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" العكسية في التصوير الطبي ظمة للمشاكل تالحلول المن " 

 :الملخص 
مع التركيز على تطبيقات التصوير الطبي، بما في ذلك   ، ةالطبي الصورمعالجة ل مشاكل العكسية الالحسابية والحاسوبية لحل  طرقتهدف هذه الأطروحة الى تطوير ال

تقرار الحلول المنتظمة  استعادة الصور الطبية، وفك الارتباط، والترشيح، وتحسين التباين. يهدف هذا العمل إلى إظهار أن التنظيم يلعب دورًا مهمًا في دقة واس

مكن تلخيص المساهمات للمشاكل العكسية في التصوير الطبي. بالإضافة إلى ذلك، قمنا بالتحقيق في تقدير معلمات التنظيم، وهي خطوة حاسمة في عملية التنظيم. ي

:التاليالرئيسية لهذه الأطروحة على النحو   

مع تقدير  المحسنو • اقتراح نهج جديد لاستعادة الصورة الطبية على أساس خوارزمية تحسين سرب الجسيمات ذات السلوك الكمي الغاوسي والفلتر العكسي المنظم

تها الصورة الطبية وتقليل التشويش مع تقدير التنظيم لتحسين جودة الصورة الطبية وحد استرجاعمعامل التنظيم. يتحكم هذا النموذج في عملية   

على التنظيم وخوارزمية تحسين مستعمرة النحل الاصطناعية. الهدف من هذا العمل   الصوتية بناءً • تم اقتراح طريقة جديدة لفك تطور الصورة الطبية بالموجات فوق 

. الشائبهو دراسة تأثير تقدير معامل التنظيم على عملية التفكك مع التداخل    

التنظيم للحصول   الثابتة لمعاملقيمة • التحقيق في تأثير اختيار معامل التنظيم على التباين الكلي المعمم لتقليل الشوائب. نقترح الخوارزمية الذكية الخاصة بنا لتقدير ال

 على أفضل أداء لتقليل التشويش على الصورة

تعمل عملية التقدير على  • اقتراح طريقة جديدة لتحسين الصورة الطبية. يعتمد هذا النموذج على استخدام تقدير حد المقطع، والذي يتحكم في أداء عملية التحسين. 

 تحسين كفاءة العملية وتوفر نتائج فائقة من حيث جودة الصورة والتباين 

  مشاكل معالجة الصور  الحيوية.خوارزميات تحسين مستوحاة من  التحسين.تقدير التسوية . مشكلة ،  حلول منتظمة  عكسية،مشكلة  :مفتاحية كلمات

 

 

« Les Solutions Régularisées des Problèmes Inverses en Imagerie Médicale » 

Résumé : 

Cette thèse a contribué au développement de méthodes mathématiques et informatiques pour résoudre les 

problèmes inverses de traitement d'images, en mettant l'accent sur les applications d'imagerie médicale, y compris 

la restauration d'images médicales, la déconvolution, le filtrage et l'amélioration du contraste. Ce travail vise à 

montrer que la régularisation joue un rôle crucial dans la précision et la stabilité des solutions régularisées de 

problèmes inverses en imagerie médicale. En plus de cela, nous avons étudié l'estimation des paramètres de 

régularisation, qui est une étape critique dans le processus de régularisation. Les contributions principales de cette 

thèse peuvent être résumées comme suit : 

• Proposer une nouvelle approche de restauration d'images médicales basée sur un algorithme d'optimisation 

d'essaim de particules à comportement quantique gaussien et un filtre inverse régularisé amélioré avec estimation 

des paramètres de régularisation. Ce modèle contrôle l'opération de restauration du défloutage et du débruitage de 

l'image médicale avec une estimation de régularisation pour une meilleure qualité et netteté de l'image médicale. 

• Une nouvelle méthode de déconvolution d'images médicales par ultrasons nommée basée sur la régularisation L2 

et l'algorithme d'optimisation des colonies d'abeilles artificielles est proposée. L'objectif de ce travail est d'étudier 

l'impact de l'estimation des paramètres de régularisation sur le processus de déconvolution avec interférence de 

flou et de bruit. 

• Étude de l'impact du choix des paramètres de régularisation sur la variation généralisée totale du débruitage de 

second ordre. Nous proposons notre algorithme intelligent pour estimer la valeur stable hautement significative du 

paramètre de régularisation pour l'opération de débruitage d'image la plus performante. 

• Proposer une nouvelle méthode d'amélioration d'images médicales. Ce modèle est basé sur l'utilisation de POA 

pour estimer la limite de clip, qui contrôle les performances de l'opération d'amélioration à l'aide de CLAHE. Le 
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processus d'estimation améliore l'efficacité de l'opération et fournit des résultats supérieurs en termes de qualité 

d'image et de contraste. 

Mots clés : Problème inverse, solutions régularisées, estimation de régularisation, problème d'optimisation, 

algorithmes d'optimisation bio-inspirés, problématiques de traitement d'images. 

 

« Regularized Solutions to Inverse Problems in Medical Imaging » 

Abstract: 

This thesis has contributed to the development of mathematical and computational methods to solve inverse 

image-processing problems, with a focus on medical imaging applications, including medical image restoration, 

deconvolution, filtering, and contrast enhancement. This works aims to show that regularization plays a crucial 

role in the accuracy and stability of regularized solutions to inverse problems in medical imaging. In addition to 

that, we have investigated the estimation of regularization parameters, which is a critical step in the regularization 

process. The major contributions of this thesis can be summarized as follows: 

• Proposing a novel approach to medical image restoration based on a Gaussian Quantum-Behaved Particle 

Swarm Optimization algorithm and Enhanced Regularized Inverse Filter with regularization parameter 

estimation. This model controls the medical image deblurring and denoising restoration operation with 

regularization estimation for better medical image quality and sharpness.  

• A novel method for ultrasound medical image deconvolution named based on L2 regularization and 

artificial bee colony optimization algorithm is proposed. The aim of this work is to study the impact of 

regularization parameter estimation on the deconvolution process with blur and noise interference.  

• Investigating the impact of regularization parameter choice on the total generalized variation of second-

order denoising. We propose our intelligent algorithm to estimate the highly significant stable value of the 

regularization parameter for the best performance image denoising operation.  

• Proposing a novel medical image enhancement method. This model is based on using POA to estimate the 

clip-limit, which controls the performance of the enhancement operation using CLAHE. The estimation 

process improves the efficiency of the operation and provides superior results in terms of image quality 

and contrast.  

Keywords: Inverse problem, regularized solutions, regularization estimation, optimization problem, bio-inspired 

optimization algorithms, image processing issues. 
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1.1 Cadre de la Recherche 

L'imagerie médicale a révolutionné la pratique de la médecine. Il est devenu un outil essentiel 

pour le diagnostic, la planification du traitement et le suivi de diverses maladies. Les techniques 

d'imagerie médicale telles que les rayons X, la tomodensitométrie, l'IRM et la TEP génèrent 

des images en mesurant différentes propriétés physiques du corps humain, telles que la densité, 

la magnétisation et la radioactivité. Cependant, les images produites par ces techniques sont 

souvent bruitées, incomplètes et déformées, ce qui rend l'interprétation de ces images difficile. 

Les problèmes inverses sont des problèmes mathématiques qui surviennent lorsque nous 

essayons de reconstruire (obtenir) les propriétés physiques sous-jacentes d'un objet ou d'un 

système à partir de mesures indirectes. En imagerie médicale, des problèmes inverses se posent 

lorsque l'on cherche à reconstruire l'image d'un objet à partir des mesures obtenues par la 

technique d'imagerie. La reconstruction de l'image à partir des mesures est un problème mal 

posé car le nombre de mesures est souvent inférieur au nombre d'inconnues à estimer. Par 

conséquent, la solution du problème inverse est souvent instable et très sensible au bruit et aux 

autres sources d'erreur. 

La régularisation est une technique mathématique utilisée pour stabiliser la solution du 

problème inverse mal-posé. La régularisation introduit des connaissances ou des hypothèses 

préalables sur la solution et aide à contraindre la solution à un espace physiquement plausible. 

Les méthodes de régularisation ont été largement utilisées en imagerie médicale pour améliorer 

la qualité des images obtenues et réduire les artefacts causés par le bruit et d'autres sources 

d'erreurs. 

Le problème de régularisation en traitement d'image peut être exprimé comme un problème 

d'optimisation, où la fonction objective est minimisée sous réserve d'une contrainte de 

régularisation. La contrainte de régularisation introduit des informations ou des hypothèses 

préalables sur la solution, ce qui aide à stabiliser la solution et à réduire les effets du bruit et 

d'autres sources d'erreur. Le choix du terme de régularisation et du paramètre de régularisation 

dépend du problème spécifique et du type d'informations préalables ou d'hypothèses sur la 

solution. 

Les algorithmes d'optimisation sont largement utilisés dans l'estimation régularisée et les 

problèmes inverses en imagerie, et ils jouent un rôle crucial dans la résolution du problème de 

régularisation. Ces algorithmes sont utilisés pour trouver le paramètre de régularisation optimal 
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et pour minimiser la fonction objective soumise à la contrainte de régularisation. Les 

algorithmes d'optimisation peuvent être classés en deux catégories : déterministes et 

stochastiques. 

Les algorithmes d'optimisation déterministes, tels que la descente de gradient, le gradient 

conjugué et la méthode de Newton, sont largement utilisés dans les problèmes inverses en 

imagerie. Ces algorithmes sont basés sur le calcul du gradient de la fonction objectif et utilisent 

cette information pour mettre à jour la solution de manière itérative. Ces algorithmes sont 

efficaces et peuvent converger rapidement vers la solution optimale si la fonction objective est 

lisse et convexe. Cependant, dans les problèmes inverses en imagerie, la fonction objective est 

souvent non convexe et non lisse, ce qui peut rendre le problème d'optimisation difficile. 

Les algorithmes d'optimisation stochastique, tels que la descente de gradient stochastique, sont 

conçus pour traiter des fonctions objectives non convexes et non lisses. Ces algorithmes 

utilisent un sous-ensemble aléatoire des données pour calculer le gradient de la fonction objectif 

et mettre à jour la solution de manière itérative. Les algorithmes d'optimisation stochastique 

sont efficaces et peuvent converger vers une bonne solution même si la fonction objective est 

non convexe et non lisse. Cependant, ces algorithmes nécessitent un réglage minutieux du taux 

d'apprentissage et d'autres paramètres pour assurer la convergence. 

Les algorithmes d'optimisation bio-inspirés ont acquis une attention considérable dans la 

résolution des problèmes de traitement d'image ces dernières années. Ces algorithmes 

s'inspirent des systèmes biologiques et des phénomènes naturels et se sont avérés fournir des 

solutions efficaces à des problèmes d'optimisation complexes. En plus de cela, ces algorithmes 

d'optimisation ont montré un grand potentiel dans la résolution de problèmes inverses 

d'imagerie et d'estimation de régularisation. Ces algorithmes sont basés sur des phénomènes 

naturels et ont la capacité de gérer des problèmes d'optimisation difficiles. 

1.2 Contributions à la Recherche 

Cette thèse propose plusieurs algorithmes pour résoudre les problèmes inverses de traitement 

d'images médicales, notamment la restauration d'images médicales, la déconvolution, le filtrage 

et l'amélioration de contraste. Les principales contributions de cette thèse peuvent être résumées 

comme suit : 

• Je présente une revue des systèmes d'imagerie médicale, des problèmes inverses et de 

la régularisation. (Chapitre 2) 
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• Plusieurs méthodes sont présentées comme solutions aux problèmes inverses en 

imagerie. En plus d'explorer des cadres d'optimisation bio-inspirés et des modèles et 

applications récents dans ce domaine. (Chapitre 3) 

• Je propose une nouvelle approche de restauration d'images médicales nommée ERIF-

GQPSO basée sur un algorithme d'optimisation d'essaim de particules à comportement 

quantique et gaussien et un filtre inverse régularisé amélioré avec l’estimation des 

paramètres de régularisation. Ce modèle contrôle l'opération de restauration du 

défloutage et du débruitage de l'image médicale avec une estimation de régularisation 

pour une meilleure qualité et netteté de l'image médicale. (Chapitre 4, Section 1) 

• Une nouvelle méthode de déconvolution d'images médicales par ultrasons nommée 

basée sur la régularisation L2 et l'algorithme d'optimisation des colonies d'abeilles 

artificielles est proposée. L'objectif de ce travail est d'étudier l'impact de l'estimation des 

paramètres de régularisation sur le processus de déconvolution avec interférence de flou 

et de bruit. (Chapitre 4, Section 2) 

• • J'étudie l'impact du choix des paramètres de régularisation sur la variation généralisée 

totale du débruitage de second ordre. Je propose notre algorithme intelligent pour 

estimer la valeur stable hautement significative du paramètre de régularisation pour 

l'opération de débruitage d'image la plus performante. (Chapitre 4, Section 3) 

• Je propose une nouvelle méthode d'amélioration d'images médicales. Ce modèle est 

basé sur l'utilisation de POA pour estimer la limite de clip, qui contrôle les performances 

de l'opération d'amélioration à l'aide de CLAHE. Le processus d'estimation améliore 

l'efficacité de l'opération et fournit des résultats supérieurs en termes de qualité d'image 

et de contraste. L'utilisation du présent algorithme permet d'obtenir un impact visuel 

supérieur sur l'image traitée ainsi que d'augmenter le taux de conformité dans le 

diagnostic clinique. (Chapitre 4, Section 4) 

1.3 Structure de la Thèse 

Cette thèse est composée d'une collection d'articles et de travaux qui sont publiés par/soumis à 

des revues et conférences internationales dans le domaine du traitement d'images. Cette thèse 

propose plusieurs solutions régularisées à des problèmes inverses en imagerie médicale. 

Le chapitre 1 se concentre sur le contexte de notre recherche et les contributions à la recherche. 

Le chapitre 2 présente une revue des systèmes d'imagerie médicale, des problèmes inverses et 

de la régularisation. Le chapitre 3 présente le cadre proposé et les solutions aux problèmes 

inverses et à l'estimation par régularisation. Le chapitre 4 s'attache à présenter les solutions 
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proposées aux problèmes de traitement d'images médicales et nos contributions à la recherche. 

Le chapitre 5 résume les principales contributions de cette thèse et discute différentes directions 

de recherche pour des travaux futurs. 



 

 

 

 

 

 

 

 

 

 

 

Chapitre 2 : Les Problèmes Inverses en Imagerie 

Médicale 

 

 

 

 

 

 

 

 

 

 

 



Chapitre 2. Les Problèmes Inverses en Imagerie Médicale 

7 
 

2.1 Introduction  

Dans ce chapitre, nous illustrons le cadre des problèmes inverses en imagerie médicale, en 

présentant les différentes modalités et systèmes d'acquisition d'images (Rayons X, IRM, CT…), 

parallèlement à la description des principales opérations et procédés de traitement d'images 

médicales. De plus, la définition du modèle de problème inverse en imagerie est présentée, y 

compris la description du principe de régularisation et des stratégies d'estimation. Enfin, 

plusieurs définitions, principes et exemples de problèmes inverses en imagerie sont présentés. 

Ces applications sont les principaux thèmes que nous avons menés dans nos recherches. 

2.2  Les Systèmes d’imagerie Médicale 

2.2.1 Imagerie Par Résonance Magnétique 

2.2.1.1 Principe 

La résonance magnétique nucléaire est définie par les deux principes suivants : l'effet de 

résonance magnétique et la radiofréquence (RF), qui sont appliqués en imagerie par résonance 

magnétique (IRM) pour la génération d'images. L'origine principale du contraste entre plusieurs 

tissus en IRM est la relaxation. Ce phénomène conduit à l'approche de l'aimantation vers 

l'équilibre. 

La vitesse de relaxation est liée au tissu lui-même, différents tissus entraînent diverses 

relaxations. L'amplitude du signal reçu pendant le temps de relaxation est dissemblable, et c'est 

ce qui apparaît dans le contraste en IRM. Le système d'imagerie est contrôlé par différents 

paramètres, dont le type de séquence et l'acquisition. Le choix de la pondération est essentiel 

dans l'application médicale, il est contrôlé par le temps d'écho (TE) et le temps de répétition 

(TR). 

Un composant important du système IRM est les bobines de gradient, qui conduisent à la 

variation linéaire du champ magnétique homogène. La combinaison de trois bobines de gradient 

permet cette variation dans les différentes directions spatiales orthogonales. Les principaux 

concepts, basés sur le système de bobines de gradient, sont la sélection de tranches et le codage 

spatial.[1][3] 
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Figure 2.1 IRM Moderne (Siemens Healthineers). 

2.2.1.2 Applications 

Des applications avancées de l'IRM ont été menées dans la période récente. L'objectif principal 

de ces expériences est d'accélérer le processus d'acquisition et d'améliorer les signaux. 

L'imagerie parallèle est une application bien établie dans cette approche, qui fournit la réduction 

des données nécessaires à la reconstruction de l'image. En ce qui concerne l'approche de 

contraste, plusieurs applications ont été proposées, notamment l'excitation sélective pour 

l'imagerie coronarienne du sang clair, l'angiographie sans contraste et l'imagerie par résonance 

magnétique fonctionnelle pour visualiser l'activité neuronale dans le cerveau.[1][4] 

2.2.2 Imagerie par Rayon X 

2.2.2.1 Principe 

Le tube à rayons X est un composant sous vide avec une cathode et une anode (métal solide) à 

l'intérieur. La production de e- est due à l'énergie thermique appliquée au matériau (filament), 

cette énergie est supérieure à l'énergie de liaison du matériau. Et l'accélération des électrons 

produits est appliquée à l'aide d'une tension. Le phénomène de ralentissement (accélération 

négative) des électrons après avoir heurté l'anode génère des rayons X. [1][3] 



Chapitre 2. Les Problèmes Inverses en Imagerie Médicale 

9 
 

 

Figure 2.2 Tube à Rayon X 

2.2.2.2 Applications 

La radiographie est définie comme l'opération de génération d'images de projection 

bidimensionnelle en exposant le corps d'intérêt (anatomie) aux rayons X, parallèlement à la 

mesure de l'atténuation de ce rayonnement après passage de l'objet. Cette modalité d'imagerie 

est courante et est utilisée dans différentes cliniques. 

Le principal avantage de cette application d'imagerie est la possibilité d'examiner le système 

squelettique. Le contraste est apparu sur l'image radiographique en raison du coefficient 

d'atténuation élevé des os par rapport aux autres tissus. Cette caractéristique offre un contraste 

remarquable et augmente la possibilité de détection et de classification des caractéristiques. 

Une autre application bien connue des rayons X est la fluoroscopie, qui est définie comme une 

séquence d'images radiographiques générées périodiquement et à une fréquence d'images 

limitée. En ce qui concerne l'imagerie des veines, l'angiographie est appliquée pour analyser les 

propriétés des artères. Le défi dans ce type d'application est le faible contraste puisque les 

propriétés du vaisseau ne diffèrent pas de celles des tissus environnants. L'utilisation de l'agent 

de contraste dans ce type de modalité est essentielle pour augmenter la qualité de l'image.[1][4] 

2.2.3 Tomodensitométrie (TDM) 

2.2.3.1 Principe 

La tomodensitométrie (TDM) est considérée comme l'une des applications les plus importantes 

de l'imagerie médicale. Le principe mathématique sous-jacent du processus de génération 

d'images en imagerie CT est la transformée de Radon. 
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Figure 2.3 TDM Moderne (Siemens Healthineers). 

2.2.3.2 Applications 

La reconstruction TDM classique mono-énergie suppose un rayonnement mono-énergétique. 

Cette énergie est incapable de fournir des informations quantitatives sur la composition des 

tissus. La saisie des données spectrales permet de disposer d'informations quantitatives réelles 

sur le corps scanné, et c'est le principe de base de la tomodensitométrie spectrale. D'autres 

applications médicales populaires sont l'ablation osseuse, les systèmes d'imagerie 

PET/SPECT et le diagnostic de perfusion pulmonaire.[1][3] 

2.2.4 Tomographie par Emission 

2.2.4.1 Principe 

L'imagerie fonctionnelle est appliquée pour voir et analyser les processus biologiques. La 

source de rayonnement dans ce type d'imagerie est située dans le corps du patient, cette méthode 

appartient à la famille des applications de la tomographie d'émission. Le processus commence 

par la désintégration radioactive, en fonction du nombre de photons émis, les deux processus 

SPECT et PET sont établis.[1][4] 

2.2.4.2 Applications 

Les applications de la tomographie par émission sont utilisées dans divers domaines de la 

médecine, y compris le diagnostic et la thérapie. PET et SPECT fournissent des informations 

sur le flux sanguin dans le domaine de la neurologie. Pour l'oncologie, la TEP est utilisée pour 

détecter un métabolisme élevé du glucose, qui est le résultat de tumeurs métastatiques. En plus 

de cela, la tomographie par émission est appliquée dans la thérapie par radio-isotopes en ciblant 
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les tissus malins avec des radiations, ce qui entraîne l'arrêt de la croissance des cellules 

indésirables.[1][3] 

 

Figure 2.4 PET/CT Scan (Siemens Healthineers). 

2.2.5 Echographie 

2.2.5.1 Principe 

Le composant principal d'un système d'imagerie par ultrasons est le transducteur, qui fonctionne 

comme un générateur et un détecteur d'ondes ultrasonores par la conversion de l'énergie 

mécanique en électricité. Après la pénétration des ondes dans le corps, la génération d'échos se 

produit en raison de la réflexion et de la diffusion. Ces échos sont enregistrés et transformés en 

images de différentes dimensions (1-2-3 D).[1][4] 

2.2.5.2 Applications 

En comparaison avec d'autres modalités d'imagerie, l'imagerie par ultrasons offre plusieurs 

avantages, notamment le caractère non invasif de l'opération et l'absence d'application de 

rayonnement ionisant. L'acquisition d'images en échographie est rapide, facile et peut être 

étendue à plusieurs applications.[1][4] 
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Figure 2.5 System d’imagerie échographique (Siemens Healthineers). 

2.3      Traitement d’image médicale 

2.3.1 Amélioration d’image 

Pour une visualisation optimale, des opérations de modification de contraste sont souvent 

utilisées pour obtenir une image de meilleure qualité. La mise à l'échelle des valeurs d'intensité 

est l'une des méthodes utilisées dans cette approche pour obtenir un affichage approprié de 

l'image, une fonction commune pour cette opération est la fenêtre et le niveau. En plus de cela, 

un autre type d'amélioration d'image est celui basé sur la normalisation des intensités 

résultantes, connu sous le nom de correction gamma. Cette méthode est adaptée à la perception 

de l'œil humain. De plus, l'égalisation d'histogramme est une approche différente de 

l'amélioration par rapport à la fenêtre et au niveau, et à la correction gamma. Cependant, on sait 

qu'elle est largement appliquée dans les opérations de traitement d'images. [1][2] 

2.3.2 Détection des Bords 

L'un des problèmes courants du traitement d'image est la détection des contours. Les bords de 

l'image sont les changements remarquables entre les intensités voisines. Pour représenter la 

détection des contours en tant que fonction, la détection de ces changements remarquables peut 

se faire à l'aide de la dérivée de l'image. Il est défini par l'équation  

𝑓′(𝑥) = limℎ→0  
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

(2.1) 
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Dans le cas discret, plusieurs approximations sont utilisées pour la dérivée. Les différences 

avant, arrière et centrale peuvent être présentées comme suit  

Δ𝑥𝑓(𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥) 

∇𝑥𝑓(𝑥)  = 𝑓(𝑥) − 𝑓(𝑥 − 1)
𝛿𝑥𝑓(𝑥)  = 𝑓(𝑥 + 1) − 𝑓(𝑥 − 1)

 

 Ces approximations sont différentes en termes d'applicabilité des images et de leur 

précision.[1][2][4] 

2.3.3 Opérations Morphologiques 

Le principe des opérations morphologiques opère sur des ensembles ; l'introduction de ces 

opérations est assurée en traitant les images comme des ensembles. L'opérateur est composé de 

la structuration (image/ensemble) et de l'opération principale. 

 

Figure 2.6 Exemples d’élément structurant 

Les quatre opérations de base sont l'érosion, la dilatation, l'ouverture et la fermeture, où la 

composition de l'érosion et de la dilatation crée l'ouverture et la fermeture.[1][2] 

2.3.4 Segmentation d’image 

 La segmentation d'image est définie comme l'opération de conversion d'une image en niveaux 

de gris avec plusieurs valeurs d'intensité en une image avec des valeurs d'intensité de segment 

inférieures à celles d'origine. En conséquence, l'image segmentée sera composée en différentes 

régions, qui correspondent à plusieurs partitions de valeurs d'intensité. Ce processus conduit à 

la distinction entre différents tissus. 

Le seuillage est l'une des méthodes de base utilisées dans la segmentation d'images. Son 

principe est la comparaison de chaque valeur d'intensité avec un seuil θ, et sa valeur peut être 

déterminée automatiquement en utilisant certains algorithmes.[1][2] 

(2.2) 
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𝑡(𝑥, 𝑦) = {
1  if 𝑓(𝑥, 𝑦) ≥ 𝜃
0  otherwise 

 

2.4      Les Problèmes Inverses en Imagerie Médicale 

2.4.1 Problème Inverse 

Trouver la solution à un problème inverse est le processus de calcul d'une quantité physique 

inconnue, qui est liée à des mesures données (indirectes) obtenues par un modèle direct. Les 

problèmes inverses sont bien connus dans plusieurs applications d'imagerie, notamment l'IRM, 

la TDM, la TEP, la SPECT et la tomographie électronique (TE).  

 Un problème inverse peut être défini mathématiquement comme suit  

𝑔 = 𝐻𝑓 

𝑔 est la donnée de mesure et f est la quantité inconnue. Le principe d'un problème bien posé a 

été établi à partir de l'idée que l'inversion d'un modèle direct n'est pas simple dans plusieurs 

applications, en raison de l'inexistence d'une solution unique au modèle inverse, et de 

l'amplification des erreurs de mesure.  

En 1923, Hadamard a introduit la notion de problème bien posé. Il s’agit d’un problème dont : 

– la solution existe 

– la solution est unique 

– la solution dépend continûment des données. 

Un problème qui n’est pas bien posé au sens de la définition ci-dessus est dit mal posé. Les 

problèmes inverses ne vérifient souvent pas l’une ou l’autre de ces conditions, voir les trois 

ensembles. Cela n’est pas surprenant pour plusieurs raisons. Tout d’abord, un modèle physique 

étant fixé, les données expérimentales dont on dispose sont en général bruitées, et rien ne 

garantit que de telles données bruitées proviennent de ce modèle, même pour un autre jeu de 

paramètres. Ensuite, si une solution existe, il est parfaitement concevable que des paramètres 

différents conduisent aux mêmes observations. [113]. 

La décroissance rapide des valeurs singulières de g est la principale source du caractère mal 

posé du problème inverse. Définir une approximation 𝑔†, avec l'opérateur 𝑅𝛼 car sa 

régularisation est l'idée clé pour surmonter ce problème. [5][6][7][8][9] 

 

 

(2.3) 

(2.4) 
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2.4.1.1 Stratégies de choix des paramètres de régularisation 

- Une stratégie de choix des paramètres a priori : Cette stratégie peut être caractérisée par des 

régularisations linéaires, et conduire à une régularisation convergente. 

- Stratégie de choix des paramètres a posteriori : elle ne nécessite pas plusieurs informations 

supplémentaires. 

- Stratégie de choix des paramètres heuristiques : elle ne nécessite pas de connaissance du 

niveau de bruit et elle est populaire dans la pratique.[5] 

2.4.2 Reconstruction d’image 

2.4.2.1 Principe 

 La reconstruction d'images médicales peut être exprimée à l'aide de la forme mathématique 

suivante  

𝑔 = 𝐻𝒇 ⊕ 𝜼 

H est le système physique de l'opération d'acquisition d'image, qui peut être linéaire ou non 

linéaire. f est la variable qui représente l'image inconnue pour la reconstruction, g est la donnée 

mesurée et η est le bruit. La reconstruction d'image est un problème inverse, qui est en général 

difficile à résoudre. La nature à grande échelle et mal posée du problème rend la tâche difficile 

en termes de recherche de solution dans la pratique. 

2.4.2.2 Modèle 

 Le problème d'optimisation suivant représente la solution de reconstruction d'image 

min𝒇∈𝒟  ℒ(𝒇) = 𝐺(𝑯𝒇, 𝒈) + 𝜆Φ(𝑾, 𝒇). 

𝒇⋆ = arg min𝒇  ℒ(𝒇) est la solution approchée. 𝐺(𝑯𝒇, 𝒈) Représente le terme de fidélité des 

données, il mesure la cohérence des données mesurées g. Φ(𝑾, 𝒇) est le terme de régularisation, 

il considère l'information a priori sur l'image pour la reconstruction. L'opération la plus cruciale 

en modélisation est la régularisation, puisque λ assure l'équilibre entre le terme de régularisation 

et le terme de fidélité aux données.[10] 

 

 

(2.5) 

(2.6) 



Chapitre 2. Les Problèmes Inverses en Imagerie Médicale 

16 
 

2.4.3 Restauration d’image 

2.4.3.1 Principe 

La restauration d'image est une opération nécessaire pour produire une image de haute qualité 

pour la visualisation; il utilise la connaissance préalable de la dégradation. La modélisation de 

la distorsion de l'image est assurée par le bruit, le flou ou la fonction de dégradation. En imagerie 

médicale, systèmes d'acquisition, le résultat de mauvaise qualité est lié aux appareils et à 

l'environnement, notamment la non-linéarité des capteurs, le mouvement de la caméra et la 

turbulence atmosphérique. 

2.4.3.2 Modèle de Dégradation 

Dans le processus de dégradation, l'image d'origine est affectée par le flou et le bruit avec 

l'utilisation de la fonction de dégradation et du bruit additif, cette opération est décrite comme 

suit  

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y) 

f(x, y) est l'image originale, g(x, y) est l'image dégradée (floue et bruitée),  h(x, y) est la 

fonction de dégradation, et n(x, y) représente le bruit additif. 

2.4.3.3 Modèle de Flou 

- Flou gaussien : filtre de flou basé sur la fonction gaussienne, qui est représenté comme 

suits  

𝐺(𝑥) =
1

√2𝜋𝜎
𝑒

(−𝑥)2

2𝜎2  

𝜎 Représente l'écart type de la distribution. 

 

- - Motion Blurring : Ce type de flou est lié à la mauvaise mise au point de la caméra et 

aux changements d'angle lors de l'acquisition.. 

 

2.4.3.4 Modèle de Bruit 

La variation étrange et indésirable de l'image est représentée sous forme de bruit, ce qui 

provoque la modification de la visibilité de l'image. Différents types de bruit, y compris le bruit 

gaussien, le bruit impulsionnel et le bruit uniforme, généralement des images corrompues 

générées par des systèmes numériques.  

(2.7) 

(2.8) 
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2.4.3.5 Genres 

Récupérer l'image d'origine à partir de l'image dégradée est l'objectif principal de l'opération de 

restauration. La fonction d'étalement de points (PSF) contrôle la dégradation de l'image et les 

techniques de restauration sont divisées en fonction de la PSF en techniques de restauration 

d'image aveugle, où il n'y a pas d'informations préalables sur la PSF, et en restauration non 

aveugle, où nous avons des connaissances sur la PSF. [11][12] 

2.4.4 Filtrage d’image 

2.4.4.1 Principe 

Le filtrage d'image est l'opération de suppression du bruit d'une image dégradée pour en 

restituer le vrai. Les composants d'image tels que les bords, les textures et le bruit ont des 

caractéristiques à haute fréquence qui rendent le processus de débruitage plus difficile en raison 

de la difficulté de distinguer ces composants, ce qui peut entraîner la perte de détails d'image. 

 D'un point de vue mathématique, le débruitage d'image est un problème inverse qui peut être 

modélisé comme suit  

𝑔 = 𝑓 + 𝑛 

𝑔 est l'image bruitée après observation, f est l'image inconnue (Propre), et 𝑛 est le bruit additif 

(blanc, gaussien…), il est caractérisé par l'écart type. 

2.4.4.2 Applications 

L'objectif du processus de réduction du bruit est de diminuer le bruit en parallèle avec la 

minimisation de la perte de composants d'origine. Les principales opérations de débruitage 

d'image sont 

- Lissage de zone, 

- Protection des bords, 

- Préservation des textures, 

- Éviter la génération d'artefacts.[13][14] 

 

 

(2.9) 
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2.4.5 Deconvolution d’image 

2.4.5.2 Principe 

L'objectif de la déconvolution d'image est d'inverser le processus d'acquisition en récupérant 

l'image nette d'origine. Dans la déconvolution aveugle, le flou est considéré comme inconnu, et 

c'est ce qui rend l'opération plus difficile comme problème par rapport au processus non 

aveugle. De plus, l'exigence d'informations supplémentaires est essentielle, y compris des 

acquisitions multiples pour une application parfaite. 

2.4.5.3 Modèle 

 Le modèle de dégradation dans le processus de déconvolution peut être présenté comme suit 

𝑔 = 𝐻 ∗ 𝑓 + 𝑛 

L'objectif du processus de déconvolution est de récupérer 𝑓 depuis 𝑔.[15] 

2.4.6 Génération d’image 

2.4.6.1 Principe 

Les applications génératives d'images se concentrent sur la résolution du problème inverse 

représenté comme le processus de calcul d'une quantité physique inconnue à partir de la mesure 

obtenue via un modèle direct. Les problèmes directs et inverses peuvent être présentés avec 

l'expression suivante  

𝐻 ∶ 𝐹 = 𝐺 

𝑔 = 𝐻(𝑓) + 𝑒 

Où f ∈ F est l'image, g ∈ G est la donnée corrompue par le bruit e. 

2.4.6.2 Applications 

Le modèle génératif texte-image est défini comme prenant la description du texte en langage 

naturel comme entrée, tout en générant une image correspondant à cette description. Dans la 

période récente, les modèles texte-image se sont considérablement développés en termes 

d'authenticité et d'originalité.[16] 

 

 

(2.10) 

(2.11) 
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2.5     Conclusion 

Ce chapitre a couvert un examen des différents systèmes d'imagerie médicale, des opérations 

de traitement d'image, des définitions des problèmes inverses et de la régularisation en imagerie, 

et des exemples de ces problèmes avec la description des modèles. Les problèmes inverses et 

la régularisation sont au centre de ce chapitre ; nous avons défini la modélisation mathématique 

du problème inverse et démontré l'importance de la régularisation. Les exemples de problèmes 

inverses sont bien présentés. Ces opérations sont les thèmes principaux de nos recherches. Nous 

avons démontré la partie théorique de ces applications de traitement et l'approche récente de 

modélisation des opérations.  
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3.1 Introduction 

Dans ce chapitre, nous illustrons les solutions aux problèmes inverses dans le cadre du 

traitement d'images médicales. Plusieurs solutions seront présentées pour différents problèmes 

de traitement d'image (restauration, déconvolution, débruitage et amélioration du contraste). En 

plus de cela, le cadre d'optimisation bio-inspiré, qui est appliqué pour fournir des solutions 

d'estimation de régularisation, sera présenté. Le grand principe de cette approche sera décrit, en 

plus de donner des exemples d'applications et de méthodes récentes dans ce domaine. 

3.2 Les Solutions des Problèmes Inverses en Imagerie Médicale 

3.2.1 Le Filtre Inverse Régularisé Amélioré pour la Restauration d'images Médicales 

3.2.1.1 Principe 

Le filtrage inverse est une technique de restauration d'image connue pour dégrader une image 

avec un filtre passe-bas. Cependant, il est sensible au bruit additif. Le filtre inverse affiche le 

numérateur de bruit comme étant relativement grand par rapport au signal. Avec une 

régularisation améliorée, un deuxième terme est ajouté au critère de minimisation pour obtenir 

une solution lisse au problème de restauration d'image 

∑{(𝑔(𝑥, 𝑦) −  𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦))
2

𝑥,𝑦

+  α ((l(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦))²} 

α est le paramètre de régularisation qui contrôle le processus de restauration. Nous pouvons 

réécrire (3) dans le domaine DFT comme  

∑{(𝐺(𝑢, 𝑣) −  𝐹(𝑢, 𝑣) ∗ 𝐻(𝑢, 𝑣))
2

𝑢,𝑣

+  α ((L(𝑢, 𝑣) ∗ 𝐻(𝑢, 𝑣))²} 

3.2.1.2 Application 

Le paramètre de régularisation α commande l'efficacité de restauration d'image des processus 

de défloutage et de débruitage. À cet égard, l'estimation de α est essentielle pour obtenir la 

meilleure solution pour le filtrage du flou et du bruit des images [17]. 

 

 

 

(3.1) 

(3.2) 
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3.2.2 Méthode de Régularisation L2 pour la Déconvolution d'images Médicales 

3.2.2.1 Principe 

La régularisation L2 traite la multi-colinéarité en restreignant le coefficient et en gardant toutes 

les variables. La régression L2 est utilisée pour estimer la signification des prédicteurs et sur 

cette base, elle peut pénaliser les prédicteurs non significatifs.  

3.2.2.2 Modèle 

 Le modèle mathématique qui représente la fonction de régularisation l2 peut être exprimé 

comme suit 

Loss = error (𝑦 + 𝑦∧) + 𝜆∑1
𝑛  (𝑤𝑖

2) 

Où λ est le paramètre de régularisation, l'estimation de ce dernier pour le processus de 

déconvolution est essentielle pour de meilleurs résultats de fonctionnement avec le flou et les 

interférences de bruit [18]. 

3.2.3 Variation Généralisée Totale pour le Débruitage des Images Médicales 

3.2.3.1 Principe 

 Les problèmes mathématiques inverse d'imagerie sont exprimés dans la formulation suivante: 

min𝑢  ℱ(𝑢) + ℛ(𝑢) 

ℱ est le terme de fidélité et ℛ représente le terme de régularisation. Ces deux termes peuvent 

être présentés séparément comme suit: 

ℱ(𝑢) =
1

2
∥ 𝐺(𝑢) − 𝑧 ∥2 

ℛ(𝑢) =
𝛼

2
|𝑢|2 

𝛼  est le paramètre de régularisation. L'expression de la variation généralisée totale est définie 

comme suit : 

𝑇𝐺𝑉𝛼
𝑘(𝑢) = sup {∫𝑢

Ω

𝑑𝑖𝑣𝑘𝜈𝑑𝑥 |𝜈 ∈  C𝑐
𝑘  (Ω, Sym𝑘(R𝑑)), 

(3.3) 

(3.4) 

(3.5) 

) 

(3.6) 

) 

(3.7) 

) 
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𝑇𝐺𝑉𝛼
𝑘 équilibre les dérivées premières à nième et partage plusieurs propriétés avec Total 

Variation (TV). Avec k=2 et α0, α1 > 0, l'expression tardive s'écrit : 

TGV𝛼
2 (𝑢) = 𝛼1|𝑝2(𝑐) − 𝑝1(𝑐)| + 𝛼0|𝑝1

′ (𝑐) − 𝑝2
′ (𝑐)| 

TGV𝛼
2 implique et fournit l'équilibre aux dérivées d'ordre supérieur de u. En conséquence, il 

minimise l'impact de la coulée d'escalier de la fonctionnelle de variation bornée.  

3.2.3.1 Modèle 

 L'espace de fonction de variation généralisée bornée d'ordre k est donné par : 

BGV𝛼
𝑘 (Ω) = {𝑢 ∈ 𝐿1(Ω) ∣ TGV𝛼

𝑘  (𝑢) < ∞} 

 La relation entre TGV𝛼
2 and TV est défini comme : 

TGV𝛼
2(𝑢) = 𝛼1TV(𝑢) 

Concernant les performances de TGV𝛼
2 dans les opérations de débruitage d'images. Cette 

méthode surpasse les autres modèles expérimentaux, et ses résultats peuvent encore être 

améliorés. [19] 

3.2.4 Modèle texte-image à diffusion stable pour la génération d'images médicales 

3.2.4.1 Principe 

Le modèle génératif texte-image est défini comme prenant la description du texte en langage 

naturel comme entrée, tout en générant une image correspondant à cette description. Dans la 

période récente, les modèles texte-image se sont considérablement développés en termes 

d'authenticité et d'originalité. La diffusion stable de Stability AI est un modèle de génération 

d'images qui offre une compilation XLA et une précision mixte. L'application de cette méthode 

atteint une vitesse de génération de pointe. Le modèle de diffusion stable est composé de trois 

parties : l'encodage de texte, le débruitage d'image à l'aide du modèle de diffusion et le décodage 

d'image pour obtenir une résolution plus élevée. 

 

(3.8) 

) 

(3.9) 

) 

(3.10) 

) 
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Figure 3.1 Architecture de diffusion stable du texte à l'image. 

3.2.5 Égalisation d'histogramme adaptatif à contraste limité pour l'amélioration de 

l'image médicale 

3.2.5.1 Principe 

CLAHE est une méthode renommée utilisée pour améliorer le problème de faible contraste des 

images numériques. Les performances de CLAHE dans les applications d'imagerie médicale 

dépassent l'égalisation adaptative d'histogramme (AHE) et l'égalisation classique 

d'histogramme (HE). CLAHE a deux caractéristiques principales : la limitation de la 

distribution des histogrammes pour limiter l'accentuation excessive des taches de bruit d'une 

part, et l'accélération de l'égalisation par interpolation d'autre part. 

La limite de clip contrôle les performances de la méthode CLAHE, tandis que les histogrammes 

de chaque région sans chevauchement convergent vers un niveau inférieur à ce paramètre. La 

forme β limite de clip peut être exprimée comme : 

β =
MN

G
{1 +

𝛼

100
(𝐴𝑆𝑚𝑎𝑥 − 1)}                                              

 Où M et N sont les nombres de pixels dans chaque région, G est le nombre de niveaux de gris, 

α est le facteur d'écrêtage et 𝐴𝑆𝑚𝑎𝑥 représente la pente de tolérance maximale. Sur la base des 

détails susmentionnés, l'estimation de la valeur β est cruciale pour obtenir une qualité d'image 

optimale. 

(2.11) 

) 
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3.2.5.2 Application 

Les étapes du processus CLAHE sont les suivantes : 

- Fractionnement de l'image en différentes régions (continu/sans chevauchement) 

- Découpage de l'histogramme de chaque région à l'aide du seuil. 

- Réaffecter les valeurs de pixel et les répartir uniformément. 

- Effectuer une péréquation locale dans les régions. 

- Reconstruire les valeurs des pixels en utilisant l'interpolation linéaire [20].

 

Figure 3.2 La distribution de l'histogramme avant et après l'écrêtage 

3.3 Solutions d'estimation de Régularisation : Optimisation 

3.3.1 Algorithmes d'optimisation bio-inspirés  

3.3.1.1 Cadre 

Les applications de Framework d'optimisation sont presque partout, le but de chaque 

application est d'optimiser une solution. Dans les applications du monde réel, le processus est 

plus difficile, en raison des contraintes complexes et de plusieurs facteurs et paramètres. 

3.3.1.2 Défis 

Les applications d'optimisation sont très difficiles à résoudre. Plusieurs facteurs et problèmes 

doivent être pris en compte, notamment l'heuristicité, l'efficacité, le choix et les contraintes de 

temps. 
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- Heuristicité 

Les algorithmes heuristiques peuvent être définis en utilisant le théorème du singe infini, qui 

est basé sur la probabilité de produire différents textes donnés qui peuvent être unifiés en un 

seul. Les algorithmes heuristiques et métaheuristiques sont similaires dans cette approche 

théorème. Cependant, il existe certaines différences clés, notamment l'apprentissage lors de la 

génération, la sélection des solutions les meilleures et les plus adaptées, les composants 

stochastiques et déterministes de tous les algorithmes heuristiques et la combinaison de 

l'historique et de la sélection. Ces différences ont rendu les algorithmes heuristiques supérieurs 

à l'approche de typage aléatoire des singes. 

En ce qui concerne les algorithmes métaheuristiques, ils sont considérés comme l'application 

de niveau supérieur des heuristiques, en raison de leur caractéristique d'apprentissage passé et 

de leur capacité à sélectionner les meilleures solutions. 

- Efficacité 

L'efficacité d'un algorithme d'optimisation est liée à plusieurs facteurs, notamment sa structure, 

son comportement de génération et le paramétrage. L'implémentation de l'algorithme sous la 

bonne forme est essentielle pour contrôler la recherche souhaitée. De plus, les classes locales 

et globales sont la principale caractéristique des algorithmes d'optimisation. Les algorithmes 

métaheuristiques bio-inspirés modernes sont généralement classés comme globaux. 

- Choix 

Le choix du bon algorithme d'optimisation pour un problème donné est très difficile. Cela 

dépend généralement du type de problème, de la nature du problème, des solutions visées, des 

ressources informatiques, du délai, de la mise en œuvre de l'algorithme et de la prise de décision. 

La nature spécifique de l'algorithme d'optimisation détermine son adéquation à différentes 

formes de problèmes. En plus de cela, la solution visée et la disponibilité des ressources 

informatiques sont indispensables. L'obtention de solutions supérieures peut être réalisée en un 

temps pratique important. De plus, la disponibilité des matériaux (logiciels) est le facteur 

principal qui contrôle le choix de l'algorithme. 

Trouver l'algorithme le plus adapté à un problème donné pour obtenir de bonnes solutions est 

le principal défi dans différentes applications. Cette démarche de recherche est encore en 

progression puisque le choix des algorithmes dépend essentiellement de l'expérience de 

recherche, et de la disponibilité des ressources. 
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- Contraintes 

La rapidité à trouver une solution à un problème est considérée comme l'un des principaux 

défis. Pour une application parfaite des méthodes de résolution dans la pratique, le temps doit 

être court. Ce qui fait du facteur temps la principale contrainte de presque tous les algorithmes. 

L'évaluation de la fonction objective est également un processus coûteux. Une approche qui 

peut réduire le temps de calcul de l'évaluation rendra l'algorithme plus efficace. 

3.3.1.3 Applications 

Les algorithmes métaheuristiques peuvent être classés en deux catégories : algorithmes basés 

sur le SI et non basés sur le SI.  

- Algorithmes basés sur SI 

Le principe principal des algorithmes basés sur le SI est la multiplicité des agents, qui s'inspire 

du comportement des essaims dans différents systèmes biologiques. De plus, ils ont des 

algorithmes d'intelligence collective similaires.  

* Algorithmes Fourmis et Abeilles 

Ce type d'algorithme est basé sur le comportement des fourmis. La bonne évaporation des 

phéromones conduit au bon comportement de l'algorithme en termes de recherche des bonnes 

solutions, qui peut être défini avec l'équation suivante 

𝑝𝑡+1 = 𝛿 + (1 − 𝜌)𝑝𝑡 

𝜌 est le taux d'évaporation, 𝛿 est le dépôt incrémental. De plus, bien définir l'itinéraire est 

essentiel. Plusieurs recherches et améliorations de ce type d'algorithme ont été menées pour 

gérer le dépôt de phéromones, le processus d'évaporation et les probabilités d'itinéraire. 

Concernant les algorithmes apicoles, ils s'inspirent du comportement des abeilles mellifères. La 

danse frétillante et la maximisation du nectar sont les principales caractéristiques qui ont été 

utilisées pour la simulation des abeilles butineuses dans l'espace de recherche. 

* Algorithme de chauve-souris 

 L'algorithme de chauve-souris (BA) est basé sur le comportement d'écholocation des 

microbats. Son équation principale de mise à jour est définie comme suit : 

𝑓𝑖 = 𝑓min + (𝑓max − 𝑓min)𝜀, 𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + (𝑥𝑖
𝑡 − 𝑥∗)𝑓𝑖, 𝑥𝑖

𝑡+1 = 𝑥𝑖
𝑡 + 𝑣𝑖

𝑡 

(3.12) 

) 

(3.13) 

) 
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𝜀 est le nombre aléatoire tiré de la distribution uniforme, et 𝑥∗ est la meilleure solution mise à 

jour après les itérations. 

* Optimisation de l'essaim de particules 

 Le PSO est basé sur le comportement des essaims, comme le mouvement des poissons et des 

oiseaux dans la nature. Les caractéristiques des particules sont la vitesse et la position, et la 

formule de mise à jour est définie comme suit : 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝛼𝜀1[𝑔
∗ − 𝑥𝑖

𝑡] + 𝛽𝜀2[𝑥𝑖
∗ − 𝑥𝑖

𝑡] 

𝑔∗ est la meilleure solution actuelle, 𝑥𝑖
∗ est la meilleure solution individuelle pour la particule, 

𝜀1 et 𝜀2 sont les variables aléatoires, et 𝛼/𝛽 sont les paramètres d'apprentissage. La fonction de 

mise à jour est décrite comme suit :  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

* Algorithme Firefly 

 FA est basé sur le comportement des lucioles, le mouvement de la luciole i est attiré par un 

nouveau et plus attrayant j. Ce processus peut être défini à l'aide de l'équation non linéaire 

suivante : 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽0e
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝛼𝜀𝑖
𝑡 

𝛽0 est la valeur d'attractivité, elle est liée à la distance entre les lucioles. Cette variation peut 

être représentée par l'expression suivante : 

𝛽 = 𝛽0e
−𝛾𝑟2

 

* Recherche de Cuckoo 

Le CS est influencé par le parasitisme du couvain de différentes espèces de coucous. 

L'amélioration de cet algorithme dans l'application récente l'a rendu supérieur aux autres 

algorithmes. La marche aléatoire locale utilisée par cet algorithme s'écrit: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼𝑠𝐻(𝑝𝑎 − 𝜀)(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) 

(3.14) 

) 

(3.15) 

) 

(3.16) 

) 

(3.17) 

) 

(3.18) 

) 
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𝑥𝑗
𝑡  et 𝑥𝑘

𝑡  sont les deux solutions, qui sont fournies sur la base de la permutation aléatoire. CS 

est connu pour être efficace dans la résolution de différents problèmes d'optimisation 

d'ingénierie. 

- Algorithmes non basés sur Si 

* Algorithmes de recuit simulés 

SA est une forme améliorée de l'algorithme Metropolis-Hasting, qui a été utilisé dans plusieurs 

applications. Il est basé sur l'approche stochastique pour générer de nouveaux mouvements et 

décider de l'acceptation. La probabilité de type Boltzmann est utilisée pour accepter de 

nouveaux coups, elle est définie comme :  

𝑝 = exp [−
Δ𝐸

𝑘B𝑇
] 

𝑘B est la constante de Boltzmann, T représente la température pour contrôler l'opération de 

recuit, et Δ𝐸 est la variation d'énergie, qui est liée à la fonction objective. 

* Algorithme Génétique 

GA s'inspire de la théorie de l'évolution de Darwin concernant les systèmes biologiques. Il 

utilise les opérateurs, croisement, mutation et sélection. La solution est codée sous la forme 

d'une chaîne nommée chromosome. GA a été utilisé dans différents domaines d'optimisation et 

prouve son efficacité dans la résolution de ces types de problèmes. 

* Évolution Différentielle 

DE est un algorithme évolutif basé sur des vecteurs, qui est similaire au principe de la recherche 

de motifs convolutifs. En utilisant DE, la solution x_iat génération différente t est présentée 

comme : 

𝑥𝑖
𝑡 = (𝑥1,𝑖

𝑡 , 𝑥2,𝑖
𝑡 , … , 𝑥𝑑,𝑖

𝑡 ) 

 

Le DE est basée sur trois étapes essentielles : la mutation, le croisement et la sélection [21][22]. 

 

(3.19) 

) 

(3.20) 

) 
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3.3.2 Algorithmes Récents pour Résoudre les Problèmes de Traitement d'image 

3.3.2.1 Algorithme d'optimisation d'essaim de Particules à Comportement Quantique Gaussien 

L'algorithme Gaussian Quantum-Behaved Particle Swarm Optimization (GQPSO) est une 

méthode améliorée basée sur l'algorithme classique Particle Swarm Optimization (PSO). Tandis 

que Quantum Particle Swarm Optimization (QPSO) est l'extension du comportement quantique 

du modèle PSO. De plus, la fusion du comportement gaussien conduit à des applications plus 

efficaces pour résoudre des problèmes d'optimisation dans divers domaines de recherche. 

 Dans GQPSO, les particules se déplacent selon l'équation itérative suivante: 

𝑥𝑖(𝑡 + 1) = 𝑃 +  𝛽 . |𝑀𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)| . ln (
1

𝑢
) ,     𝑖𝑓𝑘 ≥ 0.5   

𝑥𝑖(𝑡 + 1) = 𝑃 − 𝛽 . |𝑀𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)| . ln (
1

𝑢
) ,     𝑖𝑓𝑘 < 0.5   

Où β est le coefficient de contraction-expansion, les valeurs u et k sont pertinentes pour la 

distribution de probabilité de la plage de fonctions. Ils sont générés en utilisant les fonctions de 

distribution de probabilité uniforme dans la plage [0-1]. Le Mbest est le point global de la 

population (la pensée dominante ou le meilleur moyen). Il représente la moyenne des positions 

Pbest de toutes les particules. Il est défini comme : 

Mbest =
1

𝑁
∑ 𝑃𝑔,𝑑

𝑁

𝑑=1

(𝑡) 

 

 La meilleure particule de l'essaim est représentée par g. Le concept de convergence est défini 

comme : 

P =
𝑐1. 𝑃𝑖,𝑑 + 𝑐2. 𝑃𝑔,𝑑

𝑐1 + 𝑐2
 

Où 𝑐1 et 𝑐2 sont les coefficients d'accélération [23]. 

3.3.2.2 Algorithme d’optimisation des colonies artificielles  

L'algorithme d'optimisation des colonies d'abeilles artificielles est un algorithme méta-

heuristique basé sur la population, basé sur le mouvement de recherche de nourriture de 

l'abeille, la source de nourriture dans la population est liée aux paramètres de contrôle de la 

(3.21) 

) 

(3.22) 

) 

(3.23) 

) 
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méthode. La population et la sélection sont les principaux processus associés à l'algorithme 

d'optimisation ABC [24]. 

 La source de nourriture dans la population initiée est décrite par la formule suivante: 

x𝑖
𝑗
= x𝑚𝑖𝑛

𝑗
+  𝑟𝑎𝑛𝑑(0,1)(𝑥𝑚𝑎𝑥

𝑗
+ 𝑥𝑚𝑖𝑛

𝑗
)      ∀𝑗 = 1,2, … . . , 𝐷 

 Où 𝑥𝑚𝑎𝑥
𝑗

 et  𝑥𝑚𝑖𝑛
𝑗

 sont les bornes, la phase d'abeille employée est présentée comme suit: 

ν𝑖𝑗 = x𝑖𝑗 + 𝛷𝑖𝑗(𝑥𝑖𝑗 + 𝑥𝑘𝑗)     

Où 𝛷𝑖𝑗(𝑥𝑖𝑗 + 𝑥𝑘𝑗) est la taille du pas, nous définissons la probabilité de fitness la plus élevée 

avec: 

P𝑖  =
𝑓𝑖

∑ 𝑓𝑗
𝑁𝑆

𝑗=1

 

3.3.2.3  Algorithme d'optimisation Pelican 

POA est un nouvel algorithme d'optimisation méta-heuristique inspiré du comportement du 

pélican lors de la recherche de nourriture. Dans les algorithmes basés sur la population, chaque 

membre représente une solution candidate. L'initialisation des membres de la population est 

définie par l'équation suivante : 

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗), 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, … ,𝑚, 

Où 𝑥𝑖,𝑗 est la valeur de la variable jth et il est identifié par le ith solution candidate, N représente 

le nombre de variables, m est le nombre de problèmes, rand est le nombre aléatoire dans 

l'intervalle [0,1], lj et uj sont les bornes inférieure et supérieure des variables du problème. 

 La matrice de population identifie les membres des pélicans dans la POA. Il est donné comme: 

𝑋 =

[
 
 
 
 
𝑋1

.
𝑋𝑖

.
𝑋𝑁]

 
 
 
 

𝑁∗𝑚

= [

𝑥1,1 𝑥1,𝑗 𝑥1,𝑚

𝑥𝑖,1 𝑥𝑖,𝑗 𝑥𝑖,𝑚

𝑥𝑁,1 𝑥𝑁,𝑗 𝑥𝑁,𝑚

]

𝑁∗𝑚

 

 

 X est la matrice de population et 𝑋𝑖 est le ith du pélican. En ce qui concerne les valeurs de la 

fonction objectif, elles sont obtenues à l'aide de l'équation suivante :  

(3.24) 

) 

(3.25) 

) 

(3.26) 

) 

(3.27) 

) 

(3.28) 

) 
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𝐹 =

[
 
 
 
 
𝐹1

.
𝐹𝑖

.
𝐹𝑁]

 
 
 
 

𝑁∗1

=

[
 
 
 
 
𝐹(𝑋1)

.
𝐹(𝑋𝑖)

.
𝐹(𝑋𝑁)]

 
 
 
 

𝑁∗1

 

F est le vecteur de la fonction objectif. La stratégie de chasse du POA est composée d'une phase 

d'exploration où le POA proposé découvre plusieurs zones de l'espace de recherche ; et la phase 

d'exploitation qui conduit à la convergence du POA vers une meilleure solution dans la zone de 

chasse. La meilleure solution candidate acquise après les itérations de l'algorithme est la 

solution optimale pour le problème donné. 

 La stratégie du pélican pour se déplacer vers l'environnement de la proie est définie par 

l'équation suivante : 

𝑥𝑖,𝑗
𝑃1 = {

𝑥𝑖,𝑗 +  rand ⋅ (𝑝𝑗 − 𝐼 ⋅ 𝑥𝑖,𝑗), 𝐹𝑝 < 𝐹𝑖;

𝑥𝑖,𝑗 +  rand ⋅ (𝑥𝑖,𝑗 − 𝑝𝑗),  else 
 

𝑥𝑖,𝑗
𝑃1 est le nouveau statut de la ith pélican dans le jth dimension, I est un nombre aléatoire (1/2), 

𝑝𝑗 est la position de la proie dans la je dimension, et 𝐹𝑝 est la valeur de la fonction objectif. La 

mise à jour effective permet à l'algorithme d'empêcher le déplacement vers des zones non 

optimales. Cette caractéristique est décrite comme : 

𝑋𝑖 = {
𝑋𝑖

𝑃1 ,  𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖,   else 
 

𝑋𝑖
𝑃1 est le nouveau statut du ième pélican et 𝐹𝑖

𝑃1  est sa fonction objective. Pour assurer la 

convergence vers une meilleure solution, l'algorithme examine et scanne les points au voisinage 

de l'emplacement du pélican. Ce processus est simulé mathématiquement comme : 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + 𝑅 ⋅ (1 −

𝑡

𝑇
) ⋅ (2 ⋅ 𝑟𝑎𝑛𝑑 − 1) ⋅ 𝑥𝑖,𝑗 

𝑥𝑖,𝑗
𝑃2  est le nouveau statut de la ith pélican dans le jth dimension comme deuxième phase. La 

mise à jour effective accepte ou rejette la nouvelle position du pélican, qui est modélisée comme 

suit : 

𝑋𝑖 = {
𝑋𝑖

𝑃2 ,  𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖,   else 
 

(3.29) 

) 

(3.30) 

) 

(3.31) 

) 

(3.32) 

) 

(3.33) 

) 
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𝑋𝑖
𝑃2  est le nouveau statut de la ith pélican, et 𝐹𝑖

𝑃2  est la valeur de la fonction objective [25]. 

3.4 Conclusion 

Ce chapitre a couvert différentes solutions aux problèmes inverses de traitement d'images 

médicales. Les solutions aux problèmes inverses et l'estimation de la régularisation sont au 

centre de ce chapitre. Nous avons défini le principe de l'approche d'optimisation bio-inspirée, 

et nous avons présenté des applications récentes et des algorithmes basés sur ce cadre. Cette 

approche représente le principe de base de notre approche proposée pour l'estimation de la 

régularisation, ce qui conduit à améliorer les performances des solutions de traitement d'images 

médicales. 
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4.1 Introduction 

Dans ce chapitre, nous présentons les résultats et les contributions des recherches qui ont été 

menées. Ce chapitre est composé de deux sections : application de restauration/déconvolution 

d'images médicales et applications de filtrage/amélioration de contraste d'images médicales. 

Dans ces sections, nous illustrons les avantages de nos méthodes proposées, en termes 

d'amélioration des solutions des problèmes inverses. 

En plus de cela, nous démontrons la différence dans le traitement du problème d'estimation de 

la régularisation entre les différentes applications et solutions. Parallèlement à l'adaptation des 

algorithmes d'optimisation à ces problèmes de régularisation. 

4.2 Restauration d'images Médicales / Déconvolution 

4.2.1 Un Nouvel algorithme d'optimisation Bio-inspiré pour la Restauration d'images 

Médicales à l'aide d'un Filtrage Inverse Régularisé Amélioré 

4.2.1.1 Cadre  

La restauration d'images est un problème de longue date dans le domaine du traitement 

d'images. Les méthodes de régularisation sont largement employées pour obtenir des solutions 

significatives représentées sous forme d'images restaurées après dégradation. Ce dernier est 

causé par de nombreux facteurs, notamment la déficience des systèmes d'image et les conditions 

de génération non idéales lors de l'acquisition d'images [26][27][28]. 

Dans les applications d'imagerie médicale, il existe deux sources principales à l'origine du 

processus de dégradation de l'image, à savoir (1) le flou lié au système d'imagerie et (2) le bruit 

résultant des fluctuations d'intensité du signal [29][30] [31][32]. Dans cette procédure, le filtre 

inverse régularisé est couramment appliqué dans le traitement des images médicales, y compris 

le filtrage, la restauration et la déconvolution des images, car il prend en compte le flou, les 

informations sur le bruit et le comportement pendant l'opération de traitement [33][34][35] . Le 

paramètre de régularisation dans l'approche de traitement d'image contrôle les performances et 

l'efficacité de l'opération de restauration d'image ; il est estimé avec plusieurs méthodes dans la 

littérature de recherche [36][37][38][39]. 

Ce travail applique une nouvelle approche de restauration d'images médicales nommée 

ERIFGQPSO basée sur un algorithme d'optimisation d'essaim de particules à comportement 

quantique gaussien et un filtre inverse régularisé amélioré avec estimation des paramètres de 

régularisation. Cette approche contrôle l'opération de restauration du floutage et du débruitage 
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de l'image médicale avec une estimation de régularisation pour une meilleure qualité et netteté 

de l'image médicale. 

4.2.1.2 Travaux connexes 

Récemment, la recherche s'est concentrée sur les techniques de restauration d'images dans le 

domaine médical en raison de leur importance et de leurs complications. Le filtrage de Wiener 

est une méthode reconnue dans la restauration d'images médicales pour différentes modalités 

d'imagerie [40][41]. Cette méthode fournit des résultats de restauration d'image 

impressionnants. Cependant, le processus aléatoire de la modélisation de l'image, ainsi que les 

variances de flou et de bruit, ont rendu ce point de vue peu attrayant pour de nombreux 

chercheurs [42][43][44][45]. 

Wang et al. [46] ont proposé d'appliquer des méthodes de filtrage inverse régularisé (Total 

Variation, Framelet Approach) dans la déconvolution d'image aveugle car elles fournissent des 

résultats similaires au modèle Wiener-Filtering avec moins d'exigences d'informations 

préalables. En comparant les performances de ces méthodes, le modèle établi visait à déterminer 

le filtre inverse approprié pour la déconvolution en aveugle à l'image. 

En revanche, l'estimation du paramètre de régularisation est essentielle pour contrôler 

l'opération de restauration de l'image médicale pour les processus de défloutage et de débruitage 

[47] [48] [49]. Sheer et al. [50] ont étudié l'impact de l'estimation des paramètres de 

régularisation sur la restauration d'images médicales à l'aveugle grâce à l'utilisation d'un filtre 

de Wiener itératif. Le filtre de restauration modifié proposé dans l'ouvrage mentionné 

précédemment est efficace en restauration d'images médicales. Dans le même contexte, cette 

étude étudie la démonstration du comportement du paramètre de régularisation et l'impact de 

son estimation sur les performances du filtre itératif. Cependant, une comparaison plus poussée 

des résultats avec des études récentes devrait être envisagée pour déterminer la performance du 

modèle de filtre de Wiener. 

Les applications d'optimisation et d'algorithmes bio-inspirés sont considérées comme des 

méthodes hautement recommandées dans les opérations de segmentation d'images 

[51][52][53]. Le cadre d'optimisation a eu une performance adéquate dans l'amélioration des 

résultats de segmentation d'image. Semchedine et al. [54] ont proposé d'appliquer un algorithme 

modifié d'optimisation d'essaim de particules floues dans la segmentation d'images IRM 

cérébrales. Cette approche prouve son efficacité en termes de temps d'exécution et de qualité 
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de la solution. Le modèle proposé surpasse l'algorithme FPSO standard, et les résultats de la 

comparaison incluaient les performances de qualité d'image et le temps CPU.  

4.2.1.3 Approche proposée 

Dans notre approche proposée, nous avons procédé en deux étapes : 

(1) Premièrement, nous avons étudié l'impact du choix du paramètre de régularisation α sur 

l'opération de restauration en utilisant ERIF. La figure 4.2 représente la restauration d'images 

CT de l'abdomen à l'aide de la méthode ERIF, avec (a) comme image d'origine et (b) comme 

image dégradée, tandis que (c) et (d) sont les images restaurées à l'aide de l'ERIF pour deux 

valeurs de paramètres de régularisation. 

Les valeurs du paramètre de régularisation α, du flou et des niveaux de bruit sont respectivement 

de 0,01, 10,59, 0,1 et 2. La valeur standard du paramètre de régularisation, en utilisant le filtre 

inverse est égale à 0,01. L'estimation de la valeur α améliore les performances du filtre inverse 

et la qualité de l'image, comme le montre la figure 4.2. La qualité du défloutage des images 

médicales est évaluée à l'aide des valeurs de la fonction de mesure de la netteté (SMF). D'autre 

part, l'estimation du taux du processus de débruitage est obtenue par les valeurs du rapport 

signal sur bruit de crête (PSNR) et les valeurs de la carte d'indice de similarité de structure 

(SSIM). La valeur RPR du taux de performances de restauration représente la moyenne des 

trois paramètres SMF, PSNR et SSIM. 

(2) Deuxièmement, nous utilisons notre méthode ERIFGQPSO pour estimer les valeurs α des 

processus de brouillage et de débruitage d'image, afin d'obtenir les performances de restauration 

d'image médicale les plus précises.                        
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Figure 4.1 Approche proposée de restauration d'images médicales 

La fonction objective qui définit l'opération de restauration d'image est la relation d'ajustement 

entre les valeurs de α, de bruit et de flou puisqu'elle considère la solution pour la performance 

très précise des processus de suppression de flou et de débruitage. La fonction décrite ci-dessous 

a été ajustée après avoir effectué plusieurs tests, en étudiant la distribution du paramètre de 

régularisation, du flou et du bruit comme variables dépendantes avec des valeurs constantes de 

PSNR et SMF. Les deux équations personnalisées résultantes sont représentées comme suit: 

𝛂𝟏 = -0,082 -0,1509.sin (0,8558. 𝜋. 𝐁𝟏. 𝐍𝟏) + 0,2906.exp(-(0,6614. 𝐍𝟏) ²) 

𝛂𝟐 = 6,299 + 3,211.sin (-10,77. 𝜋.𝐁𝟐 . 𝐍𝟐) – 5,364 .exp(-(0,82. 𝐍𝟐) ²) 

 En fait, en ce qui concerne le processus de défloutage, α1, B1, et  N1 sont respectivement les 

paramètres de régularisation, le bruit et les valeurs de flou. Alors que  α2, B2, et  N2 représentent 

les mêmes valeurs pour l'opération de débruitage. 

 

 

 

 

(4.1) 
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 ERIFGQPSO Algorithm  

1 

 

 

2 

3 

4 

 

5 

Input: Original image  

Add the gaussian noise and blur to the original image 

 

/// STEP1 ERIF 

𝑅𝐼𝐹 Restoration function 

Fixe RIF values (n, N, B) 

 

/// STEP2 GQPSO 

Fixe GQPSO parameters d, n 

6 Choosing lb,ub values (related to the noise and blur values, N, B) 

7 Fixe the number of iterations, and constants c1,c2,w1,w1 

8 Generate the initial population  

9 Evaluate the objective function (Eq. 4.1 (1 or 2) with α1 or α2 for the deblurring or denoising process) 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

 

Initialize the Pbest and Gbest 

GQPOS main loop  

Iter = 1 

While iter<itermax 

     Update position (solution to Mbest  

     Check bounds  

     Update Pbest  

     Update Gbest 

     Plotting the convergence results (fitness value /iteration) 

End  

 

 /// STEP3 ERIFGQPSO 

Estimated values (α1 and α2 as the fitness value for the deblurring or denoising process)) 

 

20 Output: Restored image  

 

4.2.1.4 Résultats 

La restauration d'image à l'aide de l'ERIF ordinaire est contrôlée par le choix pertinent du 

paramètre de régularisation comme le montre la figure 4.2, cette alternative commande la 

performance de la méthode dans le processus de débrouillage et de débruitage. La figure 4.3 

représente la variation des valeurs SMF et PSNR. (a) Démontre la variation des valeurs SMF 

avec α, et (b) représente la variation PSNR avec α. De plus, cette figure décrit la qualité de la 

restauration de l'image médicale ainsi que la variation des paramètres de régularisation. De plus, 

le processus de défloutage est évalué avec la variation SMF. Et le PSNR définit l'efficacité de 

l'opération de débruitage. 
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(a)                                                        (b) 

  
(c)                                                      (d) 

                                       
(e) 

Figure 4.2 Restauration d'image CT de l'abdomen à l'aide d'ERIF, (a) : image d'origine, (b) : image dégradée 

(floue et bruitée), (c) : image restaurée à l'aide d'ERIF, valeur de bruit = 0,1, valeur de flou = 2, α = 0,01, ( d) : 

image restaurée à l'aide d'ERIF, valeur de bruit = 0,1, valeur de flou = 2, α = 10,59 (e) : carte d'indice de 

similarité de structure (SSIM), les régions sombres correspondent aux zones où l'image dégradée diffère de 

l'original, les régions claires correspondent à les zones où la dégradation a moins d'impact sur l'image. 
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(a) 

 

(b) 

Figure 4.3 La variation des valeurs SMF et PSNR avec le paramètre de régularisation α, les valeurs de flou et de 

bruit sont fixes, (a) : variation SMF avec α, (b) : variation PSNR avec α. 

Les processus de floutage et de débruitage fonctionnent de différentes manières. L'utilisation 

de l'algorithme ERIF avec une petite valeur de α produit des images plus nettes avec un niveau 

de bruit élevé. Au contraire, une valeur plus importante du paramètre de régularisation donne 

des images plus propres mais plus floues. Cette idée a été illustrée à la figure 4.4, qui représente 

la restauration d'images radiographiques thoraciques à l'aide d'ERIF. Dans la même figure, (a) 

est l'image d'origine, (b) représente l'image dégradée, (c) et (d) sont les images restaurées à 

l'aide d'ERIF, et les valeurs α sont respectivement de 0,3 et 11. 
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     (a)                                                                       (b) 

 

                                                    (c)                                                                    (d) 

 

(e)                                                    (f)                                                      (g) 

Figure 4.4 Restauration d'image de radiographie thoracique à l'aide d'ERIF, (a) : Image originale, (b) : Image 

dégradée (floue et bruitée), (c) : Image restaurée à l'aide d'ERIF avec α = 0,3, (d) : Image restaurée à l'aide 

d'ERIF avec α=11, (e) : Image dégradée zoomée, (f) : Image restaurée zoomée avec α=0.3, (g) : Image restaurée 

zoomée avec α=11. 
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À cet égard, l'estimation de la valeur appropriée de α pour contrôler les opérations de 

débrouillage et de débruitage d'image est extrêmement nécessaire pour obtenir une performance 

très précise, en particulier, une meilleure qualité d'image et une meilleure netteté. 

Nous utilisons l'équation 4.1 pour estimer la valeur α, en utilisant notre méthode ERIFGQPSO 

proposée. Les images médicales CT, radiographiques et échographiques utilisées pour évaluer 

notre approche ont été recueillies à partir de Radiopaedia [55] ; les images réelles sont extraites 

et enregistrées au format TIFF. Les niveaux de bruit gaussien varient entre [10%-90%]. La 

plage des valeurs de flou est [1-9] et l'intervalle des valeurs α est [0-15]. Le modèle proposé 

dans cette étude a été appliqué après avoir choisi les valeurs de paramètres suivantes : nombre 

d'itérations n=100, dimension des variables d=2, coefficients d'accélération c1=1, c2=1, poids 

d'inertie w1=1, w2=1. 

Le tableau 1 présente les valeurs SMF, PSNR et SSIM de la restauration d'images CT de 

l'abdomen à l'aide de notre méthode ERIFGQPSO proposée. De plus, pour définir 

qualitativement les performances de l'algorithme. Les figures 4.5, 4.6 et 4.7 représentent la 

restauration des images médicales générées par différentes modalités d'imagerie (image CT 

Abdomen, image Chest X-Ray, image Ultrasound Horseshoes Kidney) à l'aide de l'algorithme 

ERIFGQPSO, en plus d'autres méthodes expérimentales. 
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Tableau 4.1 Valeurs SMF, PSNR et SSIM de la restauration d'images CT de l'abdomen à l'aide du filtre inverse 

régularisé amélioré et de notre méthode ERIFGQPSO proposée, la valeur de bruit = 0,1 est fixée dans l'opération 

de suppression du flou, la valeur de flou = 2 est définie dans l'opération de débruitage. 

 

 

 

 

 

 

 

E
R

IF
 

Blur 

Value 

1 

 

2 3 4 5 6 7 8 9 

𝛼 value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SMF 0.0208 0.0192 0.0173 0.158 0.0137 0.0115 0.0106 0.0099 0.0089 

Noise 

Value 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

𝛼 value 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

PSNR 23.5688 20.9863 16.8456 12.45630 9.5462 7.2631 6.2310 4.8562 3.6253 

SSIM 0.6053 0.3582 0.1235 0.0923 0.0426 0.0325 0.0258 0.0152 0.0123 

E
R

IF
G

Q
P

S
O

 

Blur 

Value 

1 

 

2 3 4 5 6 7 8 9 

𝛼 value 0.85 2.09 1.68 1.72 1.99 1.32 0.36 1.52 𝟏. 𝟕𝟔 

SMF 0.0278 0.0241 0.0210 0.0197 0.0182 0.0187 0.0263 0.0169 0.0163 

Noise 

Value 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

𝛼 value 11.39 10.59 9.44 8.52 8.91 11.35 14.37 14.11 9.93 

PSNR 26.7861 26.103 25.1731 24.7190 24.1164 23.5943 23.0455 22.5200 22,481 

SSIM 0.6697 0.6026 0.5225 0.4684 0.4246 0.4003 0.3762 0.3492 0.3064 
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 (a)                                                         (b)  

 
                                                         (c)                                                         (d) 

 
                                                        (e)                                                           (f) 

 
                                                         (g)                                                           (h) 

Figure 4.5 Restauration de l'image CT Abdomen à l'aide de notre algorithme ERIFGQPSO proposé et d'autres 

méthodes expérimentales. (a) : image originale, (b) : image dégradée un bruit = 0,1, valeur un flou = 2, (c) : 

image restaurée à l'aide de l'algorithme de Lucy-Richardson, (d) : image restaurée à l'aide du filtre de Wiener, (e) 

: Image restaurée à l'aide de la méthode ERIF, (f) : Image restaurée à l'aide de la méthode TGV-IG, (g) : Image 

restaurée à l'aide du modèle CSF, (h) : Image restaurée à l'aide de notre modèle ERIFGQPSO proposé. 
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                                         (a)                                            (b)                                          (c)  

 

                                          (d)                                           (e)                                        (f) 

 

                                           (j)                                         (h)                                        (i) 

 

                                                                                        (j) 

Figure 4.6 Restauration de l'image radiographique thoracique (image agrandie) à l'aide de notre algorithme 

ERIFGQPSO proposé et d'autres méthodes expérimentales. (a) : Image originale, (b) : Image dégradée avec 

valeur de bruit = 0,1, valeur de flou = 2, (c) : Image restaurée à l'aide de la méthode ERIF, (d) : Image restaurée à 

l'aide de l'algorithme de Lucy-Richardson, (e) : Image restaurée à l'aide du filtre de Wiener, (f) : image restaurée 

à l'aide du modèle ERIF-ABC, (g) : image restaurée à l'aide du modèle ERIF-PSO, (h) : image restaurée à l'aide 

du modèle TGV-IG, (i) : image restaurée à l'aide du CFS modèle, (j) : image restaurée à l'aide de notre modèle 

ERFGQPSO proposé. 
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(a)                                                (b)                                                   (c) 

 
                                (d)                                                   (e)                                                   (f) 

 
                                 (g)                                                   (h)                                                  (i)  

 
                                                                                        (j) 

Figure 4.7 Restauration de l'image échographique du rein en fer à cheval à l'aide de notre algorithme 

ERIFGQPSO proposé et d'autres méthodes expérimentales. (a) : Image originale, (b) : Image dégradée avec 

valeur de bruit = 0,1, valeur de flou = 2, (c) : Image restaurée à l'aide de la méthode ERIF, (d) : Image restaurée à 

l'aide de l'algorithme de Lucy-Richardson, (e) : Image restaurée à l'aide du filtre de Wiener, (f) : image restaurée 

à l'aide du modèle ERIF-ABC, (g) : image restaurée à l'aide du modèle ERIF-PSO, (h) : image restaurée à l'aide 

du modèle TGV-IG, (i) : image restaurée à l'aide du CFS modèle, (j) : image restaurée à l'aide de notre modèle 

ERFGQPSO proposé. 
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Tableau 4.2 Valeurs SMF, PSNR, SSIM et RPR de la restauration d'images CT de l'abdomen à l'aide de notre 

algorithme ERIFGQPSO proposé et d'autres méthodes expérimentales, valeur de bruit = 0,1, valeur de flou = 2. 

 

4.2.1.5 Discussion 

L'application de notre algorithme basé sur l'estimation de α pour des valeurs de flou et de bruit 

spécifiques améliore les performances de restauration. Les valeurs présentées de SMF, PSNR 

et SSIM démontrent l'efficacité de notre modèle proposé en termes d'estimation de la valeur α 

appropriée concernant les opérations de débrouillage et de débruitage. Cependant, quel que soit 

le comportement divergent de ces deux opérations, nous avons obtenu des résultats de 

restauration précis. 

Le défi le plus important de la présente étude consistait à déterminer la fonction objective qui 

représente la relation d'ajustement entre α, le bruit et le flou. Si la relation d'ajustement est 

inappropriée, les performances de restauration seront moins efficaces en termes de qualité 

d'image et de netteté. L'application d'un outil d'ajustement avec des caractéristiques de précision 

et de précision élevées améliorerait encore plus les performances de notre modèle. 

La solution appropriée pour le choix α a été déterminée sur la base de l'optimisation de la 

fonction objectif : Équation 4.1. La figure 4.5 accentue l'efficacité de l'utilisation du processus 

ERIFGQPSO par rapport à différents algorithmes de restauration expérimentaux de pointe, y 

compris les modèles standard de Lucy-Richardson, Wiener, les méthodes de filtrage inverse 

régularisé et les modèles récents utilisés dans la restauration tels que Shrinkage Fields modèle 

CFS et méthode Total Generalized Variation avec l’Inverse Gradient TGV-IG. 

Notre modèle proposé surpasse les autres algorithmes de restauration en termes de 

performances obtenues. La comparaison qualitative a montré que notre modèle offre une qualité 

Restoration Algorithm SMF PSNR SSIM RPR 

Lucy-Richardson [56] 0.17 13.7831 0.0574 50.58% 

Wiener Filter [57] 0.084 19.1298 0.1616 46.33% 

ERIF [58] 0.039 22.8601 0.3036 50.66% 

ERIF-PSO [59] 0.22 24.587 0.58624 92.48% 

ERIF-ABC [60] 0.23 25.684 0.59358 93.91% 

TGV-IG [61] 0.238 26.225 0.58765 97.22% 

CSF [62] 0.241 25.88 0.60246 97.45% 

Our proposed 

Model 

0.24 26.1441 0.60776 98.33% 
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visuelle supérieure, notamment une préservation efficace des contours et de la netteté et un 

niveau de contraste supérieur. La supériorité de cette méthode peut être observée en examinant 

les valeurs élevées de SMF, PSNR, SSIM et RPR indiquées dans le tableau 4.2. De plus, 

concernant l'estimation des paramètres de régularisation, l'application de la présente méthode a 

affirmé son efficacité en termes d'estimation de la régularisation. 

La méthode ERIFGQPSO permet une estimation de α malgré toute évolution probable des 

valeurs du bruit et du flou. L'expression de l'opération de restauration comme un problème 

d'optimisation conduit à des résultats efficaces, notamment une amélioration de la qualité et de 

la netteté de l'image. Dans l'ensemble, le principal avantage de l'utilisation de ce modèle est le 

fait que le modèle lui-même considère d'une part les informations de flou et de bruit en parallèle, 

et utilise le paramètre de régularisation approprié pour la meilleure amélioration de la qualité 

d'autre part. Des études futures seront probablement menées pour examiner une variété 

d'applications de traitement d'images médicales, basées sur cette recherche, afin d'améliorer le 

temps d'exécution et la précision opérationnelle.  

4.2.2 Déconvolution d'images médicales par ultrasons à l'aide de la méthode de 

régularisation L2 et de l'algorithme d'optimisation des colonies d'abeilles artificielles   

4.2.2.1 Cadre 

La déconvolution d'image tente de récupérer l'image nette d'origine à partir d'une image floue 

et bruitée. Le flou et le bruit sont les principaux facteurs à l'origine de la dégradation de l'image 

traitée par déconvolution et ils sont dissemblables en termes de source, de nature et de 

comportement. 

Dans le cas des images médicales, la dégradation est inévitable en raison de plusieurs facteurs, 

notamment la déficience de l'optique médicale utilisée dans l'acquisition d'images et la 

régulation des niveaux d'intensité dans les machines médicales. 

Pour résoudre le problème inverse mal posé, la régularisation est l'une des techniques utilisées 

pour introduire un terme supplémentaire dans le modèle de déconvolution d'image. 

Dans ce travail, nous appliquerons une nouvelle méthode de déconvolution d'images médicales 

par ultrasons nommée L2ABC basée sur la régularisation L2 et l'algorithme d'optimisation des 

colonies d'abeilles artificielles pour l'estimation des paramètres de régularisation. L'objectif du 

travail est d'étudier l'impact de l'estimation des paramètres de régularisation sur le processus de 

déconvolution avec flou et bruit parasite. 
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4.2.2.2 Travaux connexes 

Différents travaux sur la déconvolution d'image ont été présentés ces derniers temps, ces articles 

peuvent être classés en deux types, le premier type est les articles avec des méthodes basées sur 

des informations d'image probabilistes, et le second type sont les travaux axés sur l'opération 

de pré-traitement en plus à l'aide d'opérations de suppression de flou et de débruitage. 

Patrizio campisi et al [63] ont présenté un cadre général pour la déconvolution aveugle basée 

sur l'approche bayésienne avec la classification des méthodes existantes. Certaines approches 

sont basées sur l'apprentissage. Schuler et al [64] ont proposé une méthode efficace utilisant 

l'inversion régularisée et les réseaux de neurones pour obtenir de meilleurs résultats. 

Concernant le point de régularisation, l'estimation de la régularisation dans la déconvolution 

d'image a été discutée dans plusieurs travaux. le principe d'estimation des paramètres de 

régularisation adaptative présenté a prouvé l'efficacité de cette dernière approche 

[65][66][67][68]. D'autres articles étudient l'estimation de régularisation basée sur l'utilisation 

d'autres cadres, y compris les approches bayésiennes et de minimisation [69][70][71][72]. 

Passant aux applications, plusieurs articles ont présenté la mise en œuvre d'algorithmes de 

déconvolution dans l'amélioration d'images biologiques et biomédicales [73][74][75][76]. Le 

défi de cette approche a augmenté dans les images médicales échographiques puisque cette 

imagerie échographique présente des artefacts de chatoiement et réduit la résolution pour le 

meilleur examen diagnostique. Les principaux problèmes de faible résolution sont les 

problèmes physiques résultant de la réflexion, de la réfraction et de la diffraction des ondes 

ultrasonores d'un type différent des tissus en raison de l'impédance acoustique [77][78][79] 

4.2.2.3 Approche proposée 

Dans notre approche proposée, nous aborderons deux points : 

Tout d'abord, nous étudions l'effet de l'estimation du paramètre de régularisation α sur le 

processus de déconvolution à l'aide de la régularisation L2, avec des interférences de flou et de 

bruit, nous définirons la qualité des performances de déconvolution par le rapport signal sur 

bruit (SNR), le rapport de mesure de la netteté (SMR), et carte d'indice de structure de similarité 

(SSIM) 

Deuxièmement, l'application de notre méthode proposée consiste à estimer la meilleure solution 

du processus de déconvolution en utilisant la régularisation L2 et l'estimation du paramètre de 
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régularisation λ. La performance de la déconvolution d'image est définie par la fonction objectif 

qui relie le paramètre de régularisation λ aux valeurs de flou et de bruit. 

 L2ABC Algorithm  

 

1 

 

Choosing L2ABC parameters: FoodSource, Number of iterations, Dimension, Limit. 

2 Choosing lb,ub values (related to Noise and Blur values, N,B). 

3 

4 

 

 

Defining the objective function and fitness value. 

Generate initial population (Minimize objective function: Eq. 4.2 (1 or 2) with λ1 or λ2 for noise 

and blur deconvolution process). 

 

5 ABC main loop 

     For  Iter = 1: max_iter 

 

     ***Employed bee phase  

     ***Check the bounds 

     ***Perform greedy selection 

     ***Scout phase 

     End  

  

6 

 

 

7 

8 

 

9 

10 

11 

 

Memorize the best solution  

*** Gbest, Xbest, Fbest, Fbest1     

 

/// STEP2 L2 

Fixe L2 values (n, B, N, λ1 and λ2 as the fitness value for noise and blur deconvolution process)) 

Input : Original image  

Add Gaussian noise and Blur to the original image 

𝐿2 deconvolution function  

Output : image resulted after deconvolution 

 

4.2.2.4 Résultats et discussion 

La déconvolution de régularisation L2 est commandée avec l'estimation du paramètre de 

régularisation, à cet égard, ce choix commande la performance de la méthode. La figure 4.8 

montre la qualité de la déconvolution des images médicales échographiques par la méthode de 

régularisation L2. 

Passons au comportement du flou et du bruit dans la déconvolution La figure 4.9 confirme que 

le traitement du flou et du bruit avec la régularisation l2 fonctionne de manière dissemblable en 

termes d'estimation des valeurs des paramètres de régularisation. 

Pour exprimer le problème d'estimation du paramètre de régularisation comme un problème 

d'optimisation, la fonction objective est la fonction de relation d'ajustement entre le paramètre 

de régularisation λ, les valeurs de bruit et de flou. Après avoir effectué plusieurs tests, la 

fonction objective présentée ci-dessous a été ajustée : 
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𝝀𝟏 = 0,2092 – 2,192 .sin (0,2498. 𝜋. 𝐍𝟏. 𝐁𝟏) + 0,7365.exp(-(0,738. 𝐁𝟏) ²) 

𝝀𝟐 = 0,01781 – 0,0181 .sin (1,35. 𝜋.𝐍𝟐 . 𝐁𝟐) + 0,3644.exp(-(0,82. 𝐁𝟐) ²) 

 

Où λ1,B1 et  N1 sont respectivement les valeurs du paramètre de régularisation, du bruit et du 

flou pour le processus de déconvolution du bruit, λ2,B2 et  N2 sont les mêmes valeurs pour 

l'opération de déconvolution de flou préférable. 

Pour l'estimation des paramètres de régularisation, nous utilisons l'équation 4.2. Les images 

médicales échographiques de la vésicule biliaire et du rein utilisées dans le processus de 

déconvolution sont tirées de Radiopaedia [55] ; les images sont enregistrées au format JPEG. 

L'intervalle des valeurs des paramètres de régularisation est compris entre [0-1], les valeurs de 

flou sont [1-10], les niveaux de bruit gaussien sont [2%-20%]., notre approche a été réalisée en 

utilisant les valeurs de paramètres suivantes : nombre d'itérations = 100, dimension = 2, valeur 

des coefficients d'accélération = 1, valeurs des poids d'inertie = 1. 

Comme le montre le tableau 4.3, l'utilisation de notre proposition conduit à la meilleure 

performance de déconvolution d'images médicales échographiques. Les valeurs de SMF, PSNR 

et SSIM confirment l'efficacité de notre approche proposée. 

Nous avons pu fournir la meilleure solution pour la valeur du paramètre de régularisation et de 

meilleures performances de déconvolution grâce à l'optimisation de notre fonction objectif 

Equation 4.2. La figure 4.10 confirme l'efficacité de notre méthode par rapport à d'autres 

méthodes de déconvolution, y compris la variation totale régularisée et la régularisation de 

Sobolev, cette dernière idée est prouvée avec les résultats présentés dans le tableau 4.2. 

 

 

 

 

 

 

 

(4.2) 
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Figure 4.8 Déconvolution de l'image médicale échographique de la vésicule biliaire à l'aide de la régularisation 

L2, (a) : image originale, (b) : image dégradée, (c) : image obtenue après déconvolution, valeur de bruit = 0,02, 

valeur de flou = 3. 

    (a) 

    (b) 

    (c) 
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Figure 4.9 La variation SNR et SMR avec le paramètre de régularisation, les valeurs de flou et de bruit sont 

fixe, (a) : variation SNR avec λ (b) : variation SMR avec λ. 

 

    (a) 

    (b) 
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Tableau 4.3 Valeurs SMR, SNR et SSIM de la déconvolution de l'image échographique de la vésicule biliaire à 

l'aide de notre méthode proposée, valeur de bruit = 0,04, valeur de flou = 3 fixée pendant le filtrage du flou et du 

bruit. 

Blur 

Value  

1  

 

2 3 4 5 6 7 8 9 

 λ value 21996 0.05977  

 

0.010451 0.035032 0.030609 0.00059588 0.0095928 0.00059588 0.033937 

SMR 0.0255 0.0208 0.0185 0.0181 0.162 0.195 0.158 0.157 0.161 

Noise 

Value  

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

 λ value 0.94549 0.94487 0.94383 0.94238 0.94052 0.93824 0.93556 0.93247 0.92898  

SNR 24.552 24.356 24.156 23.859 23.556 23.158 23.026 22.956 22.715 

SSIM 0.597 0.519 0.488 0.456 0.418 0.401 0.398 0.385 0.378 

 

Tableau 4.4 Valeurs SNF, SMR et SSIM de la déconvolution d'images médicales rénales par ultrasons en utilisant 

notre approche proposée et d'autres méthodes expérimentales, valeur de bruit = 0,04, valeur de flou = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Deconvolution 

Approach 

SNR SSIM SMR 

Total variation 

regularization   

18.1563 13.7831 0.1655 

Sobolev regularization 16.4845 19.1298 0.0542 

L2 regularization 17.4586 22.8601 0.0622 

Our proposed approach 

L2ABC 

24.2568 26.1441 0.2064 
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Figure 4.10 Déconvolution de l'image médicale du rein par ultrasons à l'aide de notre approche proposée et 

d'autres méthodes expérimentales différentes (a) : image originale, (b) : valeur de bruit d'image dégradée = 0,04, 

valeur de flou = 3, (c) : déconvolution à l'aide de la régularisation de la variation totale, (d ) : Déconvolution à 

l'aide de la régularisation de Sobolev (e) : Déconvolution à l'aide de notre approche proposée. 

 

 

    (a)     (b) 

    (c)     (d) 

    (e) 
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4.3 Filtrage/amélioration des images médicales 

4.3.1 Débruitage d'images médicales basé sur un nouvel algorithme d'optimisation bio-

inspiré et variation généralisée totale 

4.3.1.1 Cadre 

Le débruitage d'image est l'un des défis fondamentaux dans le domaine du traitement d'image, 

où l'objectif principal est d'estimer l'image originale en supprimant le bruit d'une version de 

l'image contaminée par le bruit. La variation généralisée totale TGV est considérée comme un 

concept moderne de régularisation mathématique [80][81][82]. Elle présente plusieurs 

avantages par rapport à la variation totale classique. 

Dans ce travail, nous étudions l'impact du choix des paramètres de régularisation sur la variation 

généralisée totale du débruitage de second ordre. Basé sur l'approche GQPSO. Nous présentons 

notre algorithme intelligent TGV-GQPSO pour estimer la valeur stable hautement significative 

du paramètre de régularisation pour l'opération de débruitage d'image la plus performante. 

L'application de l'approche susmentionnée serait d'une grande importance, en particulier dans 

les images médicales réelles. En effet, le processus de débruitage est essentiel dans l'analyse 

ultérieure de l'image et conduit à un diagnostic efficace des pathologies expérimentées par les 

spécialistes.  

4.3.1.2 Travaux connexes 

B.komander et al [83] ont étudié le débruitage en variation en utilisant les pénalités de variation 

totale et l'estimation du gradient de l'image ; ils visaient à donner une nouvelle interprétation 

du TGV. Florian et al [84] ont appliqué le TGV pour le débruitage et la reconstruction des 

images IRM. Par la suite, ils ont comparé les performances du TGV aux performances de la 

télévision. Leurs résultats démontrent les avantages du TGV par rapport à la télévision 

classique. K.Bredies et al [85] ont étudié l'application de TGV dans des problèmes inverses 

avec des données floues et bruitées pour confirmer la stabilité de la solution, Dans ce contexte, 

ces auteurs ont discuté du choix du paramètre de régularisation et de son influence en termes 

d'équilibrage du terme de régularisation et le terme de fidélité des données. 

La méthode TGV a été appliquée dans d'autres opérations de traitement d'images, y compris la 

reconstruction d'images médicales, Shanzhou Niu et al [86] ont étudié la qualité de la 

reconstruction CT via TGV en introduisant un processus d'optimisation. 
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4.3.1.3 Approche proposée 

Dans Notre approche proposée, nous procédons en deux étapes : 

Dans un premier temps, nous étudions l'influence du choix des paramètres de régularisation sur 

le débruitage de l'image à l'aide de 𝑇𝐺𝑉𝛼
2. La qualité du débruitage d'image peut être évaluée en 

utilisant le rapport signal/bruit de crête (PSNR), l'erreur quadratique moyenne (MSE), l'erreur 

absolue moyenne (MAE) et la carte d'indice de similarité de structure (SSIM). Dans cette 

recherche, nous utilisons le PNSR et le SSIM comme critères pour comparer les résultats 

globaux. La simulation informatique de 𝑇𝐺𝑉𝛼
2 contient deux paramètres de régularisation 𝜆1,𝜆2  

tel que défini en (8). A cet égard, le choix des valeurs: 𝜆 1et 𝜆2,  le montant quantifié la 

différence entre eux, la relation entre le bruit avec les variations des paramètres de 

régularisation, et l'estimation de 𝜆1 et 𝜆2 les meilleures valeurs pertinentes pour chaque 

variation de bruit sont discutées. 

𝑇𝐺𝑉𝛼
2(𝑢) =  𝜆2 |𝑝2(c) − 𝑝1(c)|  + 𝜆1|𝑝1

′ (c)  −  𝑝2
′ (c)|         

Deuxièmement, nous appliquons notre méthode TGVGQPSO pour résoudre notre problème 

d'optimisation, qui est défini comme le choix du paramètre de régularisation pour obtenir la 

meilleure qualité de débruitage d'image. Notre fonction objective choisie sera celle qui relie 𝜆1, 

𝜆2, et la valeur de bruit δ, toutes confondues.  

 TGV-GQPSO Algorithm  

1 Fixe GQPSO parameters d, n 

2 Choosing lb,ub (lower and upper bound) values (related to δ value) 

3 Fixe number of iterations, and constants c1,c2,w1,w1 

4 Generate initial population  

5 Evaluate the objective function (Eq. 4.4 (1 or 2) for  𝜆1 or 𝜆2) 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Initialize Pbest and Gbest 

GQPOS main loop  

Iter = 1 

While iter<itermax 

     Update position (solution to Mbest) 

     Check Bounds  

     Update Pbest  

     Update Gbest 

     Plotting the convergence results (fitness value /iteration) 

End  

/// STEP2 TGV 

Fixe TGV values (n, ( 𝜆1 and 𝜆2 as the fitness value)) 

Input : Original image  

Add Gaussian noise to the image δ 

 𝑇𝐺𝑉𝛼
2 denoising function  

21 Output : Denoised Image  

 

 

 

(4.3) 
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4.3.1.4 Résultats et discussion 

- L'impact du choix des paramètres de régularisation sur le processus de débruitage 

Notre approche expérimentale est principalement composée de deux sections. Dans la première 

section, l'impact du choix du paramètre de régularisation sur le processus de débruitage et sa 

relation avec la variation du bruit a été mis en évidence. La figure 4.11 illustre la variation du 

rapport signal/bruit de crête avec l'augmentation des paramètres de régularisation et des valeurs 

de bruit. Comme indiqué clairement, il existe une meilleure solution de paramètre de 

régularisation pour une meilleure qualité de débruitage en cas de variation de bruit. Et puisque 

notre simulation informatique de 𝑇𝐺𝑉𝛼
2 contient deux paramètres de régularisation 𝜆1, 𝜆2, la 

solution est considérée comme une combinaison de deux valeurs ensemble. 

 

Figure 4.11 Variation du rapport signal/bruit de crête avec l'augmentation, 𝜆1, 𝜆2 valeur de bruit [10%-50%]. 

 

La différence de quantité quantifiée entre ces deux valeurs : 𝜆1, 𝜆2 a un impact important sur 

𝑇𝐺𝑉𝛼
2 et le comportement de débruitage. À cet égard, la figure 4.12 qui représente la variation 

du rapport signal sur bruit de crête avec 𝜆1et 𝜆2 différentes valeurs d'écart avec le bruit fixe, 

cela confirme que l'augmentation de la différence entre les valeurs : 𝜆1, 𝜆2 conduit à un 

processus de débruitage complètement différent. De plus, le comportement de débruitage peut 

également être affecté par la fixation de l′une des valeurs suivantes 𝜆1 , 𝜆2 comme le montrent 

les deux graphiques illustrés à la Figure 4.13. 
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Figure 4.12 Variation du rapport signal/bruit crête avec 𝜆1et 𝜆2 différentes valeurs d'écart, bruit fixe. 

 

 

Figure 4.13 Variation du rapport signal/bruit crête avec 𝜆1et 𝜆2 valeurs différentes, (a) : valeurs fixe 𝜆1, (b): 

valeurs fixe 𝜆2  

En fait, il existe également une relation entre la qualité de l'opération de débruitage et la 

variation du bruit. La figure 4.14 illustre la variation du PSNR avec le paramètre de 

régularisation qui augmente pour une valeur spécifique du bruit. Par conséquent, la deuxième 

partie de cette approche expérimentale vise à estimer la meilleure solution pour le paramètre de 

régularisation à l'aide de TGVGQPSO. 

    (a)     (b) 
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Figure 4.14 Variation du rapport signal/bruit crête avec 𝜆1et 𝜆2 et trois valeurs de bruit différentes. 

 

- Estimation des paramètres de régularisation  

Notre fonction objective qui définit le problème d'optimisation est la fonction de relation 

d'ajustement entre le paramètre de régularisation : 𝜆1𝜆2 et le bruit δ puisqu'il est considéré 

comme la solution de la meilleure performance du processus de débruitage. La fonction 

objective décrite ci-dessous a été ajustée après avoir effectué plusieurs tests. 

𝝀𝟏 = 370,6 + 0,2408.sin (0,5401. 𝜋.𝝀𝟐.δ) – 370,4.exp(-(0,0401.δ)²) 

𝝀𝟐 = 0,2266 + 1,493.sin (0,1797. 𝜋.𝝀𝟏.δ) -0,000271.exp(-(-0,1628.δ)²) 

 

Nous utilisons l'équation 4.4 pour calculer la meilleure combinaison de paramètres de 

régularisation en utilisant notre méthode proposée TGVGQPSO. Les images IRM et TDM 

utilisées sont issues de Radiopaedia [55] ; les images sont extraites et enregistrées au format 

TIFF. Les niveaux de bruit gaussien sont [10%-90%]. L'intervalle des valeurs des paramètres 

de régularisation est compris entre [0-1], notre approche a été réalisée en utilisant les valeurs 

des paramètres suivants : nombre d'itérations n = 100/500, dimension d = 2, coefficients 

d'accélération c1, c2 = 1, poids d'inertie w1, w2 =1.  

(4.4) 
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Le principal défi de cette étude consistait à déterminer la fonction objective qui représente la 

fonction de relation d'ajustement entre les deux paramètres de régularisation et la valeur de 

bruit, si la relation d'ajustement est inappropriée. Les performances de débruitage seront moins 

efficaces. 

Tableau 4.5 Valeurs PSNR et SSIM du débruitage d'images IRM cérébrales avec TGV et notre méthode proposée 

TGVGQPSO, valeur de bruit [0,1-0,9]. 

 

Comme le montre le tableau 4.5, l'estimation de 𝜆1𝜆2 pour chaque valeur de bruit particulière 

basée sur notre approche proposée conduit à une meilleure performance de débruitage 

représentée avec les valeurs PSNR et SSIM, au lieu de choisir une valeur aléatoire du paramètre 

de régularisation. La figure 4.15 montre l'impact de l'estimation sur la qualité d'image à l'aide 

de notre méthode TGVGQPSO par rapport à 𝑇𝐺𝑉𝛼
2.  

 

 

 

 

 

 

 

 

 

𝑇
𝐺

𝑉
 

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

𝜆1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

𝜆2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

PSNR 31.3747 23.3549 16.7162 12.7358 9.8991 7.8365 6.1108 4.7449 3.5922 

SSIM 0.8733 0.3536 0.1435 0.0817 0.0511 0.0349 0.0252 0.0185 0.014 

𝑇
𝐺

𝑉
𝐺

𝑄
𝑃

𝑆
𝑂

 

𝜆1 0.21 0.24 0.29 0.35 0.44 0.55 0.66 0.79 0.91 

𝜆2 0.23 0.26 0.30 0.36 0.43 0.52 0.63 0.75 0.88 

PSNR 31.8902 28.1065 26.3551 24.3851 23.0344 21.9445 21.3598 20.8016 20.5170 

SSIM 0.8942 0.8094 0.6499 0.5271 0.4332 0.4041 0.3685 0.3741 0.3468 
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Figure 4.15 Débruitage de l'image CT Brain à l'aide de TGV et de notre méthode TGVGQPSO proposée. (a) : 

image originale, (b) : image bruitée δ=0,3, (c) :, (d) : image débruitée en utilisant notre approche TGVGQPSO 

proposée 

Sur la base de l'application de TGVGQPSO, nous pouvons fournir la meilleure solution pour le 

choix des paramètres de régularisation et des performances de débruitage supérieures grâce à 

l'optimisation de la fonction objective (4.4). La figure 4.16 prouve l'efficacité de notre méthode 

TGVGQPSO par rapport à d'autres algorithmes de débruitage expérimentaux de pointe, 

notamment le filtre bilatéral, la variation totale TV et la variation généralisée totale ordinaire 

de second ordre 𝑇𝐺𝑉𝛼
2. La qualité de débruitage de notre approche surpasse celles 

susmentionnées, notamment en utilisant 𝑇𝐺𝑉𝛼
2 avec l'optimisation de l'essaim de particules PSO 

et les algorithmes ABC de la colonie d'abeilles artificielles pour l'estimation des paramètres de 

régularisation, comme indiqué dans le tableau 4.6 avec les valeurs les plus élevées de PSNR, 

SSIM et le rapport de performance de débruitage DPR. 

    (a)     (b) 

    (c)     (d) 
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Figure 4.16 Débruitage de l'image cérébrale IRM à l'aide de notre algorithme proposé et d'autres méthodes de 

débruitage expérimentales différentes (a) : image originale, (b) : image bruitée δ = 0,2, (c) : image débruitée à 

l'aide de la télévision, (d) : image débruitée à l'aide d'un filtre bilatéral, (e) : image débruitée avec TGV, (f) : 

image débruitée avec notre méthode TGVGQPSO. 

 

 

    (a)     (b) 

    (c)     (d) 

    (e)     (f) 
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Notre méthode TGVGQPSO donne l'estimation la plus précise du choix des paramètres de 

régularisation malgré toute valeur de bruit probable. L'expression de l'opération de débruitage 

en tant que problème d'optimisation fournit des résultats efficaces dans le processus de 

débruitage et l'amélioration de l'image. Le principal avantage de notre approche proposée est 

qu'elle prend en compte les informations de bruit et utilise les valeurs de paramètres de 

régularisation appropriées pour les meilleures performances de débruitage. Des études futures 

pourraient examiner plusieurs applications de traitement d'images médicales basées sur le 

même principe pour améliorer les spécifications de filtrage et de bruit pour différentes données 

d'imagerie médicale. 

Tableau 4.6 Valeurs PSNR, SSIM et DPR du débruitage d'images IRM Brain en utilisant notre algorithme proposé 

et d'autres méthodes expérimentales, valeur de bruit δ = 0,2. 

 

 

 

 

 

 

 

 

4.3.2 Un nouvel algorithme d'amélioration d'images médicales basé sur CLAHE et Pelican 

Optimisation  

4.3.2.1 Cadre 

L'amélioration de l'image est la principale étape de prétraitement dans différentes applications 

de vision par ordinateur. L'objectif de cette étape est d'améliorer la qualité de l'image, et par la 

suite d'augmenter l'interprétabilité et la perception de l'information. Dans les techniques 

d'amélioration des images médicales, le processus opérationnel est plus difficile, en raison des 

artefacts d'acquisition, du flou de l'image et de l'hétérogénéité des niveaux de luminosité et de 

bruit. 

Denoising Algorithm PSNR SSIM DPR 

Bilateral Filter 23.3868 0.33116 52.86% 

TV 23.4260 0.35171 48.32% 

𝑻𝑮𝑽𝜶
𝟐  24.4414 0.36366 51.98% 

𝑻𝑮𝑽𝜶
𝟐 -PSO 25.2314 0.68254 93.85% 

𝑻𝑮𝑽𝜶
𝟐 -ABC 25.4532 0.69425 95.64% 

TGVGQPSO 27.9460 0.80907 98.66% 
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Le principe principal d'une technique d'amélioration est de transformer les paramètres 

caractéristiques de l'image en une forme supérieure. Le contraste est considéré comme le 

paramètre le plus important dans la procédure d'évaluation de la qualité de l'image. Il est généré 

par la réflexion de luminance de deux régions adjacentes et représente la différence des 

propriétés visuelles, ce qui permet à un objet de se distinguer des autres formes et 

environnements. En utilisant des techniques d'amélioration d'image, le problème de faible 

contraste sera résolu par le renforcement de la région d'intérêt [87][88]. 

Plusieurs techniques d'amélioration ont déjà été menées pour obtenir une visualisation plus 

efficace de l'image. Ces méthodes sont classées en fonction de leur impact sur le traitement en 

tant que techniques de domaines spatiaux et transformés. L'égalisation d'histogramme (HE) est 

l'une des méthodes conventionnelles du domaine spatial. Cette technique augmente l'uniformité 

de la distribution des gris de l'image. L'égalisation adaptative d'histogramme (AHE) est une 

méthode classique basée sur HE qui est appliquée pour les régions locales et qui est efficace en 

termes de réduction de la perte de détails d'image. Cependant, le défaut de cette technique est 

la suramplification du bruit [89]. 

L'égalisation d'histogramme adaptative à contraste limité (CLAHE) diverge dans le 

fonctionnement de la distribution d'histogramme, ce qui n'est pas le cas avec l'égalisation 

d'histogramme adaptative classique. CLAHE est un algorithme efficace pour renforcer les 

détails locaux d'une image. La principale limitation de cette méthode est que le renforcement 

du contraste est limité en coupant l'histogramme à une limite de clip (contraste) prédéfinie. Sur 

cette base, nous présentons une nouvelle méthode d'amélioration de l'image médicale nommée 

CLAHE-POA, basée sur l'application à la fois de CLAHE et de l'algorithme d'optimisation du 

pélican (POA). Le modèle proposé est salutaire pour estimer la valeur limite de contraste la 

plus précise pour atteindre une performance d'amélioration supérieure. 

Dans la période récente, les applications des algorithmes métaheuristiques sont bien connues 

pour résoudre différents types de problèmes d'optimisation d'ingénierie. Ces algorithmes sont 

essentiellement inspirés des systèmes biologiques, physiques et chimiques de la nature et ont la 

capacité de fournir et de trouver des solutions à plusieurs problèmes. L'un des algorithmes méta-

heuristiques inspirés de la nature est l'algorithme d'optimisation pélican (POA). Ce modèle était 

capable de résoudre la majorité des problèmes d'ingénierie, et il a été introduit pour la première 

fois dans la résolution de problèmes de traitement d'images [90][91][92]. 
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L'objectif général de ce travail est de présenter une nouvelle méthode d'amélioration d'images 

médicales. Ce modèle est basé sur l'utilisation de POA pour estimer la limite de clip, qui 

contrôle les performances de l'opération d'amélioration à l'aide de CLAHE. Le processus 

d'estimation améliore l'efficacité de l'opération et fournit des résultats supérieurs en termes de 

qualité d'image et de contraste. L'utilisation du présent algorithme permet d'obtenir un impact 

visuel supérieur sur l'image traitée ainsi que d'augmenter le taux de conformité dans le 

diagnostic clinique. 

4.3.2.2 Travaux connexes 

De nombreux cadres d'amélioration d'image ont été développés sur la base de l'application du 

modèle CLAHE, Diksha et al. [93] ont proposé une approche d'amélioration des images sous-

marines utilisant CLAHE combinée à des méthodologies de centiles, les performances de leur 

système proposé surpassent les techniques classiques pour renforcer cette forme d'images. 

Ruquin et al. [94] ont présenté un schéma d'amélioration intelligent basé sur la transformation 

CLAHE et F-Shirt lors de la décompression, leur modèle a équilibré l'effet d'amélioration tout 

en augmentant le contraste et en préservant les détails de l'image. 

En ce qui concerne l'utilisation du modèle CLAHE dans le domaine médical et biomédical, 

l'amélioration des images du fond d'œil rétinien à l'aide de cette méthode est une application 

reconnue ; Sarika et al [95] ont proposé une version modifiée de CLAHE. Leur modèle résout 

le problème d'amplification du bruit. Cependant, le temps opérationnel requis est remarquable 

[96][97][98][99]. 

Concernant la POA, elle est essentiellement utilisée dans les applications d'ingénierie. 

Trojovsky et al. [100] ont présenté le principe fondamental de la POA et sa modélisation. En 

plus de la comparaison de ses performances avec des algorithmes concurrents supplémentaires. 

Une approche hybride de la POA est menée dans plusieurs travaux de la littérature de recherche. 

Rajam et al. [101] ont étudié l'amélioration des performances du PV connecté au réseau en 

utilisant l'approche GBDT-POA. leur modèle proposé fournit des résultats optimaux, en 

augmentant la qualité de la puissance. De plus, Kumar et al. [102] ont proposé une nouvelle 

technique de contrôle utilisant la POA hybride, et l'exécution optimale de la précision obtenue 

est supérieure par rapport aux techniques existantes. 
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4.3.2.3 Approche proposée 

Dans notre approche d'amélioration proposée, la génération d'images est une phase pré-requise. 

L'application du modèle génératif Text-to-image conduit à obtenir les données médicales visées 

pour l'examen et l'analyse de notre algorithme d'amélioration. 

Après obtention des images, notre méthode de rehaussement se représente en deux étapes : 

- Étape 1. L'estimation de la limite de clip β basée sur l'utilisation de POA. 

- Étape 2. L'amélioration du contraste utilisant CLAHE. 

La fonction objective qui définit l'efficacité de notre modèle proposé est la relation d'ajustement 

entre β et les paramètres de performance suivants : rapport signal/bruit de crête (PSNR), indice 

de similarité structurelle (SSIM), coefficient de corrélation (CoC), erreur quadratique moyenne 

(MSE), l'entropie (EL) et l'écart type (SD). Après avoir étudié la variation de β avec ces 

paramètres, l'équation 4.5 peut être présentée comme suit :   

 

𝛽 = 4,801. 10−5. [𝑠𝑖𝑛(𝑋1 − 𝜋)] + 1,732. 10−5[(𝑋1 − 10)2] − 0,00361        /     𝑋1  → 𝑃𝑆𝑁𝑅   

𝛽 = −41,88. [𝑠𝑖𝑛(𝑋2 − 𝜋)] + 1,427. [(𝑋2 − 10)2] − 151       /        𝑋2  → 𝑆𝑆𝐼𝑀 

𝛽 = −23,24. [𝑠𝑖𝑛(𝑋3 − 𝜋)] + 0.7188. [(𝑋3 − 10)2] − 77,78      /       𝑋3  → 𝐶𝑜𝐶 

𝛽 = 8,993. 10−5. [𝑠𝑖𝑛(𝑋4 − 𝜋)] − 5,798. 10−8. [(𝑋4 − 10)2] + 0,002474      /     𝑋4  → 𝑀𝑆𝐸 

𝛽 = 1,216. [𝑠𝑖𝑛(𝑋5 − 𝜋)] − 0,1245. [(𝑋5 − 10)2] + 1,934       /      𝑋5  → 𝐸𝐿 

𝛽 = −0,01488. [𝑠𝑖𝑛(𝑋6 − 𝜋)] + 2,2. 10−5. [(𝑋6 − 10)2] − 0.03428        /      𝑋6  → 𝑆𝐷  

 

L'équation 4.5 a été ajustée après avoir effectué plusieurs tests. L'étude de la distribution de la 

limite de clip et des paramètres de performance en tant que variables dépendantes a été réalisée. 

A cet égard, l'estimation de la valeur appropriée de β est essentielle pour obtenir une 

performance hautement améliorée. En présentant le problème d'amélioration comme un 

problème d'optimisation, le nouvel algorithme inspiré de la nature POA est appliqué pour 

améliorer l'efficacité de l'ensemble de l'opération. POA est utilisé pour résoudre les problèmes 

d'optimisation dans une variété de disciplines d'ingénierie, et il a été introduit pour la première 

fois pour les applications de traitement d'image dans ce travail. 

 

 

(4.5) 



Chapitre 4. Résultats et contributions 
 

69 
  

 

 CLAHE-POA Algorithm  

 

 

 

 

 

 

 

 

/// STEP1 Text-to-image model. 

1. Input: Original medical image generated by Text-to-image model. 

 

/// STEP2 CLAHE 

2. CLAHE enhancement function. 

 

/// STEP3 POA 

3. Input the objective function (optimization problem information using Eq. 4.5). 

4. Determination of the population size (N) and the number of iterations.  

5. Initialization of pelicans’ position and the calculation of the objective function.  

6. For t=1:T 

7.           Generation of the prey’s position at random. 

8.           For I=1:N 

9.           Phase 1, 2: exploration and exploitation phases. 

10.                       For j=1:m 

11.                             New status’ calculation of the jth dimension. 

12.                        End. 

13.           End. 

14.           Updating the ith population member. 

15.  End. 

16.  Update and output the best solution obtained by POA. 

17.  Estimated value of 𝛽. 
 /// 

18.  Output: Enhanced image. 
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Figure 4.17 Les étapes de notre démarche de valorisation. 
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Figure 4.18 Le schéma fonctionnel graphique de notre modèle proposé. 
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4.3.2.4 Résultats  

Des expériences sur des images médicales générées à l'aide du modèle de diffusion stable Text-

to-image ont été réalisées. Les données expérimentales des différentes modalités d'imagerie 

médicale sont enregistrées au format TIFF (Ct-Scan Brain image, MRI Brain image, PET 

image, Ultrasound Kidney image). En plus des cadres cérébraux de la tomodensitométrie axiale 

et de l'IRM recueillis à partir de Radiopaedia [103][104], qui ont été utilisés pour un processus 

de comparaison. L'objectif de l'utilisation de différents types de données expérimentales est de 

présenter qualitativement les performances d'amélioration de notre modèle. Les algorithmes 

génératifs CLAHE-POA et Text-to-image sont respectivement implémentés en utilisant 

MATLAB (version 9.4) et PYTHON (google Colab). 

Dans les expériences, pour présenter la méthode d'amélioration proposée et pour illustrer les 

avantages de la fusion de CLAHE et de POA, les performances de notre méthode proposée ont 

été comparées à huit méthodes expérimentales de pointe. Cela inclut les éléments suivants : 

filtre de Wiener WF [105], filtre gaussien GF [106], filtre médian MF [107], algorithme 

d'optimisation d'essaim de particules quantiques QPSO [108], algorithme de colonie d'abeilles 

artificielles ABC [109], algorithme de masquage flou UM [110], le modèle CSDNET [111] et 

le modèle FilterNet [112]. En outre, pour vérifier l'amélioration de l'image de manière complète 

et objective, les paramètres de performance sont adoptés. Le PSNR présente les performances 

d'amélioration de manière objective, des valeurs plus grandes représentent une amélioration 

supérieure ; SSIM définit la distorsion des images améliorées ; CoC et EL indiquent les 

informations et les détails de l'image ; et MSE et SD peuvent présenter le contraste des images 

améliorées, tandis que les valeurs MSE diminuent avec l'augmentation du contraste global. 
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Figure 4.19 La variation de β avec les paramètres de performance. 
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(a)                                     (b)                                        (c)                                       (d) 

 

                      (e)                                        (f)                                       (g)                                       (h) 

 

(i)                              (j) 

Figure 4.20 Amélioration de l'image médicale à l'aide de notre modèle proposé, (a) : image cérébrale CT 

originale. (b) : image rehaussée, (c) : image cérébrale IRM originale, (d) : image rehaussée, (e) : image TEP 

originale, (f) : image rehaussée, (g) : image radiographique originale du thorax, (h) : Image rehaussée, (i) : Image 

originale du rein échographique, (j) : Image rehaussée. 
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(a)                                                   (b)                                                  (c) 

 

                           (d)                                                          (e)                                                  (f) 

 

                            (g)                                                         (h)                                                  (i)  

 

Figure 4.21 Comparaison des performances d'amélioration en utilisant notre modèle proposé et les autres 

méthodes expérimentales. (a) : image radiographique originale du thorax, (b) : image améliorée avec CLAHE, 

(c) : image améliorée avec CLAHE/WF, (d) : image améliorée avec CLAHE/GF, (e) : image améliorée avec 

CLAHE/MF, (f) : image améliorée avec CLAHE/QPSO, (g) : image améliorée avec CLAHE/ABC, (h) : image 

améliorée avec UM, (i) : image améliorée avec notre modèle proposé. 
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Figure 4.22 Comparaison de l'efficacité de l'amélioration à l'aide de notre modèle proposé et des autres 

méthodes expérimentales basées sur les paramètres de performance. 
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Tableau 4.7 Comparaison de l'efficacité d'amélioration de l'image thoracique radiographique à l'aide de notre 

modèle proposé et des autres méthodes expérimentales basées sur les paramètres de performance. 

 

 

(a)                                                                    (b) 

 

                                                    (c)                                                                     (d)  

Figure 4.23 Amélioration des images réelles CT et IRM à l'aide de notre modèle proposé. (a) : image cérébrale 

CT-Scan axiale originale, (b) : image rehaussée, (c) : image cérébrale IRM axiale originale, (d) : image 

rehaussée. 

Performance 

Parameter  

CLAHE 

 

CLAHE/WF CLAHE/GF CLAHE/MF CLAHE/QPSO CLAHE/ABC UM Our 

Proposed 

Model 

 PSNR 22.023 22.034 22.04 22.071 28.37 28.353 28.171 29.347 

SSIM 0.832 0.796 0.835 0.905 0.905 0.906 0.988 0.994 

CoC 0.943 0.943 0.929 0.943 0.988 0.99 0.998 0.997 

MSE 408.07 0.006 0.007 0.006 0.064 0.099 0.0002 0.008 

EL 7.524 7.53 7.572 7.527 7.569 7.572 7.314 7.5822 

SD 57.398 0.225 0.221 0.224 58.668 58.402 0.217 58.806 
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                                               (a)                                                                          (b) 

      

                                                 (c)                                                                         (d) 

   Figure 4.24 Comparaison des performances d'amélioration sur des images médicales réelles en utilisant notre 

modèle proposé et les autres méthodes expérimentales. (a) : image cérébrale IRM axiale originale, (b) : image 

améliorée à l'aide de CSDNET, (c) : image améliorée à l'aide de FilterNet, (d) : image améliorée à l'aide de notre 

modèle proposé. 
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Tableau 4.8 Comparaison de l'efficacité d'amélioration de l'image cérébrale IRM axiale à l'aide de notre modèle 

proposé et des autres méthodes expérimentales basées sur les paramètres de performance. 

 

 

 

 

 

 

 

 

 

4.3.2.5 Discussion 

La figure 4.19 représente la distribution de β en parallèle avec les paramètres de performance. 

Sur cette base, β augmente proportionnellement aux valeurs du paramètre, sauf les valeurs de 

MSE qui sont inversement proportionnelles à β et au contraste global. La valeur de coupure de 

chaque courbe indique que l'estimation de β est essentielle pour obtenir une performance 

d'amélioration supérieure. 

En ce qui concerne les comparaisons visuelles, les figures 4.20 et 4.21 montrent les résultats 

d'amélioration des images médicales générées obtenues par la présente méthode et les autres 

algorithmes expérimentaux de pointe. En comparant les détails et les régions locales dans les 

images, en particulier les régions avec des structures et des formes spécifiques, nous concluons 

que notre modèle proposé offre une qualité visuelle supérieure. Les bords et la netteté sont flous 

dans CLAHE/GF et CLAHE/WF, mais ils sont mieux préservés avec notre méthode. Les 

performances CLAHE/GQPO et CLAHE/ABC sont proches dans une certaine mesure de notre 

modèle en termes de qualité visuelle. Cependant, l'estimation de β est plus précise en utilisant 

notre algorithme, ce qui a entraîné une supériorité de notre méthode en termes de performances. 

Les résultats fournis sur la figure 4.21, qui représentent le rehaussement d'une image 

radiographique du thorax, ont prouvé la supériorité de notre modèle par rapport aux autres 

algorithmes. CLAHE/WF, CLAHE/GF et CLAHE/MF sur-augmentent la luminosité de 

l'image, tandis que les résultats de UM et de notre algorithme proposé sont presque identiques, 

avec un léger avantage de notre méthode dans le contraste global obtenu. 

 Performance 

Parameter  

CSDNET FilterNet   Our 

Proposed 

Model 

 PSNR 21.253 26.596 29.256 

SSIM 0.812 0.985 

 

0.989 

CoC 0.97 0.98 0.992 

MSE 0.00015 0.0001 0.0075 

EL 7.135 7.425 7.5647 

SD 0.568 0.217 57.265 
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Concernant l'évaluation quantitative, la figure 4.22 et le tableau 4.7 présentent la comparaison 

des résultats numériques en fonction des paramètres pertinents pour la performance. Notre 

algorithme d'amélioration surpasse de manière significative les autres méthodes 

expérimentales. En termes de valeurs PSNR, notre modèle et les résultats UM sont assez 

similaires, avec la supériorité de notre algorithme par rapport à toutes les autres méthodes 

concernant les paramètres de performance SSIM, CoC, EL et SD. Concernant MSE, les 

résultats UM sont préférables. 

Afin de décrire qualitativement les performances d'amélioration de notre modèle, nous avons 

appliqué notre algorithme proposé à l'amélioration d'images médicales réelles, comme le 

montre la figure 4.23, qui représente l'amélioration de deux images cérébrales axiales de 

différentes modalités d'imagerie CT-Scan et IRM. Notre méthode a mis en évidence son 

efficacité en termes d'amélioration des performances, en comparaison avec les méthodes 

d'amélioration récentes, y compris les modèles d'amélioration CDSNET et FilterNet, comme le 

montrent la figure 4.24 et le tableau 4.8. En plus de cela, notre méthode prouve son applicabilité 

dans diverses images. À cet égard, l'amélioration du contraste et de la netteté à l'aide de notre 

méthode donne un effet visuel supérieur sur l'image traitée et conduit à une observation et un 

diagnostic typique par des spécialistes. 

4.4 Conclusion 

Ce chapitre a couvert les différents résultats de recherche et les contributions pour différentes 

solutions et applications de problèmes inverses. Les solutions pour différentes données 

d'imagerie et problèmes de traitement d'image sont présentées en prouvant l'importance et les 

avantages de nos modèles dans l'amélioration des solutions, en parallèle avec l'adaptation des 

algorithmes d'optimisation dans le cadre de régularisation. 
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En conclusion, cette thèse a étudié l'application de solutions régularisées à des problèmes 

inverses en imagerie médicale. La thèse a contribué au développement de méthodes 

mathématiques et informatiques pour résoudre des problèmes inverses de traitement d'images, 

en mettant l'accent sur les applications d'imagerie médicale. Dans ce chapitre, nous résumons 

les principales contributions de cette thèse et discutons des orientations de recherche 

potentielles pour les travaux futurs. 

5.1 Contributions  

Nous avons montré que la régularisation joue un rôle crucial dans la précision et la stabilité des 

solutions régularisées de problèmes inverses en imagerie médicale. En plus de cela, nous avons 

étudié l'estimation des paramètres de régularisation, qui est une étape critique dans le processus 

de régularisation. Nous avons exploré différentes méthodes de sélection des paramètres de 

régularisation : 

• Nous avons étudié l'impact de l'estimation des paramètres de régularisation sur les 

performances des opérations de restauration d'images médicales en utilisant une 

nouvelle approche basée sur le filtrage inverse régularisé amélioré et l'optimisation des 

particules à comportement quantique gaussien. Notre modèle proposé est appliqué pour 

estimer la meilleure solution de choix de paramètres avec des valeurs de flou et de bruit 

variables. Les résultats expérimentaux démontrent la performance significative des 

opérations de restauration avec une qualité d'image et une netteté élevées basées sur 

l'utilisation de notre modèle proposé par rapport aux méthodes de restauration 

expérimentales récemment élaborées. La présentation de l'estimation de régularisation 

comme une problématique d'optimisation a mis en évidence son efficacité dans 

l'amélioration du processus de restauration. 

• Nous avons atteint une performance de qualité de déconvolution d'images médicales 

efficace. Les résultats expérimentaux montrent des performances évidentes du 

processus de déconvolution des images médicales en utilisant notre approche proposée 

en comparaison avec d'autres méthodes de déconvolution expérimentales. 

• Notre algorithme intelligent proposé pour le débruitage d'images médicales est appliqué 

pour estimer la meilleure solution de choix des paramètres de régularisation avec 

variation de bruit. Les résultats expérimentaux confirment l'effet évident sur le 

processus de débruitage des images médicales avec l'application de notre approche 
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proposée par rapport à d'autres méthodes expérimentales de débruitage d'images de 

pointe. 

• Basé sur la fusion de l'égalisation d'histogramme adaptatif de contraste et de l'algorithme 

d'optimisation du pélican, notre nouvelle méthode d'amélioration d'image médicale est 

présentée. Grâce à l'estimation de la limite de clip comme solution au problème 

d'optimisation lié aux paramètres de performance, le contraste des images médicales est 

considérablement amélioré. Les résultats expérimentaux prouvent la supériorité de notre 

modèle par rapport aux autres méthodes de l'état de l'art qualitativement et 

quantitativement. Notre méthode proposée est capable d'illustrer la structure et les 

formes des détails pertinents, qui sont contenus dans les images médicales. Toutes ces 

étapes conduisent à l'augmentation du contraste global d'une part et améliorent la 

perception visuelle et l'observation d'autre part. 

5.2 Travaux Futurs 

Plusieurs pistes de recherches futures peuvent s'appuyer sur les résultats de cette thèse. Ceux-

ci inclus: 

• Développement de méthodes d'optimisation avancées : Bien que les algorithmes 

d'optimisation utilisés dans cette thèse se soient révélés prometteurs pour résoudre le 

problème inverse régularisé, il y a encore place à l'amélioration. Les recherches futures 

peuvent explorer le développement de méthodes d'optimisation plus avancées. 

• Exploration des approches d'apprentissage en profondeur : Les approches 

d'apprentissage en profondeur se sont révélées très prometteuses en imagerie médicale, 

en particulier dans la classification et la segmentation des images. Les recherches 

futures peuvent explorer l'intégration de méthodes d'apprentissage en profondeur dans 

le processus de régularisation des problèmes inverses en imagerie médicale, ainsi que 

l'incorporation de connaissances antérieures plus complexes. 

• Application aux modalités d'imagerie émergentes : bien que cette thèse se soit 

principalement concentrée sur les modalités d'imagerie établies, telles que la 

tomodensitométrie, l'IRM et la TEP, les recherches futures peuvent explorer 

l'application de l'estimation de la régularisation basée sur l'optimisation aux modalités 

d'imagerie émergentes, telles que la tomographie par cohérence optique (OCT) et 

imagerie photo-acoustique (PAI). Cela peut permettre le développement de nouvelles 

techniques d'imagerie et d'applications dans le domaine de l'imagerie médicale. 
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• Application à la pratique clinique : Les résultats de cette thèse ont des implications 

importantes pour le diagnostic et le traitement de diverses conditions médicales. Les 

recherches futures peuvent explorer la traduction de l'estimation de la régularisation 

basée sur l'optimisation dans la pratique clinique, grâce au développement de logiciels 

conviviaux et à la collaboration avec des médecins praticiens. Cela peut permettre 

l'adoption de techniques d'imagerie plus précises et plus efficaces en milieu clinique. 
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