publiés par/soumis a
des revues et conferences internationales dans le domaine du traitement d'images. Cette these

propose plusieurs solutions régularisées a des problémes inverses en imagerie médicale.

Le chapitre 1 se concentre sur le contexte de notre recherche et les contributions a la recherche.
Le chapitre 2 présente une revue des systemes d'imagerie médicale, des problemes inverses et
de la régularisation. Le chapitre 3 présente le cadre proposeé et les solutions aux problémes
inverses et a l'estimation par régularisation. Le chapitre 4 s'attache a présenter les solutions

4
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proposées aux problemes de traitement d'images médicales et nos contributions a la recherche.
Le chapitre 5 résume les principales contributions de cette these et discute différentes directions

de recherche pour des travaux futurs.



Chapitre 2 : Les Problemes Inverses en Imagerie

Meédicale
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2.1 Introduction

Dans ce chapitre, nous illustrons le cadre des problemes inverses en imagerie medicale, en
présentant les différentes modalités et systémes d'acquisition d'images (Rayons X, IRM, CT...),
parallélement & la description des principales opérations et procédés de traitement d'images
médicales. De plus, la définition du modeéle de probleme inverse en imagerie est présentée, y
compris la description du principe de régularisation et des stratégies d'estimation. Enfin,
plusieurs définitions, principes et exemples de problemes inverses en imagerie sont présentés.

Ces applications sont les principaux thémes que nous avons menés dans nos recherches.

2.2 Les Systémes d’imagerie Médicale
2.2.1 Imagerie Par Résonance Magnétique

2211 Principe

La résonance magnétique nucléaire est définie par les deux principes suivants : I'effet de
résonance magnétique et la radiofréquence (RF), qui sont appliqués en imagerie par résonance
magnétique (IRM) pour la génération d'images. L'origine principale du contraste entre plusieurs
tissus en IRM est la relaxation. Ce phénoméne conduit a I'approche de l'aimantation vers
I'équilibre.

La vitesse de relaxation est liée au tissu lui-méme, différents tissus entrainent diverses
relaxations. L'amplitude du signal recu pendant le temps de relaxation est dissemblable, et c'est
ce qui apparait dans le contraste en IRM. Le systeme d'imagerie est contrdlé par différents
parameétres, dont le type de séquence et I'acquisition. Le choix de la pondération est essentiel
dans I'application médicale, il est contr6lé par le temps d'écho (TE) et le temps de répétition
(TR).

Un composant important du systéme IRM est les bobines de gradient, qui conduisent a la
variation linéaire du champ magnétique homogéne. La combinaison de trois bobines de gradient
permet cette variation dans les différentes directions spatiales orthogonales. Les principaux
concepts, basés sur le systeme de bobines de gradient, sont la sélection de tranches et le codage
spatial.[1][3]
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Figure 2.1 IRM Moderne (Siemens Healthineers).

2.2.1.2 Applications

Des applications avancées de I'lRM ont été menées dans la période récente. L'objectif principal
de ces expériences est d'accélérer le processus d'acquisition et d'améliorer les signaux.
L'imagerie paralléle est une application bien établie dans cette approche, qui fournit la réduction
des données nécessaires a la reconstruction de I'image. En ce qui concerne I'approche de
contraste, plusieurs applications ont été proposées, notamment I'excitation sélective pour
I'imagerie coronarienne du sang clair, I'angiographie sans contraste et I'imagerie par résonance

magnétique fonctionnelle pour visualiser I'activité neuronale dans le cerveau.[1][4]

2.2.2 Imagerie par Rayon X
2.2.2.1  Principe

Le tube a rayons X est un composant sous vide avec une cathode et une anode (métal solide) a
I'intérieur. La production de e- est due a I'énergie thermique appliquée au matériau (filament),
cette énergie est supérieure a I'énergie de liaison du matériau. Et lI'accélération des électrons
produits est appliquée a l'aide d'une tension. Le phénoméne de ralentissement (accélération

négative) des électrons apres avoir heurté I'anode génere des rayons X. [1][3]
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Figure 2.2 Tube a Rayon X

2.2.2.2 Applications

La radiographie est définie comme l'opération de génération d'images de projection
bidimensionnelle en exposant le corps d'intérét (anatomie) aux rayons X, parallélement a la
mesure de l'atténuation de ce rayonnement aprés passage de I'objet. Cette modalité d'imagerie

est courante et est utilisee dans différentes cliniques.

Le principal avantage de cette application d'imagerie est la possibilité d'examiner le systéme
squelettique. Le contraste est apparu sur lI'image radiographique en raison du coefficient
d'atténuation élevé des os par rapport aux autres tissus. Cette caractéristique offre un contraste
remarquable et augmente la possibilité de détection et de classification des caractéristiques.

Une autre application bien connue des rayons X est la fluoroscopie, qui est définie comme une
séquence d'images radiographiques générées périodiquement et a une fréquence d'images
limitée. En ce qui concerne l'imagerie des veines, l'angiographie est appliquée pour analyser les
propriétés des arteres. Le défi dans ce type d'application est le faible contraste puisque les
propriétés du vaisseau ne different pas de celles des tissus environnants. L'utilisation de I'agent

de contraste dans ce type de modalité est essentielle pour augmenter la qualité de I'image.[1][4]

2.2.3 Tomodensitométrie (TDM)
2.2.3.1 Principe
La tomodensitométrie (TDM) est considérée comme I'une des applications les plus importantes

de l'imagerie médicale. Le principe mathématique sous-jacent du processus de génération

d'images en imagerie CT est la transformée de Radon.
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Figure 2.3 TDM Moderne (Siemens Healthineers).

2.23.2 Applications

La reconstruction TDM classique mono-énergie suppose un rayonnement mono-énergétique.
Cette énergie est incapable de fournir des informations quantitatives sur la composition des
tissus. La saisie des données spectrales permet de disposer d'informations quantitatives réelles
sur le corps scanné, et c'est le principe de base de la tomodensitométrie spectrale. D'autres
applications médicales populaires sont I'ablation osseuse, les systémes d'imagerie
PET/SPECT et le diagnostic de perfusion pulmonaire.[1][3]

2.2.4 Tomographie par Emission

2241 Principe

L'imagerie fonctionnelle est appliquée pour voir et analyser les processus biologiques. La
source de rayonnement dans ce type d'imagerie est située dans le corps du patient, cette méthode
appartient a la famille des applications de la tomographie d'émission. Le processus commence
par la désintégration radioactive, en fonction du nombre de photons émis, les deux processus
SPECT et PET sont établis.[1][4]

2242 Applications

Les applications de la tomographie par émission sont utilisées dans divers domaines de la
médecine, y compris le diagnostic et la thérapie. PET et SPECT fournissent des informations
sur le flux sanguin dans le domaine de la neurologie. Pour I'oncologie, la TEP est utilisée pour
détecter un métabolisme élevé du glucose, qui est le résultat de tumeurs métastatiques. En plus

de cela, la tomographie par émission est appliquée dans la thérapie par radio-isotopes en ciblant
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les tissus malins avec des radiations, ce qui entraine l'arrét de la croissance des cellules
indésirables.[1][3]

Figure 2.4 PET/CT Scan (Siemens Healthineers).

2.2.5 Echographie
2.2.5.1  Principe

Le composant principal d'un systeme d'imagerie par ultrasons est le transducteur, qui fonctionne
comme un genérateur et un détecteur d'ondes ultrasonores par la conversion de I'énergie
mécanique en électricité. Apres la pénétration des ondes dans le corps, la génération d'échos se
produit en raison de la réflexion et de la diffusion. Ces échos sont enregistrés et transformés en
images de différentes dimensions (1-2-3 D).[1][4]

2252 Applications

En comparaison avec d'autres modalités d'imagerie, I'imagerie par ultrasons offre plusieurs
avantages, notamment le caractére non invasif de I'opération et I'absence d'application de
rayonnement ionisant. L'acquisition d'images en échographie est rapide, facile et peut étre

étendue a plusieurs applications.[1][4]

11
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Figure 2.5 System d’imagerie échographique (Siemens Healthineers).

2.3 Traitement d’image médicale

2.3.1 Amélioration d’image

Pour une visualisation optimale, des opérations de modification de contraste sont souvent
utilisées pour obtenir une image de meilleure qualité. La mise a I'échelle des valeurs d'intensité
est I'une des méthodes utilisées dans cette approche pour obtenir un affichage approprié de
I'image, une fonction commune pour cette opération est la fenétre et le niveau. En plus de cela,
un autre type d'amélioration d'image est celui basé sur la normalisation des intensités
résultantes, connu sous le nom de correction gamma. Cette méthode est adaptée a la perception
de l'ceil humain. De plus, I'égalisation d'histogramme est une approche différente de
I'amélioration par rapport a la fenétre et au niveau, et a la correction gamma. Cependant, on sait

qu'elle est largement appliquée dans les opérations de traitement d'images. [1][2]
2.3.2 Détection des Bords

L'un des problémes courants du traitement d'image est la détection des contours. Les bords de
I'image sont les changements remarquables entre les intensités voisines. Pour représenter la
détection des contours en tant que fonction, la détection de ces changements remarquables peut
se faire a l'aide de la dérivée de I'image. Il est défini par I'équation

£6) = limpog L0 h})l /) (2.1)
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Dans le cas discret, plusieurs approximations sont utilisées pour la dérivée. Les différences

avant, arriére et centrale peuvent étre présentées comme suit

AfX)=f(x+1) - f(x)
2.2)

Vof (1) =f)—f(x—-1)
6f(x) =fx+1)—-f(x—-1)

Ces approximations sont différentes en termes d'applicabilité¢ des images et de leur
précision.[1][2][4]

2.3.3 Opérations Morphologiques

Le principe des opérations morphologiques opere sur des ensembles ; l'introduction de ces
opérations est assurée en traitant les images comme des ensembles. L'opérateur est compose de

la structuration (image/ensemble) et de I'opération principale.

B e 5 L

Figure 2.6 Exemples d’élément structurant

Les quatre opérations de base sont I'érosion, la dilatation, I'ouverture et la fermeture, ou la

composition de I'érosion et de la dilatation crée I'ouverture et la fermeture.[1][2]
2.3.4 Segmentation d’image

La segmentation d'image est définie comme I'opération de conversion d'une image en niveaux
de gris avec plusieurs valeurs d'intensité en une image avec des valeurs d'intensité de segment
inférieures a celles d'origine. En conséquence, I'image segmentée sera composée en différentes
régions, qui correspondent a plusieurs partitions de valeurs d'intensité. Ce processus conduit a

la distinction entre différents tissus.

Le seuillage est I'une des méthodes de base utilisées dans la segmentation d'images. Son
principe est la comparaison de chaque valeur d'intensité avec un seuil 9, et sa valeur peut étre

déterminée automatiquement en utilisant certains algorithmes.[1][2]
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1 iff(x,y)=6
0 otherwise

me={ (2.3)

2.4  Les Problémes Inverses en Imagerie Médicale

2.4.1 Probleme Inverse

Trouver la solution & un probléme inverse est le processus de calcul d'une quantité physique
inconnue, qui est liée a des mesures données (indirectes) obtenues par un modele direct. Les
problemes inverses sont bien connus dans plusieurs applications d'imagerie, notamment I'lRM,
la TDM, la TEP, la SPECT et la tomographie €électronique (TE).

Un probleme inverse peut étre défini mathématiquement comme suit

9= Hf (2.4)

g est la donnée de mesure et f est la quantité inconnue. Le principe d'un probléme bien posé a
été établi a partir de l'idée que l'inversion d'un modéle direct n'est pas simple dans plusieurs
applications, en raison de l'inexistence d'une solution unique au modéle inverse, et de

I'amplification des erreurs de mesure.

En 1923, Hadamard a introduit la notion de probléme bien posé. Il s’agit d’un probléme dont :
— la solution existe

— la solution est unique

— la solution dépend contindment des données.

Un probléme qui n’est pas bien posé au sens de la définition ci-dessus est dit mal posé. Les
problémes inverses ne vérifient souvent pas 1’une ou I’autre de ces conditions, voir les trois
ensembles. Cela n’est pas surprenant pour plusieurs raisons. Tout d’abord, un modele physique
étant fixé, les données expérimentales dont on dispose sont en général bruitées, et rien ne
garantit que de telles données bruitées proviennent de ce modele, méme pour un autre jeu de
paramétres. Ensuite, si une solution existe, il est parfaitement concevable que des paramétres
différents conduisent aux mémes observations. [113].

La décroissance rapide des valeurs singuliéres de g est la principale source du caractére mal
posé du probléme inverse. Définir une approximation gt, avec l'opérateur R, car sa

régularisation est l'idée clé pour surmonter ce probleme. [5][6][7]1[8][9]
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2.4.1.1 Stratéqgies de choix des paramétres de régularisation

- Une stratégie de choix des parametres a priori : Cette stratégie peut étre caractérisee par des

régularisations linéaires, et conduire a une régularisation convergente.

- Stratégie de choix des parameétres a posteriori : elle ne nécessite pas plusieurs informations

supplémentaires.

- Stratégie de choix des parametres heuristiques : elle ne nécessite pas de connaissance du
niveau de bruit et elle est populaire dans la pratique.[5]

2.4.2 Reconstruction d’image
24.2.1 Principe

La reconstruction d'images médicales peut étre exprimée a l'aide de la forme mathématique

suivante
g=Hf®n (2.5)

H est le systeme physique de I'opération d'acquisition d'image, qui peut étre linéaire ou non
linéaire. f est la variable qui représente I'image inconnue pour la reconstruction, g est la donnée
mesurée et n est le bruit. La reconstruction d'image est un probléme inverse, qui est en général
difficile a résoudre. La nature a grande échelle et mal posée du probléme rend la tache difficile

en termes de recherche de solution dans la pratique.
2422  Modéle
Le probleme d'optimisation suivant représente la solution de reconstruction d'image

mingep L(f) = G(Hf, g) + A@(W, f). (2.6)

f* = arg ming L(f) est la solution approchée. G(Hf, g) Représente le terme de fidélité des
données, il mesure la cohérence des données mesurées g. @ (W, f) est le terme de régularisation,
il considere I'information a priori sur I'image pour la reconstruction. L'opération la plus cruciale
en modélisation est la régularisation, puisque A assure I'équilibre entre le terme de régularisation

et le terme de fidélité aux données.[10]
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2.4.3 Restauration d’image

24.3.1 Principe

La restauration d'image est une opération nécessaire pour produire une image de haute qualité
pour la visualisation; il utilise la connaissance préalable de la dégradation. La modélisation de
ladistorsion de I'image est assurée par le bruit, le flou ou la fonction de dégradation. En imagerie
médicale, systemes d'acquisition, le résultat de mauvaise qualité est lié aux appareils et a
I'environnement, notamment la non-linéarité des capteurs, le mouvement de la caméra et la

turbulence atmosphérigue.

243.2 Modéle de Dégradation

Dans le processus de dégradation, I'image d'origine est affectée par le flou et le briit aver

I'utilisation de la fonction de dégradation et du bruit additif, cette opération est décrite (2.7)

suit

gxy) =hxy) «f(xy) +n(xy)

f(x,y) est I'image originale, g(x,y) est I'image dégradée (floue et bruitée), h(x,y) est la

fonction de dégradation, et n(x,y) représente le bruit additif.

2433 Modele de Flou

- Flou gaussien : filtre de flou baseé sur la fonction gaussienne, qui est représenté comme

suits

1 (-xgz
ae 20 (2.8)

G(x) =

o Représente I'écart type de la distribution.

- - Motion Blurring : Ce type de flou est lié a la mauvaise mise au point de la caméra et

aux changements d'angle lors de I'acquisition..

2434 Modéle de Bruit

La variation étrange et indésirable de I'image est representée sous forme de bruit, ce qui
provoque la modification de la visibilité de I'image. Différents types de bruit, y compris le bruit
gaussien, le bruit impulsionnel et le bruit uniforme, généralement des images corrompues

génerées par des systemes numériques.
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2.4.35 Genres

Récupérer I'image d'origine a partir de I'image dégradée est I'objectif principal de I'opération de
restauration. La fonction d'étalement de points (PSF) contréle la dégradation de I'image et les
techniques de restauration sont divisées en fonction de la PSF en techniques de restauration
d'image aveugle, ou il n'y a pas d'informations préalables sur la PSF, et en restauration non

aveugle, ou nous avons des connaissances sur la PSF. [11][12]
2.4.4 Filtrage d’image

2.4.4.1 Principe

Le filtrage d'image est lI'opération de suppression du bruit d'une image dégradée pour en
restituer le vrai. Les composants d'image tels que les bords, les textures et le bruit ont des
caractéristiques a haute fréquence qui rendent le processus de débruitage plus difficile en raison

de la difficulté de distinguer ces composants, ce qui peut entrainer la perte de détails d'image.

D'un point de vue mathématique, le débruitage d'image est un probléme inverse qui peut étre

modélisé comme suit
g=f+n (2.9)

g est I'image bruitée apres observation, f est I'image inconnue (Propre), et n est le bruit additif

(blanc, gaussien...), il est caractérisé par 1'écart type.

2.4.4.2 Applications

L'objectif du processus de réduction du bruit est de diminuer le bruit en paralléle avec la
minimisation de la perte de composants d'origine. Les principales opérations de débruitage

d'image sont

- Lissage de zone,

- Protection des bords,

- Préservation des textures,

- Eviter la génération d'artefacts.[13][14]
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2.4.5 Deconvolution d’image

2.4.5.2 Principe

L'objectif de la déconvolution d'image est d'inverser le processus d'acquisition en récupérant
I'image nette d'origine. Dans la déconvolution aveugle, le flou est considéré comme inconnu, et
c'est ce qui rend l'opération plus difficile comme probléme par rapport au processus non
aveugle. De plus, I'exigence d'informations supplémentaires est essentielle, y compris des

acquisitions multiples pour une application parfaite.
2.4.5.3 Modéle

Le modeéle de dégradation dans le processus de deconvolution peut étre présenté comme suit
g=H+f+n (2.10)
L'objectif du processus de déconvolution est de récupeérer f depuis g.[15]

2.4.6 Génération d’image

2.4.6.1 Principe

Les applications génératives d'images se concentrent sur la résolution du probleme inverse
représenté comme le processus de calcul d'une quantité physique inconnue a partir de la mesure
obtenue via un modele direct. Les problémes directs et inverses peuvent étre présentés avec
I'expression suivante

H:F=G

(2.11)
g=H({f)+e

Ou f € F est I'image, g € G est la donnée corrompue par le bruit e.

2.4.6.2 Applications

Le modele génératif texte-image est défini comme prenant la description du texte en langage
naturel comme entrée, tout en générant une image correspondant a cette description. Dans la
période récente, les modeéles texte-image se sont considérablement développés en termes

d'authenticité et d'originalité.[16]
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2.5 Conclusion

Ce chapitre a couvert un examen des différents systemes d'imagerie médicale, des opérations
de traitement d'image, des définitions des problemes inverses et de la régularisation en imagerie,
et des exemples de ces problémes avec la description des modéles. Les problemes inverses et
la régularisation sont au centre de ce chapitre ; nous avons défini la modélisation mathématique
du probleme inverse et demontreé I'importance de la régularisation. Les exemples de problémes
inverses sont bien présentés. Ces opérations sont les themes principaux de nos recherches. Nous
avons demontré la partie théorique de ces applications de traitement et I'approche récente de

modélisation des opérations.
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Chapitre 3. Les Solutions des Problémes Inverses et I’estimation de la Régularisation

3.1 Introduction

Dans ce chapitre, nous illustrons les solutions aux problémes inverses dans le cadre du
traitement d'images médicales. Plusieurs solutions seront présentées pour différents problémes
de traitement d'image (restauration, déconvolution, débruitage et amélioration du contraste). En
plus de cela, le cadre d'optimisation bio-inspiré, qui est appliqué pour fournir des solutions
d'estimation de régularisation, sera présenté. Le grand principe de cette approche sera décrit, en

plus de donner des exemples d'applications et de méthodes récentes dans ce domaine.
3.2 Les Solutions des Problemes Inverses en Imagerie Medicale
3.2.1 Le Filtre Inverse Régularisé Amélioré pour la Restauration d‘'images Médicales

3.2.1.1 Principe

Le filtrage inverse est une technigue de restauration d'image connue pour dégrader une image
avec un filtre passe-bas. Cependant, il est sensible au bruit additif. Le filtre inverse affiche le
numérateur de bruit comme étant relativement grand par rapport au signal. Avec une
régularisation améliorée, un deuxieme terme est ajouté au critére de minimisation pour obtenir

une solution lisse au probléme de restauration d'image

Doty = fe k@) + « @@ f@ @Y
Xy

a est le paramétre de régularisation qui contrdle le processus de restauration. Nous pouvons

réécrire (3) dans le domaine DFT comme

z{(G(u, v) — F(u,v) * H(u, v))2 + a ((L(w,v) * H(u,v))*} (32)

3.2.1.2 Application

Le paramétre de régularisation a commande I'efficacité de restauration d'image des processus
de défloutage et de débruitage. A cet égard, I'estimation de o est essentielle pour obtenir la

meilleure solution pour le filtrage du flou et du bruit des images [17].
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3.2.2 Méthode de Régularisation L2 pour la Déconvolution d‘images Medicales

3.2.2.1 Principe

La régularisation L2 traite la multi-colinéarité en restreignant le coefficient et en gardant toutes
les variables. La régression L2 est utilisée pour estimer la signification des prédicteurs et sur

cette base, elle peut pénaliser les prédicteurs non significatifs.
3.2.2.2 Modéle

Le modele mathématique qui représente la fonction de régularisation 12 peut étre exprime

comme suit
Loss = error (y + y") + AY} (w?) (3.3)

Ou A est le paramétre de régularisation, I'estimation de ce dernier pour le processus de
déconvolution est essentielle pour de meilleurs résultats de fonctionnement avec le flou et les

interférences de bruit [18].

3.2.3 Variation Geénéralisée Totale pour le Débruitage des Images Médicales

3.2.3.1 Principe

Les problemes mathématiques inverse d'imagerie sont exprimés dans la formulation suivante:

min, F (u) + R(w) (34)

F est le terme de fidélité et R représente le terme de régularisation. Ces deux termes peuvent

étre présentés séparément comme suit:
1 2 (3.5)
?(u)=EIIG(u)—ZII '

R(w) = 5 fuf? 40

a est le parameétre de régularisation. L'expression de la variation genéralisée totale est définie

comme suit ;

TGV,F(u) = sup {f udivkvdx |v € Ck (Q, Sym¥ (Rd)), (3.7)
Q
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TGVF équilibre les dérivées premiéres a niéme et partage plusieurs propriétés avec Total

Variation (TV). Avec k=2 et a0, al > 0, I'expression tardive s'écrit :

TGVz (W) = a11p2(c) — p1(O)] + aolpi(c) — p2(c)] (3.8)

TGVZ2 implique et fournit I'équilibre aux dérivées d'ordre supérieur de u. En conséquence, il

minimise I'impact de la coulée d'escalier de la fonctionnelle de variation bornée.
3.2.3.1 Modéle
L'espace de fonction de variation généralisée bornée d'ordre k est donné par :

BGVE (Q) = {u € L'(Q) | TGV () < o} (3.9)

La relation entre TGV? and TV est défini comme :

TGVZ(u) = a;TV(w) (3.10)

Concernant les performances de TGVZ dans les opérations de débruitage d'images. Cette
méthode surpasse les autres modéles expérimentaux, et ses résultats peuvent encore étre

améliorés. [19]
3.2.4 Modele texte-image a diffusion stable pour la génération d'images médicales

3.2.4.1 Principe

Le modeéle génératif texte-image est défini comme prenant la description du texte en langage
naturel comme entrée, tout en générant une image correspondant a cette description. Dans la
période récente, les modeéles texte-image se sont considérablement développés en termes
d'authenticité et d'originalité. La diffusion stable de Stability Al est un modéle de génération
d'images qui offre une compilation XLA et une précision mixte. L'application de cette méthode
atteint une vitesse de génération de pointe. Le modele de diffusion stable est composé de trois
parties : I'encodage de texte, le débruitage d'image a I'aide du modeéle de diffusion et le décodage

d'image pour obtenir une résolution plus élevée.
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Medical Image

l Encoded text
‘ Text Encoder | :> Diffusion Model | :{> ‘ Decoder J

Figure 3.1 Architecture de diffusion stable du texte & l'image.

3.2.5 Egalisation d'histogramme adaptatif a contraste limité pour I'amélioration de

I'image médicale

3.2.5.1 Principe

CLAHE est une méthode renommeée utilisée pour améliorer le probleme de faible contraste des
images numériques. Les performances de CLAHE dans les applications d'imagerie médicale
dépassent I'égalisation adaptative d'histogramme (AHE) et [I'égalisation classique
d'histogramme (HE). CLAHE a deux caractéristiques principales : la limitation de la
distribution des histogrammes pour limiter I'accentuation excessive des taches de bruit d'une

part, et I'accélération de I'égalisation par interpolation d'autre part.

La limite de clip contr6le les performances de la méthode CLAHE, tandis que les histogrammes
de chaque région sans chevauchement convergent vers un niveau inférieur a ce parametre. La

forme P limite de clip peut étre exprimée comme :
MN a
B = ?{1 + 100 (ASmax — 1)} (2.11)

Ou M et N sont les nombres de pixels dans chaque région, G est le nombre de niveaux de gris,
a est le facteur d'écrétage et AS,,4, represente la pente de tolérance maximale. Sur la base des
détails susmentionnés, I'estimation de la valeur B est cruciale pour obtenir une qualité d'image

optimale.
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3.2.5.2 Application

Les étapes du processus CLAHE sont les suivantes :

- Fractionnement de I'image en différentes régions (continu/sans chevauchement)
- Découpage de I'histogramme de chaque région a l'aide du seuil.

- Réaffecter les valeurs de pixel et les répartir uniformément.

- Effectuer une péréquation locale dans les régions.

- Reconstruire les valeurs des pixels en utilisant l'interpolation linéaire [20].

F A

A\

Figure 3.2 La distribution de I'histogramme avant et apres I'écrétage
3.3 Solutions d'estimation de Régularisation : Optimisation
3.3.1 Algorithmes d'optimisation bio-inspirés
3.3.1.1 Cadre

Les applications de Framework d'optimisation sont presque partout, le but de chaque
application est d'optimiser une solution. Dans les applications du monde réel, le processus est

plus difficile, en raison des contraintes complexes et de plusieurs facteurs et parametres.
3.3.1.2 Défis

Les applications d'optimisation sont tres difficiles a résoudre. Plusieurs facteurs et problémes
doivent étre pris en compte, notamment I'heuristicite, I'efficacité, le choix et les contraintes de

temps.
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- Heuristicité

Les algorithmes heuristiques peuvent étre définis en utilisant le théoreme du singe infini, qui
est basé sur la probabilité de produire différents textes donnés qui peuvent étre unifiés en un
seul. Les algorithmes heuristiques et métaheuristiques sont similaires dans cette approche
théoréme. Cependant, il existe certaines différences clés, notamment I'apprentissage lors de la
géneration, la sélection des solutions les meilleures et les plus adaptées, les composants
stochastiques et déterministes de tous les algorithmes heuristiques et la combinaison de
I'historique et de la sélection. Ces différences ont rendu les algorithmes heuristiques supérieurs

a I'approche de typage aléatoire des singes.

En ce qui concerne les algorithmes métaheuristiques, ils sont considérés comme I'application
de niveau supérieur des heuristiques, en raison de leur caractéristique d'apprentissage passé et

de leur capacité a sélectionner les meilleures solutions.
- Efficacité

L'efficacité d'un algorithme d'optimisation est liée a plusieurs facteurs, notamment sa structure,
son comportement de génération et le paramétrage. L'implémentation de I'algorithme sous la
bonne forme est essentielle pour contréler la recherche souhaitée. De plus, les classes locales
et globales sont la principale caractéristique des algorithmes d'optimisation. Les algorithmes

métaheuristiques bio-inspirés modernes sont généralement classés comme globaux.
- Choix

Le choix du bon algorithme d'optimisation pour un probléme donné est tres difficile. Cela
dépend généralement du type de probleme, de la nature du probléme, des solutions visées, des

ressources informatiques, du délai, de 1a mise en ceuvre de I'algorithme et de la prise de décision.

La nature spécifique de l'algorithme d'optimisation détermine son adéquation a différentes
formes de problémes. En plus de cela, la solution visée et la disponibilité des ressources
informatiques sont indispensables. L'obtention de solutions supérieures peut étre réalisée en un
temps pratique important. De plus, la disponibilite des matériaux (logiciels) est le facteur

principal qui controle le choix de I'algorithme.

Trouver I'algorithme le plus adapté a un probleme donné pour obtenir de bonnes solutions est
le principal défi dans différentes applications. Cette démarche de recherche est encore en
progression puisque le choix des algorithmes dépend essentiellement de I'expérience de

recherche, et de la disponibilité des ressources.
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- Contraintes

La rapidité a trouver une solution a un probleme est considérée comme l'un des principaux
défis. Pour une application parfaite des méthodes de résolution dans la pratique, le temps doit

étre court. Ce qui fait du facteur temps la principale contrainte de presque tous les algorithmes.

L'évaluation de la fonction objective est également un processus colteux. Une approche qui

peut réduire le temps de calcul de I'évaluation rendra I'algorithme plus efficace.

3.3.1.3 Applications

Les algorithmes métaheuristiques peuvent étre classés en deux catégories : algorithmes bases

sur le Sl et non basés sur le SI.
- Algorithmes bases sur Sl

Le principe principal des algorithmes basés sur le Sl est la multiplicité des agents, qui s'inspire
du comportement des essaims dans différents systemes biologiques. De plus, ils ont des

algorithmes d'intelligence collective similaires.
* Algorithmes Fourmis et Abeilles

Ce type d'algorithme est basé sur le comportement des fourmis. La bonne évaporation des
phéromones conduit au bon comportement de l'algorithme en termes de recherche des bonnes

solutions, qui peut étre défini avec I'équation suivante
ptt=6+(1-ppt (3.12)

p est le taux d'évaporation, & est le dépét incrémental. De plus, bien définir I'itinéraire est
essentiel. Plusieurs recherches et améliorations de ce type d'algorithme ont été menées pour

gérer le dép6t de phéromones, le processus d'évaporation et les probabilités d'itinéraire.

Concernant les algorithmes apicoles, ils s'inspirent du comportement des abeilles melliféeres. La
danse frétillante et la maximisation du nectar sont les principales caractéristiques qui ont été

utilisées pour la simulation des abeilles butineuses dans I'espace de recherche.
* Algorithme de chauve-souris

L'algorithme de chauve-souris (BA) est basé sur le comportement d'écholocation des

microbats. Son équation principale de mise a jour est définie comme suit :

fi = fmin + (fmax - fmin)g' vit+1 = vit + (xlt - x*)fi'xit+1 = xit + ULF (313)
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€ est le nombre aléatoire tiré de la distribution uniforme, et x* est la meilleure solution mise a
jour apres les itérations.

* Optimisation de I'essaim de particules

Le PSO est basé sur le comportement des essaims, comme le mouvement des poissons et des
oiseaux dans la nature. Les caractéristiques des particules sont la vitesse et la position, et la
formule de mise a jour est définie comme suit :

vith = vf +ag gt — x{] + felx] — x{] (3.14)
g" est la meilleure solution actuelle, x; est la meilleure solution individuelle pour la particule,

&; et g, sont les variables aléatoires, et a/f sont les parametres d'apprentissage. La fonction de

mise a jour est décrite comme suit :

t+1

xf* = xf + vt (3.15)

* Algorithme Firefly

FA est basé sur le comportement des lucioles, le mouvement de la luciole i est attiré par un
nouveau et plus attrayant j. Ce processus peut étre défini a I'aide de I'équation non linéaire

suivante :
2
xit+1 _ xlt + ﬁoe—yrij(xjt — xlf) + aeit (3.16)

B, est la valeur d'attractivité, elle est liée a la distance entre les lucioles. Cette variation peut

étre représentée par I'expression suivante :
B = ﬁoe—yrz (3.17)
* Recherche de Cuckoo

Le CS est influencé par le parasitisme du couvain de différentes especes de coucous.
L'amélioration de cet algorithme dans I'application récente I'a rendu supérieur aux autres

algorithmes. La marche aléatoire locale utilisée par cet algorithme s'écrit:

xt* = xt + asH(pg — 8)(xjt — xt) (3.18)
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xf et xj, sont les deux solutions, qui sont fournies sur la base de la permutation aléatoire. CS
est connu pour étre efficace dans la résolution de différents problemes d'optimisation
d'ingénierie.

- Algorithmes non bases sur Si

* Algorithmes de recuit simulés

SA est une forme améliorée de I'algorithme Metropolis-Hasting, qui a été utilisé dans plusieurs
applications. Il est basé sur I'approche stochastique pour générer de nouveaux mouvements et
décider de l'acceptation. La probabilité de type Boltzmann est utilisée pour accepter de

nouveaux coups, elle est définie comme :

AE

kB_T (3.19)

p = exp [—

kg est la constante de Boltzmann, T représente la température pour contrdler I'opération de

recuit, et AE est la variation d'énergie, qui est liée a la fonction objective.
* Algorithme Génétique

GA s'inspire de la théorie de I'évolution de Darwin concernant les systémes biologiques. Il
utilise les opérateurs, croisement, mutation et sélection. La solution est codée sous la forme
d'une chaine nommée chromosome. GA a été utilisé dans différents domaines d'optimisation et

prouve son efficacité dans la résolution de ces types de problémes.
* Evolution Différentielle

DE est un algorithme évolutif basé sur des vecteurs, qui est similaire au principe de la recherche
de motifs convolutifs. En utilisant DE, la solution x_iat génération différente t est présentée

comme :

xf = (xf x5, 0, xb)) (3.20)

Le DE est basée sur trois étapes essentielles : la mutation, le croisement et la sélection [21][22].
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3.3.2 Algorithmes Récents pour Résoudre les Problémes de Traitement d‘image

3.3.2.1 Algorithme d'optimisation d'essaim de Particules a Comportement Quantique Gaussien

L'algorithme Gaussian Quantum-Behaved Particle Swarm Optimization (GQPSO) est une
méthode améliorée basée sur I'algorithme classique Particle Swarm Optimization (PSO). Tandis
que Quantum Particle Swarm Optimization (QPSO) est I'extension du comportement quantique
du modéle PSO. De plus, la fusion du comportement gaussien conduit a des applications plus

efficaces pour résoudre des problemes d'optimisation dans divers domaines de recherche.

Dans GQPSO, les particules se déplacent selon I'équation itérative suivante:
1 .
x(t+1) = P+ B.|Mbest; —x;(t)].In (E) ifk > 0.5
(3.22)
1
xi(t+1) =P — B .|Mbest; — x;(t)| .In (ﬂ)' ifk <0.5
Ou B est le coefficient de contraction-expansion, les valeurs u et k sont pertinentes pour la
distribution de probabilité de la plage de fonctions. lls sont générés en utilisant les fonctions de
distribution de probabilité uniforme dans la plage [0-1]. Le Mbest est le point global de la
population (la pensée dominante ou le meilleur moyen). 1l représente la moyenne des positions

Pbest de toutes les particules. Il est défini comme :

N
1
Mbest = Nz Py q (1) (3.22)
d=1

La meilleure particule de I'essaim est représentée par g. Le concept de convergence est défini

comme :

p - rPiat c2Pya (3.23)
c1+ ¢y

Ou ¢, et ¢, sont les coefficients d'accélération [23].

3.3.2.2 Algorithme d’optimisation des colonies artificielles

L'algorithme d'optimisation des colonies d'abeilles artificielles est un algorithme méta-
heuristique base sur la population, basé sur le mouvement de recherche de nourriture de

I'abeille, la source de nourriture dans la population est liée aux paramétres de contrdle de la
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méthode. La population et la sélection sont les principaux processus associés a l'algorithme
d'optimisation ABC [24].

La source de nourriture dans la population initiée est décrite par la formule suivante:

x] = x) .+ rand(0,1)(x}gr + %1 ) Vji=12,....,D (3.24)

i min

J
min

ol x).,, €t xJ . sont les bornes, la phase d'abeille employée est présentée comme suit:

vij = xij + @y;(xi; + xiy) (3.25)

Ou <Dij(xij + xkj) est la taille du pas, nous definissons la probabilité de fitness la plus élevée

avec:

= SNs
Z. f (3.26)
j=1

3.3.2.3 Algorithme d'optimisation Pelican

POA est un nouvel algorithme d'optimisation méta-heuristique inspiré du comportement du
pélican lors de la recherche de nourriture. Dans les algorithmes basés sur la population, chaque
membre représente une solution candidate. L'initialisation des membres de la population est

définie par I'équation suivante :
xij=l+rand.(wy—1),i=12,..,N, j=12..,m, (3.27)

Ou x; ; est la valeur de la variable jth et il est identifie par le ith solution candidate, N représente

le nombre de variables, m est le nombre de problémes, rand est le nhombre aléatoire dans

I'intervalle [0,1], 1j et uj sont les bornes inférieure et supérieure des variables du probleme.

La matrice de population identifie les membres des pélicans dans la POA. 1l est donné comme:

[x1,1 X1,j xl,m]
(3.28)

XN1 XN XNmly,

X est la matrice de population et X; est le ith du pélican. En ce qui concerne les valeurs de la

fonction objectif, elles sont obtenues a l'aide de I'équation suivante :
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F, F(Xy)
F=|r| =|F (3.29)
lrd o Lraon],

F est le vecteur de la fonction objectif. La stratégie de chasse du POA est composee d'une phase
d'exploration ou le POA proposeé découvre plusieurs zones de I'espace de recherche ; et la phase
d'exploitation qui conduit a la convergence du POA vers une meilleure solution dans la zone de
chasse. La meilleure solution candidate acquise apres les itérations de l'algorithme est la

solution optimale pour le probleme donne.

La stratégie du pélican pour se déplacer vers l'environnement de la proie est définie par

I'équation suivante :

X

(3.30)

Py _ {xi,j + rand - (p] —1I- xl-,j), Fp < Fi;
ij —

x;; + rand - (x;; — p;), else

xf} est le nouveau statut de la ith pélican dans le jth dimension, | est un nombre aléatoire (1/2),

p; est la position de la proie dans la je dimension, et F, est la valeur de la fonction objectif. La

mise a jour effective permet a l'algorithme d'empécher le déplacement vers des zones non

optimales. Cette caractéristique est décrite comme :

x, = X R <F (3.31)
X;, else

X! est le nouveau statut du iéme pélican et F" est sa fonction objective. Pour assurer la
convergence vers une meilleure solution, l'algorithme examine et scanne les points au voisinage

de I'emplacement du pélican. Ce processus est simulé mathématiquement comme :
Pz = R-(1-%). 2 d—1 (3.32)
X =x,;+R- -7 (2-rand —1) - x;; :

xfj est le nouveau statut de la ith pélican dans le jth dimension comme deuxiéme phase. La

mise a jour effective accepte ou rejette la nouvelle position du pélican, qui est modélisée comme

suit :

X; = X% F* <F (3.33)
X;, else
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Xip2 est le nouveau statut de la ith pélican, et FL.P2 est la valeur de la fonction objective [25].

3.4 Conclusion

Ce chapitre a couvert différentes solutions aux problemes inverses de traitement d'images
médicales. Les solutions aux problémes inverses et I'estimation de la régularisation sont au
centre de ce chapitre. Nous avons defini le principe de I'approche d'optimisation bio-inspirée,
et nous avons présenté des applications récentes et des algorithmes basés sur ce cadre. Cette
approche représente le principe de base de notre approche proposée pour I'estimation de la
régularisation, ce qui conduit a améliorer les performances des solutions de traitement d'images

médicales.
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Chapitre 4. Résultats et contributions

4.1 Introduction

Dans ce chapitre, nous presentons les resultats et les contributions des recherches qui ont été
meneées. Ce chapitre est composé de deux sections : application de restauration/déconvolution
d'images médicales et applications de filtrage/amélioration de contraste d'images medicales.
Dans ces sections, nous illustrons les avantages de nos méthodes proposées, en termes

d'ameélioration des solutions des problemes inverses.

En plus de cela, nous démontrons la différence dans le traitement du probléme d'estimation de
la régularisation entre les différentes applications et solutions. Parallélement & I'adaptation des

algorithmes d'optimisation a ces problémes de régularisation.

4.2 Restauration d'images Médicales / Déconvolution

4.2.1 Un Nouvel algorithme d'optimisation Bio-inspiré pour la Restauration d'images
Médicales a I'aide d'un Filtrage Inverse Régularisé Amélioré

4.2.1.1 Cadre

La restauration d'images est un probleme de longue date dans le domaine du traitement
d'images. Les méthodes de régularisation sont largement employées pour obtenir des solutions
significatives représentées sous forme d'images restaurées apres dégradation. Ce dernier est
causé par de nombreux facteurs, notamment la déficience des systémes d'image et les conditions

de genération non idéales lors de I'acquisition d'images [26][27][28].

Dans les applications d'imagerie médicale, il existe deux sources principales a l'origine du
processus de dégradation de lI'image, a savoir (1) le flou lié au systeme d'imagerie et (2) le bruit
résultant des fluctuations d'intensité du signal [29][30] [31][32]. Dans cette procédure, le filtre
inverse régularisé est couramment appliqué dans le traitement des images médicales, y compris
le filtrage, la restauration et la déconvolution des images, car il prend en compte le flou, les
informations sur le bruit et le comportement pendant I'opération de traitement [33][34][35] . Le
parametre de regularisation dans I'approche de traitement d'image contrdle les performances et
I'efficacité de I'opération de restauration d'image ; il est estimé avec plusieurs méethodes dans la
littérature de recherche [36][37][38][39].

Ce travail applique une nouvelle approche de restauration d'images medicales nommee
ERIFGQPSO basée sur un algorithme d'optimisation d'essaim de particules a comportement
quantique gaussien et un filtre inverse régularisé amélioré avec estimation des parametres de

régularisation. Cette approche controle I'opération de restauration du floutage et du débruitage
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de I'image médicale avec une estimation de régularisation pour une meilleure qualité et netteté

de I'image médicale.

4.2.1.2 Travaux connexes

Récemment, la recherche s'est concentrée sur les techniques de restauration d'images dans le
domaine médical en raison de leur importance et de leurs complications. Le filtrage de Wiener
est une méthode reconnue dans la restauration d'images médicales pour difféerentes modalités
d'imagerie [40][41]. Cette méthode fournit des résultats de restauration d'image
impressionnants. Cependant, le processus aléatoire de la modélisation de I'image, ainsi que les
variances de flou et de bruit, ont rendu ce point de vue peu attrayant pour de nombreux
chercheurs [42][43][44][45].

Wang et al. [46] ont proposé d'appliquer des méthodes de filtrage inverse régularisé (Total
Variation, Framelet Approach) dans la déconvolution d'image aveugle car elles fournissent des
résultats similaires au modele Wiener-Filtering avec moins d'exigences d'informations
préalables. En comparant les performances de ces méthodes, le modeéle établi visait a déterminer

le filtre inverse approprié pour la déconvolution en aveugle a I'image.

En revanche, l'estimation du parametre de régularisation est essentielle pour contréler
I'opération de restauration de I'image médicale pour les processus de défloutage et de débruitage
[47] [48] [49]. Sheer et al. [50] ont étudié I'impact de I'estimation des parameétres de
régularisation sur la restauration d'images médicales a l'aveugle grace a l'utilisation d'un filtre
de Wiener itératif. Le filtre de restauration modifié proposé dans l'ouvrage mentionné
précédemment est efficace en restauration d'images médicales. Dans le méme contexte, cette
étude étudie la démonstration du comportement du parametre de régularisation et I'impact de
son estimation sur les performances du filtre itératif. Cependant, une comparaison plus pousséee
des résultats avec des études récentes devrait étre envisagée pour déterminer la performance du

modéle de filtre de Wiener.

Les applications d'optimisation et d'algorithmes bio-inspirés sont considérées comme des
méthodes hautement recommandées dans les opérations de segmentation d'images
[51][52][53]. Le cadre d'optimisation a eu une performance adéquate dans I'amélioration des
résultats de segmentation d'image. Semchedine et al. [54] ont proposé d'appliquer un algorithme
modifié d'optimisation d'essaim de particules floues dans la segmentation d'images IRM

cérébrales. Cette approche prouve son efficacité en termes de temps d'exécution et de qualité
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de la solution. Le modele propose surpasse l'algorithme FPSO standard, et les résultats de la

comparaison incluaient les performances de qualité d'image et le temps CPU.

4.2.1.3 Approche proposée

Dans notre approche proposée, nous avons procéde en deux étapes :

(1) Premiérement, nous avons étudié I'impact du choix du parameétre de régularisation o sur
I'opération de restauration en utilisant ERIF. La figure 4.2 représente la restauration d'images
CT de I'abdomen a l'aide de la méthode ERIF, avec (a) comme image d'origine et (b) comme
image dégradée, tandis que (c) et (d) sont les images restaurées a l'aide de I'ERIF pour deux

valeurs de parametres de régularisation.

Les valeurs du paramétre de régularisation o, du flou et des niveaux de bruit sont respectivement
de 0,01, 10,59, 0,1 et 2. La valeur standard du parameétre de régularisation, en utilisant le filtre
inverse est égale a 0,01. L'estimation de la valeur o améliore les performances du filtre inverse
et la qualité de I'image, comme le montre la figure 4.2. La qualité du défloutage des images
médicales est évaluée a l'aide des valeurs de la fonction de mesure de la netteté (SMF). D'autre
part, I'estimation du taux du processus de débruitage est obtenue par les valeurs du rapport
signal sur bruit de créte (PSNR) et les valeurs de la carte d'indice de similarité de structure
(SSIM). La valeur RPR du taux de performances de restauration représente la moyenne des
trois parametres SMF, PSNR et SSIM.

(2) Deuxiemement, nous utilisons notre méthode ERIFGQPSO pour estimer les valeurs a des
processus de brouillage et de débruitage d'image, afin d'obtenir les performances de restauration
d'image médicale les plus précises.
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Figure 4.1 Approche proposée de restauration d'images médicales
La fonction objective qui définit I'opération de restauration d'image est la relation d'ajustement
entre les valeurs de o, de bruit et de flou puisqu'elle considére la solution pour la performance
tres précise des processus de suppression de flou et de débruitage. La fonction décrite ci-dessous
a été ajustée apres avoir effectué plusieurs tests, en étudiant la distribution du parametre de
régularisation, du flou et du bruit comme variables dépendantes avec des valeurs constantes de

PSNR et SMF. Les deux équations personnalisées résultantes sont représentées comme suit:
a4 =-0,082 -0,1509.sin (0,8558. . By. N4) + 0,2906.exp(-(0,6614. N4) ?)
ay = 6,299 + 3,211.sin (-10,77. .B;, . N3) — 5,364 .exp(-(0,82. N;) 2) (4.1)

En fait, en ce qui concerne le processus de défloutage, o, B;, et N, sont respectivement les
parameétres de régularisation, le bruit et les valeurs de flou. Alors que o5, B,, et N, représentent

les mémes valeurs pour I'opération de débruitage.
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ERIFGQPSO Algorithm
1 | Input: Original image
Add the gaussian noise and blur to the original image

2 | Il STEP1 ERIF
3 | RIF Restoration function
4 | Fixe RIF values (n, N, B)

5 | /Il STEP2 GQPSO

Fixe GQPSO parameters d, n

6 | Choosing Ib,ub values (related to the noise and blur values, N, B)
7 | Fixe the number of iterations, and constants c1,c2,w1,wl

8 | Generate the initial population

9 | Evaluate the objective function (Eq. 4.1 (1 or 2) with o, or a, for the deblurring or denoising process)
10 | Initialize the Pbest and Gbest

11 | GQPOS main loop

12 | lter=1

13 | While iter<itermax

14 Update position (solution to Mbest

15 Check bounds

16 Update Pbest

17 Update Gbest

18 Plotting the convergence results (fitness value /iteration)

19 | End

/ll STEP3 ERIFGQPSO
Estimated values (o; and o, as the fitness value for the deblurring or denoising process))

20 | Output: Restored image

4.2.1.4 Résultats

La restauration d'image a l'aide de I'ERIF ordinaire est contrélée par le choix pertinent du
parameétre de régularisation comme le montre la figure 4.2, cette alternative commande la
performance de la méthode dans le processus de débrouillage et de débruitage. La figure 4.3
représente la variation des valeurs SMF et PSNR. (a) Démontre la variation des valeurs SMF
avec a, et (b) représente la variation PSNR avec a. De plus, cette figure décrit la qualité de la
restauration de I'image médicale ainsi que la variation des parametres de régularisation. De plus,
le processus de défloutage est évalué avec la variation SMF. Et le PSNR définit I'efficacité de
I'opération de débruitage.
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(@) (b)

()

Figure 4.2 Restauration d'image CT de I'abdomen a I'aide d'ERIF, (a) : image d'origine, (b) : image dégradée

(floue et bruitée), (c) : image restaurée a I'aide d'ERIF, valeur de bruit = 0,1, valeur de flou=2, a = 0,01, (d) :
image restaurée a l'aide d'ERIF, valeur de bruit = 0,1, valeur de flou = 2, a = 10,59 (e) : carte d'indice de
similarité de structure (SSIM), les régions sombres correspondent aux zones ou l'image dégradée différe de

I'original, les régions claires correspondent a les zones ou la dégradation a moins d'impact sur l'image.
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Figure 4.3 La variation des valeurs SMF et PSNR avec le paramétre de régularisation a, les valeurs de flou et de

bruit sont fixes, (a) : variation SMF avec a, (b) : variation PSNR avec a.

Les processus de floutage et de débruitage fonctionnent de différentes manieres. L'utilisation
de I'algorithme ERIF avec une petite valeur de o produit des images plus nettes avec un niveau
de bruit élevé. Au contraire, une valeur plus importante du parametre de régularisation donne
des images plus propres mais plus floues. Cette idée a été illustree a la figure 4.4, qui représente
la restauration d'images radiographiques thoraciques a I'aide d'ERIF. Dans la méme figure, (a)
est I'image d'origine, (b) représente lI'image dégradée, (c) et (d) sont les images restaurées a

l'aide d'ERIF, et les valeurs a sont respectivement de 0,3 et 11.
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(@) (b)

(©) (d)

©) ® (@)

Figure 4.4 Restauration d'image de radiographie thoracique a I'aide d'ERIF, (a) : Image originale, (b) : Image

dégradée (floue et bruitée), (c) : Image restaurée a l'aide d'ERIF avec a = 0,3, (d) : Image restaurée a l'aide
d'ERIF avec a=11, () : Image dégradée zoomée, (f) : Image restaurée zoomée avec a=0.3, (g) : Image restaurée

zoomée avec a=11.
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A cet égard, l'estimation de la valeur appropriée de o pour contréler les opérations de
débrouillage et de débruitage d'image est extrémement nécessaire pour obtenir une performance

tres précise, en particulier, une meilleure qualité d'image et une meilleure netteté.

Nous utilisons I'équation 4.1 pour estimer la valeur a, en utilisant notre méthode ERIFGQPSO
proposée. Les images médicales CT, radiographiques et échographiques utilisées pour évaluer
notre approche ont été recueillies a partir de Radiopaedia [55] ; les images réelles sont extraites
et enregistrées au format TIFF. Les niveaux de bruit gaussien varient entre [10%-90%]. La
plage des valeurs de flou est [1-9] et I'intervalle des valeurs a est [0-15]. Le modele proposé
dans cette étude a été appliqué apres avoir choisi les valeurs de parametres suivantes : nombre
d'itérations n=100, dimension des variables d=2, coefficients d'accélération c1=1, c2=1, poids

d'inertie wl=1, w2=1.

Le tableau 1 présente les valeurs SMF, PSNR et SSIM de la restauration d'images CT de
I'abdomen a l'aide de notre méthode ERIFGQPSO proposée. De plus, pour définir
qualitativement les performances de l'algorithme. Les figures 4.5, 4.6 et 4.7 représentent la
restauration des images médicales générées par différentes modalités d'imagerie (image CT
Abdomen, image Chest X-Ray, image Ultrasound Horseshoes Kidney) a I'aide de I'algorithme

ERIFGQPSO, en plus d'autres méthodes expérimentales.
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Tableau 4.1 Valeurs SMF, PSNR et SSIM de la restauration d'images CT de I'abdomen a l'aide du filtre inverse

régularisé amélioré et de notre méthode ERIFGQPSO proposeée, la valeur de bruit = 0,1 est fixée dans l'opération

de suppression du flou, la valeur de flou = 2 est définie dans I'opération de débruitage.

Blur 1 2 3 4 5 6 7 8 9
Value
a value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
SMF 0.0208 0.0192 0.0173 0.158 0.0137 0.0115 0.0106 0.0099 0.0089
éL Noise 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
- Value
a value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
PSNR  23.5688 20.9863 16.8456 12.45630  9.5462 7.2631 6.2310 4.8562 3.6253
SSIM 0.6053 0.3582 0.1235 0.0923 0.0426 0.0325 0.0258 0.0152 0.0123
Blur 1 2 3 4 5 6 7 8 9
Value
a value 0.85 2.09 1.68 1.72 1.99 1.32 0.36 1.52 1.76
g SMF 0.0278  0.0241  0.0210  0.0197 0.0182 0.0187 0.0263 0.0169 0.0163
8 Noise 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
:Ez Value
a value 11.39 10.59 9.44 8.52 8.91 11.35 14.37 1411 9.93
PSNR  26.7861  26.103 25.1731 24.7190 24.1164 235943 23.0455 22.5200 22,481
SSIM 0.6697  0.6026  0.5225  0.4684 0.4246 0.4003 0.3762 0.3492 0.3064
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(9) (h)
Figure 4.5 Restauration de I'image CT Abdomen a I'aide de notre algorithme ERIFGQPSO proposé et d'autres

méthodes expérimentales. (a) : image originale, (b) : image dégradée un bruit = 0,1, valeur un flou = 2, (c) :
image restaurée a l'aide de l'algorithme de Lucy-Richardson, (d) : image restaurée a l'aide du filtre de Wiener, ()
: Image restaurée a l'aide de la méthode ERIF, (f) : Image restaurée a l'aide de la méthode TGV-IG, (g) : Image

restaurée a l'aide du modele CSF, (h) : Image restaurée a l'aide de notre modele ERIFGQPSO proposé.
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Figure 4.6 Restauration de I'image radiographique thoracique (image agrandie) a I'aide de notre algorithme

(d)

) (i)

ERIFGQPSO proposé et d'autres méthodes expérimentales. (a) : Image originale, (b) : Image dégradée avec
valeur de bruit = 0,1, valeur de flou = 2, (c) : Image restaurée a I'aide de la méthode ERIF, (d) : Image restaurée a
I'aide de I'algorithme de Lucy-Richardson, (e) : Image restaurée a I'aide du filtre de Wiener, (f) : image restaurée
a l'aide du modéle ERIF-ABC, (g) : image restaurée a l'aide du modéle ERIF-PSO, (h) : image restaurée a l'aide
du modéle TGV-IG, (i) : image restaurée a I'aide du CFS modele, (j) : image restaurée a l'aide de notre modéle
ERFGQPSO proposé.
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HORSESHOE KIDNEY
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Figure 4.7 Restauration de I'image échographique du rein en fer a cheval a I'aide de notre algorithme
ERIFGQPSO proposé et d'autres méthodes expérimentales. (a) : Image originale, (b) : Image dégradée avec
valeur de bruit = 0,1, valeur de flou = 2, (c) : Image restaurée a l'aide de la méthode ERIF, (d) : Image restaurée a
l'aide de I'algorithme de Lucy-Richardson, (e) : Image restaurée a l'aide du filtre de Wiener, (f) : image restaurée
a l'aide du modele ERIF-ABC, (g) : image restaurée a l'aide du modéle ERIF-PSO, (h) : image restaurée a l'aide
du modele TGV-IG, (i) : image restaurée a I'aide du CFS modeéle, (j) : image restaurée a l'aide de notre modele
ERFGQPSO proposeé.
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Tableau 4.2 Valeurs SMF, PSNR, SSIM et RPR de la restauration d'images CT de I'abdomen a l'aide de notre

algorithme ERIFGQPSO proposé et d'autres méthodes expérimentales, valeur de bruit = 0,1, valeur de flou = 2.

Restoration Algorithm SMF PSNR SSIM RPR
Lucy-Richardson [56] 0.17 13.7831 0.0574 50.58%
Wiener Filter [57] 0.084 19.1298 0.1616 46.33%
ERIF [58] 0.039 22.8601 0.3036 50.66%
ERIF-PSO [59] 0.22 24.587 0.58624 92.48%
ERIF-ABC [60] 0.23 25.684 0.59358 93.91%
TGV-IG [61] 0.238 26.225 0.58765 97.22%
CSF [62] 0.241 25.88 0.60246 97.45%
Our proposed 0.24 26.1441 0.60776 98.33%

Model

4.2.1.5 Discussion

L'application de notre algorithme base sur I'estimation de o pour des valeurs de flou et de bruit
specifiques améliore les performances de restauration. Les valeurs présentées de SMF, PSNR
et SSIM démontrent I'efficacité de notre modele proposé en termes d'estimation de la valeur o
appropriée concernant les opérations de débrouillage et de déebruitage. Cependant, quel que soit
le comportement divergent de ces deux opeérations, nous avons obtenu des résultats de

restauration précis.

Le défi le plus important de la présente étude consistait a déterminer la fonction objective qui
représente la relation d'ajustement entre a, le bruit et le flou. Si la relation d'ajustement est
inappropriée, les performances de restauration seront moins efficaces en termes de qualité
d'image et de netteté. L'application d'un outil d'ajustement avec des caractéristiques de précision

et de précision élevées améliorerait encore plus les performances de notre modele.

La solution appropriée pour le choix o a été déterminée sur la base de I'optimisation de la
fonction objectif : Equation 4.1. La figure 4.5 accentue I'efficacité de I'utilisation du processus
ERIFGQPSO par rapport a différents algorithmes de restauration expérimentaux de pointe, y
compris les modeéles standard de Lucy-Richardson, Wiener, les méthodes de filtrage inverse
régularisé et les modeles récents utilisés dans la restauration tels que Shrinkage Fields modéle

CFS et méthode Total Generalized Variation avec I’Inverse Gradient TGV-IG.

Notre modéle proposé surpasse les autres algorithmes de restauration en termes de

performances obtenues. La comparaison qualitative a montré que notre modele offre une qualité
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visuelle supérieure, notamment une préservation efficace des contours et de la netteté et un
niveau de contraste supérieur. La supériorité de cette méthode peut étre observée en examinant
les valeurs élevées de SMF, PSNR, SSIM et RPR indiquées dans le tableau 4.2. De plus,
concernant I'estimation des parametres de régularisation, I'application de la présente méthode a

affirmé son efficacité en termes d'estimation de la régularisation.

La méthode ERIFGQPSO permet une estimation de a malgré toute évolution probable des
valeurs du bruit et du flou. L'expression de l'opération de restauration comme un probléme
d'optimisation conduit a des résultats efficaces, notamment une amélioration de la qualité et de
la netteté de I'image. Dans I'ensemble, le principal avantage de I'utilisation de ce modeéle est le
fait que le modele lui-méme considére d'une part les informations de flou et de bruit en paralléle,
et utilise le paramétre de régularisation approprié pour la meilleure amélioration de la qualité
d'autre part. Des études futures seront probablement menées pour examiner une variété
d'applications de traitement d'images médicales, basées sur cette recherche, afin d'améliorer le

temps d'exécution et la précision opérationnelle.

4.2.2 Déconvolution d'images medicales par ultrasons a l'aide de la meéthode de
régularisation L2 et de I'algorithme d'optimisation des colonies d'abeilles artificielles

4.2.2.1 Cadre

La déconvolution d'image tente de récupérer I'image nette d'origine a partir d'une image floue
et bruitée. Le flou et le bruit sont les principaux facteurs a I'origine de la dégradation de I'image
traitée par déconvolution et ils sont dissemblables en termes de source, de nature et de

comportement.

Dans le cas des images médicales, la dégradation est inévitable en raison de plusieurs facteurs,
notamment la déficience de l'optiqgue médicale utilisée dans l'acquisition d'images et la

régulation des niveaux d'intensité dans les machines médicales.

Pour résoudre le probléme inverse mal posé, la régularisation est I'une des techniques utilisées

pour introduire un terme supplémentaire dans le modele de déconvolution d'image.

Dans ce travail, nous appliquerons une nouvelle méthode de déconvolution d'images médicales
par ultrasons nommée L2ABC basée sur la régularisation L2 et I'algorithme d'optimisation des
colonies d'abeilles artificielles pour I'estimation des parametres de régularisation. L'objectif du
travail est d'étudier I'impact de I'estimation des parametres de régularisation sur le processus de

déconvolution avec flou et bruit parasite.

49



Chapitre 4. Résultats et contributions

4.2.2.2 Travaux connexes

Differents travaux sur la déconvolution d'image ont été présentés ces derniers temps, ces articles
peuvent étre classes en deux types, le premier type est les articles avec des méthodes basées sur
des informations d'image probabilistes, et le second type sont les travaux axés sur lI'opération
de pré-traitement en plus a l'aide d'opérations de suppression de flou et de débruitage.

Patrizio campisi et al [63] ont présenté un cadre général pour la déconvolution aveugle basée
sur I'approche bayésienne avec la classification des méthodes existantes. Certaines approches
sont basées sur I'apprentissage. Schuler et al [64] ont proposé une méthode efficace utilisant

I'inversion régularisée et les réseaux de neurones pour obtenir de meilleurs résultats.

Concernant le point de régularisation, I'estimation de la régularisation dans la déconvolution
d'image a été discutée dans plusieurs travaux. le principe d'estimation des paramétres de
régularisation adaptative présenté a prouvé [I'efficacité de cette derniére approche
[65][66][67][68]. D'autres articles étudient I'estimation de régularisation basée sur I'utilisation

d'autres cadres, y compris les approches bayésiennes et de minimisation [69][70][71][72].

Passant aux applications, plusieurs articles ont présenté la mise en ceuvre d'algorithmes de
déconvolution dans I'amélioration d'images biologiques et biomédicales [73][74][75][76]. Le
défi de cette approche a augmenté dans les images médicales échographiques puisque cette
imagerie échographique présente des artefacts de chatoiement et réduit la résolution pour le
meilleur examen diagnostique. Les principaux problémes de faible résolution sont les
problemes physiques résultant de la réflexion, de la réfraction et de la diffraction des ondes

ultrasonores d'un type différent des tissus en raison de I'impédance acoustique [77][78][79]

4.2.2.3 Approche proposée

Dans notre approche proposée, nous aborderons deux points :

Tout d'abord, nous étudions l'effet de I'estimation du paramétre de régularisation o sur le
processus de déconvolution a I'aide de la régularisation L2, avec des interférences de flou et de
bruit, nous définirons la qualité des performances de deconvolution par le rapport signal sur
bruit (SNR), le rapport de mesure de la netteté (SMR), et carte d'indice de structure de similarité
(SSIm)

Deuxiemement, I'application de notre méthode proposée consiste a estimer la meilleure solution

du processus de deconvolution en utilisant la régularisation L2 et I'estimation du parametre de
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régularisation A. La performance de la déconvolution d'image est définie par la fonction objectif

qui relie le parametre de régularisation A aux valeurs de flou et de bruit.

L2ABC Algorithm

Choosing L2ABC parameters: FoodSource, Number of iterations, Dimension, Limit.

Choosing Ib,ub values (related to Noise and Blur values, N,B).

Defining the objective function and fitness value.

Generate initial population (Minimize objective function: Eq. 4.2 (1 or 2) with A, or A, for noise
and blur deconvolution process).

A OWOWDN R

5 | ABC main loop
For Iter = 1: max_iter

***Employed bee phase
***Check the bounds
***perform greedy selection
***Scout phase

End

6 | Memorize the best solution
*** Ghest, Xbest, Fbest, Fbestl

~

/Il STEP2 L2
8 | Fixe L2 values (n, B, N, A; and 2, as the fitness value for noise and blur deconvolution process))
Input : Original image
9 | Add Gaussian noise and Blur to the original image
10 | L2 deconvolution function
11 | Output : image resulted after deconvolution

4.2.2.4 Résultats et discussion

La déconvolution de régularisation L2 est commandee avec l'estimation du paramétre de
régularisation, a cet égard, ce choix commande la performance de la méthode. La figure 4.8
montre la qualité de la déconvolution des images médicales échographiques par la méthode de

régularisation L2.

Passons au comportement du flou et du bruit dans la déconvolution La figure 4.9 confirme que
le traitement du flou et du bruit avec la régularisation 12 fonctionne de maniére dissemblable en

termes d'estimation des valeurs des paramétres de régularisation.

Pour exprimer le probléme d'estimation du paramétre de régularisation comme un probléme
d'optimisation, la fonction objective est la fonction de relation d'ajustement entre le parameétre
de régularisation A, les valeurs de bruit et de flou. Apres avoir effectué plusieurs tests, la

fonction objective présentée ci-dessous a été ajustée :
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A4 =0,2092 - 2,192 .sin (0,2498. . N;. B;) + 0,7365.exp(-(0,738. B;) 2)

. 4.2
A =0,01781-0,0181 .sin (1,35. m.N; . By) + 0,3644.exp(-(0,82. B;) ?) (42)

Ou2,,B; et N, sont respectivement les valeurs du parametre de régularisation, du bruit et du
flou pour le processus de déconvolution du bruit, A,,B, et N, sont les mémes valeurs pour

I'opération de déconvolution de flou préférable.

Pour I'estimation des parameétres de régularisation, nous utilisons I'équation 4.2. Les images
médicales échographiques de la vésicule biliaire et du rein utilisées dans le processus de
déconvolution sont tirées de Radiopaedia [55] ; les images sont enregistrées au format JPEG.
L'intervalle des valeurs des paramétres de régularisation est compris entre [0-1], les valeurs de
flou sont [1-10], les niveaux de bruit gaussien sont [2%-20%]., notre approche a été réalisée en
utilisant les valeurs de parameétres suivantes : nombre d'itérations = 100, dimension = 2, valeur

des coefficients d'accélération = 1, valeurs des poids d'inertie = 1.

Comme le montre le tableau 4.3, l'utilisation de notre proposition conduit a la meilleure
performance de déconvolution d'images médicales échographiques. Les valeurs de SMF, PSNR

et SSIM confirment I'efficacité de notre approche proposée.

Nous avons pu fournir la meilleure solution pour la valeur du paramétre de régularisation et de
meilleures performances de déconvolution grace a l'optimisation de notre fonction objectif
Equation 4.2. La figure 4.10 confirme l'efficacité de notre méthode par rapport a d'autres
méthodes de déconvolution, y compris la variation totale régularisée et la régularisation de
Sobolev, cette derniére idée est prouvée avec les résultats présentés dans le tableau 4.2.
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©

Figure 4.8 Déconvolution de I'image médicale échographique de la vésicule biliaire a I'aide de la régularisation
L2, (a) : image originale, (b) : image dégradée, (c) : image obtenue aprés déconvolution, valeur de bruit = 0,02,

valeur de flou = 3.
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Figure 4.9 La variation SNR et SMR avec le paramétre de régularisation, les valeurs de flou et de bruit sont

fixe, (a) : variation SNR avec A (b) : variation SMR avec A.
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Tableau 4.3 Valeurs SMR, SNR et SSIM de la déconvolution de I'image échographique de la vésicule biliaire a

I'aide de notre méthode proposée, valeur de bruit = 0,04, valeur de flou = 3 fixée pendant le filtrage du flou et du

bruit.
Blur 1 2 3 4 5 6 7 8 9
Value
Avalue 21996 0.05977 | 0.010451 | 0.035032 |0.030609 | 0.00059588 | 0.0095928 | 0.00059588 | 0.033937
SMR 0.0255 0.0208 0.0185 0.0181 0.162 0.195 0.158 0.157 0.161
Noise 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Value
Avalue | 0.94549 0.94487 0.94383 0.94238 | 0.94052 0.93824 0.93556 0.93247 0.92898
SNR 24552 | 24.356 24.156 23.859 23.556 23.158 23.026 22.956 22.715
SSIM 0.597 0.519 0.488 0.456 0.418 0.401 0.398 0.385 0.378

Tableau 4.4 Valeurs SNF, SMR et SSIM de la déconvolution d'images médicales rénales par ultrasons en utilisant

notre approche proposée et d'autres méthodes expérimentales, valeur de bruit = 0,04, valeur de flou = 3.

Deconvolution SNR SSIM SMR
Approach
Total variation 18.1563 13.7831 0.1655
regularization
Sobolev regularization 16.4845 19.1298 0.0542
L2 regularization 17.4586 22.8601 0.0622
Our proposed approach 24.2568 26.1441 0.2064
L2ABC
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(a) (b)

() (d)

(€)

Figure 4.10 Déconvolution de I'image médicale du rein par ultrasons a l'aide de notre approche proposée et
d'autres méthodes expérimentales différentes (a) : image originale, (b) : valeur de bruit d'image dégradée = 0,04,
valeur de flou = 3, (c) : déconvolution a l'aide de la régularisation de la variation totale, (d ) : Déconvolution a
I'aide de la régularisation de Sobolev (e) : Déconvolution a I'aide de notre approche proposée.
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4.3 Filtrage/amélioration des images médicales

4.3.1 Deébruitage d'images médicales basé sur un nouvel algorithme d’optimisation bio-

inspiré et variation généralisée totale

4.3.1.1 Cadre

Le débruitage d'image est I'un des défis fondamentaux dans le domaine du traitement d'image,
ou l'objectif principal est d'estimer I'image originale en supprimant le bruit d'une version de
I'image contaminée par le bruit. La variation généralisée totale TGV est considérée comme un
concept moderne de regularisation mathématique [80][81][82]. Elle présente plusieurs

avantages par rapport a la variation totale classique.

Dans ce travail, nous étudions I'impact du choix des parameétres de régularisation sur la variation
généralisée totale du débruitage de second ordre. Basé sur I'approche GQPSO. Nous présentons
notre algorithme intelligent TGV-GQPSO pour estimer la valeur stable hautement significative

du parameétre de régularisation pour I'opération de débruitage d'image la plus performante.

L'application de I'approche susmentionnée serait d'une grande importance, en particulier dans
les images médicales réelles. En effet, le processus de débruitage est essentiel dans I'analyse
ultérieure de I'image et conduit a un diagnostic efficace des pathologies expérimentées par les
spécialistes.

4.3.1.2 Travaux connexes

B.komander et al [83] ont étudié le débruitage en variation en utilisant les pénalités de variation
totale et I'estimation du gradient de I'image ; ils visaient a donner une nouvelle interprétation
du TGV. Florian et al [84] ont appliqué le TGV pour le débruitage et la reconstruction des
images IRM. Par la suite, ils ont comparé les performances du TGV aux performances de la
télevision. Leurs résultats démontrent les avantages du TGV par rapport a la télévision
classique. K.Bredies et al [85] ont étudié I'application de TGV dans des probléemes inverses
avec des données floues et bruitées pour confirmer la stabilité de la solution, Dans ce contexte,
ces auteurs ont discuté du choix du paramétre de régularisation et de son influence en termes

d'équilibrage du terme de régularisation et le terme de fidélité des données.

La méthode TGV a été appliquée dans d'autres opérations de traitement d'images, y compris la
reconstruction d'images médicales, Shanzhou Niu et al [86] ont étudié la qualité de la

reconstruction CT via TGV en introduisant un processus d'optimisation.
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4.3.1.3 Approche proposée

Dans Notre approche proposée, nous procédons en deux étapes :

Dans un premier temps, nous étudions I'influence du choix des parameétres de régularisation sur
le débruitage de I'image a I'aide de TGV,2. La qualité du débruitage d'image peut étre évaluée en
utilisant le rapport signal/bruit de créte (PSNR), I'erreur quadratique moyenne (MSE), I'erreur
absolue moyenne (MAE) et la carte d'indice de similarité de structure (SSIM). Dans cette
recherche, nous utilisons le PNSR et le SSIM comme criteres pour comparer les résultats
globaux. La simulation informatique de TGV,? contient deux paramétres de régularisation 1,,1,
tel que defini en (8). A cet égard, le choix des valeurs: 4 ;et 1,, le montant quantifié la
différence entre eux, la relation entre le bruit avec les variations des paramétres de
régularisation, et I'estimation de A; et A, les meilleures valeurs pertinentes pour chaque

variation de bruit sont discutées.

TGVZ (W) = 23 |p2(c) — p1(©)] + A1Ip1(c) — p3(0)| (4.3)
Deuxiéemement, nous appliquons notre méthode TGVGQPSO pour résoudre notre probleme
d'optimisation, qui est défini comme le choix du paramétre de régularisation pour obtenir la
meilleure qualité de débruitage d'image. Notre fonction objective choisie sera celle qui relie A,

A,, et la valeur de bruit 8, toutes confondues.

TGV-GQPSO Algorithm

Fixe GQPSO parameters d, n

Choosing Ib,ub (lower and upper bound) values (related to & value)
Fixe number of iterations, and constants c1,c2,w1,wl
Generate initial population

Evaluate the objective function (Eq. 4.4 (1 or 2) for A, or 1,)
Initialize Pbest and Gbest

GQPOS main loop

Ilter=1

While iter<itermax

10 Update position (solution to Mbest)

11 Check Bounds

12 Update Pbest

13 Update Gbest

14 Plotting the convergence results (fitness value /iteration)
15 | End

16 | /Il STEP2 TGV

17 | Fixe TGV values (n, ( A, and A, as the fitness value))

18 | Input : Original image

19 | Add Gaussian noise to the image &

20 | TGV2 denoising function

21 | Output : Denoised Image

O©CoO~NO O WN P
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4.3.1.4 Résultats et discussion

- L'impact du choix des paramétres de régularisation sur le processus de débruitage

Notre approche expérimentale est principalement composée de deux sections. Dans la premiéere
section, I'impact du choix du parametre de régularisation sur le processus de débruitage et sa
relation avec la variation du bruit a été mis en évidence. La figure 4.11 illustre la variation du
rapport signal/bruit de créte avec I'augmentation des paramétres de régularisation et des valeurs
de bruit. Comme indiqué clairement, il existe une meilleure solution de paramétre de
régularisation pour une meilleure qualité de débruitage en cas de variation de bruit. Et puisque
notre simulation informatique de TGV,? contient deux paramétres de régularisation 1, A,, la

solution est considérée comme une combinaison de deux valeurs ensemble.

32
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Peak Signal to Noise Ratio PSNR

24 T ¥ T X T x
0,2 0,4 0,6 0,8
Lambda1,Lambda2 Values

Figure 4.11 Variation du rapport signal/bruit de créte avec l'augmentation, 4,, 1, valeur de bruit [10%-50%].

La différence de quantité quantifiée entre ces deux valeurs : 4,, 4, a un impact important sur
TGV,? et le comportement de débruitage. A cet égard, la figure 4.12 qui représente la variation
du rapport signal sur bruit de créte avec A,et A, differentes valeurs d'écart avec le bruit fixe,
cela confirme que l'augmentation de la difference entre les valeurs : A,, 4, conduit & un
processus de debruitage completement different. De plus, le comportement de débruitage peut
¢galement étre affecté par la fixation de I'une des valeurs suivantes 4, , 1, comme le montrent

les deux graphiques illustrés a la Figure 4.13.
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Figure 4.12 Variation du rapport signal/bruit créte avec A, et A, différentes valeurs d'écart, bruit fixe.
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Figure 4.13 Variation du rapport signal/bruit créte avec A, et A, valeurs différentes, (a) : valeurs fixe 1,, (b):

valeurs fixe 1,

En fait, il existe également une relation entre la qualité de l'opération de débruitage et la
variation du bruit. La figure 4.14 illustre la variation du PSNR avec le parametre de
régularisation qui augmente pour une valeur spécifique du bruit. Par conséquent, la deuxiéme
partie de cette approche expérimentale vise a estimer la meilleure solution pour le paramétre de
régularisation a l'aide de TGVGQPSO.
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Figure 4.14 Variation du rapport signal/bruit créte avec A, et A, et trois valeurs de bruit différentes.

- Estimation des parameétres de régularisation

Notre fonction objective qui définit le probléme d'optimisation est la fonction de relation
d'ajustement entre le parameétre de régularisation : A;4, et le bruit & puisqu'il est considéré
comme la solution de la meilleure performance du processus de débruitage. La fonction

objective décrite ci-dessous a été ajustée apres avoir effectué plusieurs tests.

A4 = 370,6 + 0,2408.sin (0,5401. 7.4,.8) — 370,4.exp(-(0,0401.5)?)
Ay = 0,2266 + 1,493.sin (0,1797. 7.4,.8) -0,000271.exp(-(-0,1628.5)2)

Nous utilisons I'équation 4.4 pour calculer la meilleure combinaison de parametres de
régularisation en utilisant notre méthode proposée TGVGQPSO. Les images IRM et TDM
utilisees sont issues de Radiopaedia [55] ; les images sont extraites et enregistrees au format
TIFF. Les niveaux de bruit gaussien sont [10%-90%]. L'intervalle des valeurs des parametres
de régularisation est compris entre [0-1], notre approche a été réalisée en utilisant les valeurs
des parametres suivants : nombre d'itérations n = 100/500, dimension d = 2, coefficients

d'accéleration c1, c2 = 1, poids d'inertie wl, w2 =1.
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Le principal defi de cette étude consistait a déterminer la fonction objective qui représente la
fonction de relation d'ajustement entre les deux paramétres de régularisation et la valeur de
bruit, si la relation d'ajustement est inappropriée. Les performances de débruitage seront moins

efficaces.

Tableau 4.5 Valeurs PSNR et SSIM du débruitage d'images IRM cérébrales avec TGV et notre méthode proposée
TGVGQPSO, valeur de bruit [0,1-0,9].

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Ay 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
~
e PSNR 31.3747 233549 16.7162 12.7358  9.8991 7.8365  6.1108  4.7449  3.5922
SSIM 08733 0.3536  0.1435 0.0817 0.0511  0.0349  0.0252  0.0185 0.014
A 0.21 0.24 0.29 0.35 0.44 0.55 0.66 0.79 0.91
?g As 0.23 0.26 0.30 0.36 0.43 0.52 0.63 0.75 0.88
8 PSNR 31.8902 28.1065 26.3551 24.3851 23.0344 219445 21.3598 20.8016 20.5170
~
1)
&~ SSIM  0.8942 0.8094  0.6499  0.5271 04332 04041 03685 0.3741  0.3468

Comme le montre le tableau 4.5, I'estimation de 4,1, pour chaque valeur de bruit particuliére
basée sur notre approche proposée conduit a une meilleure performance de débruitage
représentée avec les valeurs PSNR et SSIM, au lieu de choisir une valeur aléatoire du parametre
de régularisation. La figure 4.15 montre I'impact de I'estimation sur la qualité d'image a l'aide
de notre méthode TGVGQPSO par rapport a TGV,2.
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(b)

\

(© (d)

Figure 4.15 Débruitage de I'image CT Brain a I'aide de TGV et de notre méthode TGVGQPSO proposée. (a) :
image originale, (b) : image bruitée =0,3, (c) :, (d) : image débruitée en utilisant notre approche TGVGQPSO
proposée
Sur la base de I'application de TGVGQPSO, nous pouvons fournir la meilleure solution pour le
choix des parametres de régularisation et des performances de débruitage supérieures grace a
I'optimisation de la fonction objective (4.4). La figure 4.16 prouve I'efficacité de notre méthode
TGVGQPSO par rapport a d'autres algorithmes de débruitage expérimentaux de pointe,
notamment le filtre bilatéral, la variation totale TV et la variation généralisée totale ordinaire
de second ordre TGV2. La qualitt de débruitage de notre approche surpasse celles
susmentionnées, notamment en utilisant TGV,? avec I'optimisation de I'essaim de particules PSO
et les algorithmes ABC de la colonie d'abeilles artificielles pour I'estimation des parametres de
régularisation, comme indiqué dans le tableau 4.6 avec les valeurs les plus élevées de PSNR,

SSIM et le rapport de performance de débruitage DPR.
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(@) (b)

(©) (d)

() )

Figure 4.16 Débruitage de I'image cérébrale IRM a I'aide de notre algorithme proposé et d'autres méthodes de
débruitage expérimentales différentes (a) : image originale, (b) : image bruitée 5 = 0,2, (c) : image débruitée a
l'aide de la télévision, (d) : image débruitée a l'aide d'un filtre bilatéral, (e) : image débruitée avec TGV, (f) :
image débruitée avec notre méthode TGVGQPSO.
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Notre méthode TGVGQPSO donne l'estimation la plus précise du choix des parametres de
régularisation malgré toute valeur de bruit probable. L'expression de I'opération de débruitage
en tant que probléme d'optimisation fournit des résultats efficaces dans le processus de
débruitage et I'amélioration de I'image. Le principal avantage de notre approche proposée est
qu'elle prend en compte les informations de bruit et utilise les valeurs de parameétres de
régularisation appropriées pour les meilleures performances de débruitage. Des études futures
pourraient examiner plusieurs applications de traitement d'images médicales basées sur le
méme principe pour améliorer les spécifications de filtrage et de bruit pour différentes données
d'imagerie medicale.

Tableau 4.6 Valeurs PSNR, SSIM et DPR du débruitage d'images IRM Brain en utilisant notre algorithme proposé

et d'autres méthodes expérimentales, valeur de bruit & = 0,2.

Denoising Algorithm PSNR SSIM DPR
Bilateral Filter 23.3868 0.33116 52.86%
TV 23.4260 0.35171 48.32%
TGV? 24.4414 0.36366 51.98%
TGV?2-PSO 25.2314 0.68254 93.85%
TGV2-ABC 25.4532 0.69425 95.64%
TGVGQPSO 27.9460 0.80907 98.66%

4.3.2 Un nouvel algorithme d'amélioration d'images médicales basé sur CLAHE et Pelican

Optimisation
4.3.2.1 Cadre

L'amélioration de I'image est la principale étape de prétraitement dans différentes applications
de vision par ordinateur. L'objectif de cette étape est d'améliorer la qualité de I'image, et par la
suite d'augmenter l'interprétabilité et la perception de l'information. Dans les techniques
d'amelioration des images médicales, le processus opérationnel est plus difficile, en raison des
artefacts d'acquisition, du flou de I'image et de I'hétérogeénéité des niveaux de luminosité et de
bruit.
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Le principe principal d'une technique d'amélioration est de transformer les parametres
caractéristiques de I'image en une forme supérieure. Le contraste est considéré comme le
parameétre le plus important dans la procédure d'évaluation de la qualité de I'image. Il est généré
par la réflexion de luminance de deux regions adjacentes et représente la différence des
propriétés visuelles, ce qui permet a un objet de se distinguer des autres formes et
environnements. En utilisant des techniques d'amélioration d'image, le probléme de faible

contraste sera résolu par le renforcement de la région d'intérét [87][88].

Plusieurs techniques d'amélioration ont déja été menées pour obtenir une visualisation plus
efficace de I'image. Ces méthodes sont classées en fonction de leur impact sur le traitement en
tant que techniques de domaines spatiaux et transformés. L'égalisation d'histogramme (HE) est
I'une des méthodes conventionnelles du domaine spatial. Cette technique augmente I'uniformité
de la distribution des gris de I'image. L'égalisation adaptative d'histogramme (AHE) est une
méthode classique basée sur HE qui est appliquée pour les régions locales et qui est efficace en
termes de réduction de la perte de détails d'image. Cependant, le défaut de cette technique est

la suramplification du bruit [89].

L'égalisation d'histogramme adaptative a contraste limité (CLAHE) diverge dans le
fonctionnement de la distribution d'histogramme, ce qui n'est pas le cas avec I'égalisation
d'histogramme adaptative classique. CLAHE est un algorithme efficace pour renforcer les
détails locaux d'une image. La principale limitation de cette méthode est que le renforcement
du contraste est limité en coupant I'histogramme & une limite de clip (contraste) prédéfinie. Sur
cette base, nous présentons une nouvelle méthode d'amélioration de I'image médicale nommée
CLAHE-POA, basée sur l'application a la fois de CLAHE et de l'algorithme d'optimisation du
pélican (POA). Le modeéle proposé est salutaire pour estimer la valeur limite de contraste la

plus précise pour atteindre une performance d'amélioration supérieure.

Dans la période récente, les applications des algorithmes métaheuristiques sont bien connues
pour resoudre différents types de problemes d'optimisation d'ingénierie. Ces algorithmes sont
essentiellement inspirés des systéemes biologiques, physiques et chimiques de la nature et ont la
capacité de fournir et de trouver des solutions a plusieurs probléemes. L'un des algorithmes méta-
heuristiques inspirés de la nature est I'algorithme d'optimisation pélican (POA). Ce modéle était
capable de résoudre la majorité des problémes d'ingénierie, et il a été introduit pour la premiére

fois dans la résolution de probléemes de traitement d'images [90][91][92].
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L'objectif genéral de ce travail est de présenter une nouvelle methode d'amélioration d'images
médicales. Ce modéle est basé sur l'utilisation de POA pour estimer la limite de clip, qui
contr6le les performances de l'opération d'amélioration & I'aide de CLAHE. Le processus
d'estimation améliore I'efficacité de I'opération et fournit des résultats supérieurs en termes de
qualité d'image et de contraste. L'utilisation du présent algorithme permet d'obtenir un impact
visuel supérieur sur l'image traitée ainsi que d'augmenter le taux de conformité dans le

diagnostic clinique.

4.3.2.2 Travaux connexes

De nombreux cadres d'amélioration d'image ont été développés sur la base de I'application du
modele CLAHE, Diksha et al. [93] ont proposé une approche d'amélioration des images sous-
marines utilisant CLAHE combinée a des méthodologies de centiles, les performances de leur
systeme proposé surpassent les techniques classiques pour renforcer cette forme d'images.
Ruquin et al. [94] ont présenté un schéma d'amélioration intelligent base sur la transformation
CLAHE et F-Shirt lors de la décompression, leur modeéle a équilibré I'effet d'amélioration tout

en augmentant le contraste et en préservant les détails de I'image.

En ce qui concerne I'utilisation du modele CLAHE dans le domaine médical et biomédical,
l'amélioration des images du fond d'ceeil rétinien a l'aide de cette méthode est une application
reconnue ; Sarika et al [95] ont proposé une version modifiée de CLAHE. Leur modeéle résout
le probleme d'amplification du bruit. Cependant, le temps opérationnel requis est remarquable
[96][971[98]1[99].

Concernant la POA, elle est essentiellement utilisée dans les applications d'ingénierie.
Trojovsky et al. [100] ont présenté le principe fondamental de la POA et sa modélisation. En
plus de la comparaison de ses performances avec des algorithmes concurrents supplémentaires.
Une approche hybride de la POA est menée dans plusieurs travaux de la littérature de recherche.
Rajam et al. [101] ont étudié I'amélioration des performances du PV connecté au réseau en
utilisant I'approche GBDT-POA. leur modeéle proposé fournit des résultats optimaux, en
augmentant la qualité de la puissance. De plus, Kumar et al. [102] ont proposé une nouvelle
technique de contrdle utilisant la POA hybride, et I'exécution optimale de la précision obtenue

est supérieure par rapport aux techniques existantes.
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4.3.2.3 Approche proposée

Dans notre approche d'amélioration proposée, la génération d'images est une phase pré-requise.
L'application du modéle génératif Text-to-image conduit a obtenir les données medicales visees

pour I'examen et I'analyse de notre algorithme d'amélioration.

Aprés obtention des images, notre méthode de rehaussement se représente en deux étapes :
- Etape 1. L'estimation de la limite de clip p basée sur I'utilisation de POA.

- Etape 2. L'amélioration du contraste utilisant CLAHE.

La fonction objective qui définit I'efficacité de notre modele proposé est la relation d'ajustement
entre [ et les parametres de performance suivants : rapport signal/bruit de créte (PSNR), indice
de similarité structurelle (SSIM), coefficient de corrélation (CoC), erreur quadratique moyenne
(MSE), I'entropie (EL) et I'écart type (SD). Aprés avoir étudie la variation de p avec ces
parametres, I'équation 4.5 peut étre présentée comme suit :

B = 4,801.107°. [sin(X; — m)] + 1,732.107°[(X; — 10)2] — 0,00361 / X, — PSNR
B = —41,88.[sin(X, — m)] + 1,427.[(X, — 10)2] =151 / X, — SSIM
B = —23,24.[sin(X; — m)] 4+ 0.7188.[(X; — 10)2] = 77,78 | X3 — CoC
B =8,993.107°. [sin(X, — )] — 5,798.1078.[(X, — 10)2] + 0,002474 / X, — MSE
B = 1,216.[sin(Xs — )] — 0,1245.[(Xs — 10)2] + 1,934 / X; — EL
B = —0,01488.[sin(Xs — )] + 2,2.1075.[(X, — 10)2] — 0.03428 / X, — SD
(4.5)
L'équation 4.5 a été ajustée apres avoir effectué plusieurs tests. L'étude de la distribution de la
limite de clip et des paramétres de performance en tant que variables dépendantes a été réalisée.
A cet égard, l'estimation de la valeur appropriée de P est essentielle pour obtenir une
performance hautement améliorée. En présentant le probléeme d'amélioration comme un
probléme d'optimisation, le nouvel algorithme inspiré de la nature POA est appliqué pour
améliorer I'efficacité de I'ensemble de I'opération. POA est utilisé pour résoudre les problémes
d'optimisation dans une variéte de disciplines d'ingénierie, et il a été introduit pour la premiére

fois pour les applications de traitement d'image dans ce travail.
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CLAHE-POA Algorithm

[/l STEP1 Text-to-image model.
1. Input: Original medical image generated by Text-to-image model.

/Il STEP2 CLAHE
2. CLAHE enhancement function.

/Il STEP3 POA
3. Input the objective function (optimization problem information using Eg. 4.5).
Determination of the population size (N) and the number of iterations.

4
5

6. Fort=1:T
7 Generation of the prey’s position at random.
8

For I=1:N
9. Phase 1, 2: exploration and exploitation phases.
10. For j=1:m
11. New status’ calculation of the jth dimension.
12, End.
13. End.
14. Updating the ith population member.
15. End.

16. Update and output the best solution obtained by POA.
17. Estimated value of .
i

18. Output: Enhanced image.

Initialization of pelicans’ position and the calculation of the objective function.
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Algorithm

<

Enhanced Medical Images

Figure 4.17 Les étapes de notre démarche de valorisation.
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Figure 4.18 Le schéma fonctionnel graphique de notre modele propose.
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4.3.2.4 Résultats

Des expériences sur des images médicales générées a I'aide du modele de diffusion stable Text-
to-image ont été réalisées. Les données expérimentales des différentes modalités d'imagerie
médicale sont enregistrées au format TIFF (Ct-Scan Brain image, MRI Brain image, PET
image, Ultrasound Kidney image). En plus des cadres cérébraux de la tomodensitométrie axiale
et de I''RM recueillis a partir de Radiopaedia [103][104], qui ont été utilisés pour un processus
de comparaison. L'objectif de I'utilisation de différents types de données expérimentales est de
présenter qualitativement les performances d'amélioration de notre modéle. Les algorithmes
génératifs CLAHE-POA et Text-to-image sont respectivement implémentés en utilisant
MATLAB (version 9.4) et PYTHON (google Colab).

Dans les expériences, pour presenter la méthode d'amélioration proposée et pour illustrer les
avantages de la fusion de CLAHE et de POA, les performances de notre méthode proposée ont
été comparées a huit méthodes expérimentales de pointe. Cela inclut les éléments suivants :
filtre de Wiener WF [105], filtre gaussien GF [106], filtre médian MF [107], algorithme
d'optimisation d'essaim de particules quantiques QPSO [108], algorithme de colonie d'abeilles
artificielles ABC [109], algorithme de masquage flou UM [110], le modele CSDNET [111] et
le modeéle FilterNet [112]. En outre, pour vérifier I'amélioration de I'image de maniére compléte
et objective, les parametres de performance sont adoptés. Le PSNR présente les performances
d'amélioration de maniére objective, des valeurs plus grandes représentent une amélioration
supérieure ; SSIM définit la distorsion des images améliorées ; CoC et EL indiquent les
informations et les détails de I'image ; et MSE et SD peuvent présenter le contraste des images

améliorées, tandis que les valeurs MSE diminuent avec I'augmentation du contraste global.
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Figure 4.19 La variation de B avec les paramétres de performance.
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(i) )

Figure 4.20 Amélioration de I'image médicale a l'aide de notre modéle proposé, (a) : image cérébrale CT

originale. (b) : image rehaussée, (c) : image cérébrale IRM originale, (d) : image rehaussée, (e) : image TEP
originale, (f) : image rehaussée, (g) : image radiographique originale du thorax, (h) : Image rehaussée, (i) : Image

originale du rein échographique, (j) : Image rehaussée.
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Figure 4.21 Comparaison des performances d'amélioration en utilisant notre modéle proposé et les autres
méthodes expérimentales. (a) : image radiographique originale du thorax, (b) : image améliorée avec CLAHE,
(c) : image améliorée avec CLAHE/WF, (d) : image améliorée avec CLAHE/GF, (e) : image améliorée avec
CLAHE/MF, (f) : image améliorée avec CLAHE/QPSO, (g) : image améliorée avec CLAHE/ABC, (h) : image

améliorée avec UM, (i) : image améliorée avec notre modéle proposé.

75



Chapitre 4. Résultats et contributions

a L cucr cumr cLigPso L
Model

o e clar cumr cLarsa e
Model

= e =33 eme cLaps R

Model

Figure 4.22 Comparaison de l'efficacité de I'amélioration a I'aide de notre modéle proposé et des autres
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méthodes expérimentales basées sur les paramétres de performance.
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Tableau 4.7 Comparaison de l'efficacité d'amélioration de I'image thoracique radiographique a l'aide de notre

modéle proposé et des autres méthodes expérimentales basées sur les paramétres de performance.

Performance CLAHE CLAHE/WF CLAHE/GF CLAHE/MF CLAHE/QPSO CLAHE/ABC UM Our
Parameter Proposed

Model

PSNR 22.023 22.034 22.04 22.071 28.37 28.353 28.171  29.347
SSIM 0.832 0.796 0.835 0.905 0.905 0.906 0.988 0.994
CoC 0.943 0.943 0.929 0.943 0.988 0.99 0.998 0.997
MSE 408.07 0.006 0.007 0.006 0.064 0.099 0.0002 0.008
EL 7.524 7.53 7.572 7.527 7.569 7.572 7.314 7.5822

SD 57.398 0.225 0.221 0.224 58.668 58.402 0.217 58.806

@ (b)

(c) (d)

Figure 4.23 Amélioration des images réelles CT et IRM a l'aide de notre modéle proposé. (a) : image cérébrale

CT-Scan axiale originale, (b) : image rehaussée, (c) : image cérébrale IRM axiale originale, (d) : image

rehaussée.
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(@) (b)

(c) (d)

Figure 4.24 Comparaison des performances d'amélioration sur des images médicales réelles en utilisant notre

modele proposé et les autres méthodes expérimentales. (a) : image cérébrale IRM axiale originale, (b) : image
améliorée a l'aide de CSDNET, (c) : image améliorée a l'aide de FilterNet, (d) : image améliorée a l'aide de notre

modele propose.
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Tableau 4.8 Comparaison de I'efficacité d'amélioration de I'image cérébrale IRM axiale a l'aide de notre modele

proposé et des autres méthodes expérimentales basées sur les parametres de performance.

Performance CSDNET FilterNet Our
Parameter Proposed

Model

PSNR 21.253 26.596 29.256
SSIM 0.812 0.985 0.989
CoC 0.97 0.98 0.992
MSE 0.00015 0.0001 0.0075
EL 7.135 7.425 7.5647

SD 0.568 0.217 57.265

4.3.2.5 Discussion

La figure 4.19 représente la distribution de  en paralléle avec les paramétres de performance.
Sur cette base, p augmente proportionnellement aux valeurs du parametre, sauf les valeurs de
MSE qui sont inversement proportionnelles a 3 et au contraste global. La valeur de coupure de
chaque courbe indique que l'estimation de [ est essentielle pour obtenir une performance

d'amélioration supérieure.

En ce qui concerne les comparaisons visuelles, les figures 4.20 et 4.21 montrent les résultats
d'amélioration des images médicales générées obtenues par la présente méthode et les autres
algorithmes expérimentaux de pointe. En comparant les détails et les régions locales dans les
images, en particulier les régions avec des structures et des formes spécifiques, nous concluons
que notre modeéle proposé offre une qualité visuelle supérieure. Les bords et la netteté sont flous
dans CLAHE/GF et CLAHE/WF, mais ils sont mieux préservés avec notre méthode. Les
performances CLAHE/GQPO et CLAHE/ABC sont proches dans une certaine mesure de notre
modele en termes de qualité visuelle. Cependant, I'estimation de P est plus précise en utilisant

notre algorithme, ce qui a entrainé une supériorité de notre méthode en termes de performances.

Les résultats fournis sur la figure 4.21, qui représentent le rehaussement d'une image
radiographique du thorax, ont prouvé la supériorité de notre modéle par rapport aux autres
algorithmes. CLAHE/WF, CLAHE/GF et CLAHE/MF sur-augmentent la luminosité de
I'image, tandis que les résultats de UM et de notre algorithme proposé sont presque identiques,

avec un léger avantage de notre méthode dans le contraste global obtenu.
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Concernant I'évaluation quantitative, la figure 4.22 et le tableau 4.7 présentent la comparaison
des résultats numériques en fonction des parametres pertinents pour la performance. Notre
algorithme d'amélioration surpasse de maniére significative les autres méthodes
experimentales. En termes de valeurs PSNR, notre modéle et les résultats UM sont assez
similaires, avec la supériorité de notre algorithme par rapport a toutes les autres méthodes
concernant les parametres de performance SSIM, CoC, EL et SD. Concernant MSE, les
résultats UM sont préférables.

Afin de décrire qualitativement les performances d'amélioration de notre modéle, nous avons
appliqué notre algorithme proposé a I'amélioration d'images médicales réelles, comme le
montre la figure 4.23, qui représente I'amélioration de deux images cérébrales axiales de
difféerentes modalités d'imagerie CT-Scan et IRM. Notre méthode a mis en évidence son
efficacité en termes d'amélioration des performances, en comparaison avec les méthodes
d'amélioration récentes, y compris les modéles d'amélioration CDSNET et FilterNet, comme le
montrent la figure 4.24 et le tableau 4.8. En plus de cela, notre méthode prouve son applicabilité
dans diverses images. A cet égard, I'amélioration du contraste et de la netteté a l'aide de notre
méthode donne un effet visuel supérieur sur I'image traitée et conduit a une observation et un

diagnostic typique par des spécialistes.
4.4 Conclusion

Ce chapitre a couvert les différents résultats de recherche et les contributions pour différentes
solutions et applications de problemes inverses. Les solutions pour différentes données
d'imagerie et problémes de traitement d'image sont présentées en prouvant I'importance et les
avantages de nos modeles dans I'amélioration des solutions, en parallele avec I'adaptation des

algorithmes d'optimisation dans le cadre de régularisation.
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En conclusion, cette these a étudié I'application de solutions régularisées a des problemes
inverses en imagerie médicale. La these a contribué au développement de méthodes
mathématiques et informatiques pour résoudre des problémes inverses de traitement d'images,
en mettant lI'accent sur les applications d'imagerie médicale. Dans ce chapitre, nous résumons
les principales contributions de cette these et discutons des orientations de recherche

potentielles pour les travaux futurs.
5.1 Contributions

Nous avons montré que la regularisation joue un réle crucial dans la précision et la stabilité des
solutions régularisées de problémes inverses en imagerie médicale. En plus de cela, nous avons
étudié I'estimation des parametres de régularisation, qui est une étape critique dans le processus
de régularisation. Nous avons exploré différentes méthodes de sélection des parameétres de

régularisation :

e Nous avons étudié I'impact de l'estimation des parametres de régularisation sur les
performances des opérations de restauration d'images médicales en utilisant une
nouvelle approche basée sur le filtrage inverse régularisé amélioré et I'optimisation des
particules a comportement quantique gaussien. Notre modele proposé est appliqué pour
estimer la meilleure solution de choix de paramétres avec des valeurs de flou et de bruit
variables. Les résultats expérimentaux démontrent la performance significative des
opérations de restauration avec une qualité d'image et une netteté élevées basées sur
l'utilisation de notre modéle proposé par rapport aux méthodes de restauration
expérimentales récemment élaborées. La présentation de I'estimation de régularisation
comme une problématique d'optimisation a mis en évidence son efficacité dans
I'amélioration du processus de restauration.

e Nous avons atteint une performance de qualité de déconvolution d'images médicales
efficace. Les résultats expérimentaux montrent des performances évidentes du
processus de déconvolution des images médicales en utilisant notre approche proposée
en comparaison avec d'autres méthodes de déconvolution expérimentales.

« Notre algorithme intelligent proposé pour le débruitage d'images médicales est appliqué
pour estimer la meilleure solution de choix des parameétres de régularisation avec
variation de bruit. Les résultats expérimentaux confirment l'effet évident sur le

processus de débruitage des images médicales avec l'application de notre approche
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proposée par rapport a d'autres méthodes expérimentales de débruitage d'images de
pointe.

Basé sur la fusion de I'égalisation d'histogramme adaptatif de contraste et de I'algorithme
d'optimisation du pélican, notre nouvelle méthode d'amélioration d'image médicale est
présentée. Grace a l'estimation de la limite de clip comme solution au probléme
d'optimisation lié aux parametres de performance, le contraste des images médicales est
considérablement amélioré. Les résultats expérimentaux prouvent la supériorité de notre
modele par rapport aux autres méthodes de I'état de I'art qualitativement et
quantitativement. Notre méthode proposée est capable d'illustrer la structure et les
formes des détails pertinents, qui sont contenus dans les images médicales. Toutes ces
étapes conduisent a l'augmentation du contraste global d'une part et améliorent la

perception visuelle et I'observation d'autre part.

5.2 Travaux Futurs

Plusieurs pistes de recherches futures peuvent s'appuyer sur les résultats de cette these. Ceux-

ci inclus:

Développement de méthodes d'optimisation avancées : Bien que les algorithmes
d'optimisation utilisés dans cette these se soient révélés prometteurs pour résoudre le
probléme inverse régularisé, il y a encore place a I'amélioration. Les recherches futures
peuvent explorer le développement de méthodes d'optimisation plus avancées.
Exploration des approches dapprentissage en profondeur : Les approches
d'apprentissage en profondeur se sont révélées tres prometteuses en imagerie médicale,
en particulier dans la classification et la segmentation des images. Les recherches
futures peuvent explorer I'intégration de méthodes d'apprentissage en profondeur dans
le processus de régularisation des problemes inverses en imagerie médicale, ainsi que
I'incorporation de connaissances antérieures plus complexes.

Application aux modalités d'imagerie émergentes: bien que cette these se soit
principalement concentrée sur les modalités d'imagerie établies, telles que la
tomodensitométrie, I''RM et la TEP, les recherches futures peuvent explorer
I'application de I'estimation de la régularisation basée sur I'optimisation aux modalités
d'imagerie emergentes, telles que la tomographie par coherence optique (OCT) et
imagerie photo-acoustique (PAI). Cela peut permettre le déeveloppement de nouvelles

techniques d'imagerie et d'applications dans le domaine de I'imagerie médicale.
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Application a la pratique clinique : Les résultats de cette these ont des implications
importantes pour le diagnostic et le traitement de diverses conditions médicales. Les
recherches futures peuvent explorer la traduction de I'estimation de la régularisation
basée sur I'optimisation dans la pratique clinique, grace au développement de logiciels
conviviaux et a la collaboration avec des médecins praticiens. Cela peut permettre

I'adoption de techniques d'imagerie plus précises et plus efficaces en milieu clinique.
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