REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

/" ~OUNIVERSITY /’U ~OUNIVERSITY
7% of SAIDA UNIVERSITE Dr. MOULAY TAHAR - SAIDA (Z177% of SAIDA
L L Dr MOULAY TAHAR I g L Dr MOULAY TAHAR
l\& '] FACULTE DE TECHNOLOGIE l\q i

T T __ =

DEPARTEMENT D’INFORMATIQUE

N°D’ORDRE:

THESE

Présentée par
BOUSMAHA RABAB

Pour I'obtention du diplome de
DOCTORAT «L. M. D» en INFORMATIQUE
Spécialité: Informatique

Option: Informatique

Les méta-heuristiques, les méthodes bio-inspirées et le
datamining pour I'extraction des connaissances en
vue des Big data

Défendu publiquement, en 15/07/2021

Devant le jury composé de:

AMINE Abdelmalek Professeur Université de Saida Président
BELALEM Ghalem Professeur Université d’Oran 1 Examinateur
BENDAOUD Zakaria M.C.A Université de Saida Examinateur
YAHLALI Mebarka M.C.A Université de Saida Examinateur
HAMOU Reda Mohamed Professeur Université de Saida Directeur de these

Année Universitaire 2020-2021

Laboratoire GeCoDe, Université de Saida

1ii

Dédicace
J'adresse en premier lieu ma reconnaissance notre DIEU tout
puissant, de m’avoir permis d’en arriver la, car sans lui rien n’est

possible.

Je dédie ce travail,

A mon trés cher pére

A celui qui m’a aidé découvrir le savoir aucune dédicace ne saurait
exprimer 'amour, I’estime, et le respect que j’ai toujours eu pour
vous. Merci d’avoir été toujours la pour moi, un grand soutien tout
au long de mes études. Que dieu le tout puissant te préserve,

t’accorde santé, bonheur et te protege de tout mal.
. A ma trés chére mére

A une personne qui m’a tout donné sans compter Tu n’as pas cessé

de me soutenir et de m’encourager, Merci pour tous les efforts que tu
as fait pour moi Puisse Dieu, le tout puissant, te préserver et
t’accorder santé, longue vie et bonheur afin que je puisse te rendre un
minimum de ce que je te dois.
A AMINA et HADJER mes soeurs adorées
Amina, Tu as toujours été un exemple a suivre pour moi, la grande
soeur modeéle, Je te remercie pour tout ce que tu as fait pour moi, Je

vous dédie ce travail avec tous mes voeux de bonheur, de santé et de
. réussite.
A Hadjer, dont je suis fiere d’étre ma soeur, pour I’affection et la

complicité qui nous unissent. Votre aide et votre générosité extrémes
ont été pour moi une source de courage, de confiance et de patience,
je te remercie également. Je te souhaite un avenir plein de joie, de
bonheur, de réussite.

A ma chére niéce IThem et mon cher neveu Iyed, mes plus grandes
sources de bonheur, j'espére que la vie vous réserve le meilleur.
J'implore DIEU le tout-puissant de vous garder pour votre tante qui

vous adore. Je vous aime de tout mon cceur.

A mon oncle Abbes
m’as beaucoup soutenu, et aidé, je te remercie infiniment Que Dieu te

bénisse et te guide vers le meilleur inchaellah

A mon beau frére Abdelkader Je te dédie ce travail en témoignage de
mon profond respect,

A ma famille, qui a toujours était la pour mois,
A mes amis.

Rabab

Remerciments

Voila enfin, aprés de longues années de travail, avec 1'aide d’ALLAH, le tout puissant,
qui méne toujours a bonne fin, j’ai réussi a mettre en forme la thése que vous avez entre les
mains.

Un énorme remerciement que dois présenter en premier lieu & mon directeur de thése
Pr. HAMOU Reda Mohamed qui ma a soutenue et m’a guidé au cours de la réalisation de
cette these, merci pour leur temps qu’il m’a consacré; pour ses convictions; son énergie et
ses conseils.

Mes remerciements vont ensuite aux membres du jury :
A Pr. AMINE Abdelmalek, Professeur a l'université de SAIDA Dr. MOULAY Taher qui a
accepté de présider cette these.

A Pr. BELALEM Ghalem, Professor a I’Université d’Oran Ahmed Ben Bella, Dr. BEN-
DAOUD Zakaria, Docteur a I'université de SAIDA Dr. MOULAY Taher et Dr. YAHLALI
mebarka, Docteur a l'université de SAIDA Dr. MOULAY Taher qui m’ont fait '’honneur de
participer a ce jury.

J'adresse des remerciements tres respectueux a tous mes enseignants qui m’ont apporté
leurs aides, leurs conseils, leurs précieux soutiens tout au long de mon cursus.

J’aimerais remercier du fond du coeur mes parents pour leur soutien moral et matériel.
Ma famille qui ont toujours porté un intérét a ce que je faisais

Merci également a mes amis qui m’ont apportée soutien et détente durant cette theése. ..

Vi

Résumé

Le processus de l'extraction des connaissances comprend plusieurs étapes qui sont la
sélection attributs, le prétraitement, la transformation, 1’exploration des données et l'inter-
prétation des résultats. Tous ces problemes peuvent étre formulés comme des problemes
d’optimisation combinatoire or, de nombreux problemes d’optimisation combinatoire sont
NP-difficile et ne pourront pas étre résolus de maniére exacte dans un temps raisonnable.
D’ou plusieurs travaux utilisent des méthodes d’optimisation pour résoudre ces probléemes.
Aujourd’hui, les données a analyser sont non seulement volumineuses, mais ils sont compo-
sés de différents types de données, et comprennent méme des données continues. Comme
les méthodes traditionnelles d’analyse de données ne sont pas congues pour des données
complexes. Cette thése a pour but de réunir les forces des métaheuristiques, des méthodes
bio inspirées ainsi que le data mining pour effectuer ’extraction des connaissances robustes,
et d’optimiser les méthodes existantes. Nous nous sommes particulierement intéressés a la
réalisation et la conception des algorithmes basés sur '’hybridation des algorithmes évolu-
tionnaires et les algorithmes d’intelligence des essaims pour 'optimisation globale et pour
résoudre différents problemes d’extraction de connaissances a savoir la sélection d’attributs
et 'optimisation des algorithmes de classification a savoir les réseaux de neurones a pro-
pagation avant, les réseaux de neurones récurrents et les machines a vecteurs de support
(SVM) appliqué sur plusieurs domaines.

Mots clés Extraction des connaissances, Métaheuristiques, Data Mining, Algorithmes évo-
lutionnaires, Algorithmes d’intelligence des essaims, Optimisation combinatoire, Sélection
d’attributs, Classification.

Abstarct

The knowledge discovery process includes several steps which are feature selection, pre-
processing, transformation, data mining and interpretation of results. All these problems can
be formulated as combinatorial optimization problems, but many combinatorial optimiza-
tion problems are NP-hard and will not be solved accurately in a reasonable time. Hence
several works use optimization methods to solve these problems. Today, the data to be ana-
lyzed are not only voluminous, but they are composed of different types of data, and even
include continuous data. Traditional data analysis methods are not designed for complex
data. This thesis aims to combine the strengths of metaheuristics, bio-inspired methods and
Data Mining to perform robust knowledge discovery, and to optimize existing methods.
We are particularly interested in the realization and design of new algorithms based on the
hybridization of evolutionary algorithms and swarm intelligence algorithms for global opti-
mization and to solve various knowledge discovery problems such as feature selection and
optimization of classification algorithms : feed forward neural networks (FFNN), recurrent
neural networks (RNN) and support vector machines (SVM) applied on several domains.
Keywords knowledge discovery, Metaheuristics, Evolutionary algorithms, Data mining,
Swarm intelligence, Combinatorial optimization, Feature selection, Classification.

Table des matiéres

Remerciments

Résumé

Introduction

1 Métaheuristiques et bio-inspirations
Introduction
Les problemes combinatoires L.

1.1
1.2

1.3
1.4

1.5

1.2.1
122

Optimisation
Résolution e

Méthodes d’optimisation L
Les métaheuristiques L Lo o

1.4.1

1.4.2

Concepts des métaheuristiques,
Représentation o L
Fonctionobjectif
Analysede performance oL
Classification des métaheuristiques
Les métaheuristiques a solution unique / recherche locale
Les métaheuristiques a population de solution

Hybridation entre métaheuristiques

1.5.1

Classification hiérarchique des métaheuristiques
L’hybridation relais de basniveau
L’hybridation collaborative de basniveau
L’hybridation relais de haut niveau
L'hybridation collaborative de hautniveau
Classification a plat des métaheuristiques
Homogenes/Hétérogenes
Globales/Partielles,
Généralistes/Spécialistes oL

1.6 Conclusion o e e

2.1

2.2

L’extraction de connaissances

Introduction e

2.1.1

L'extraction de connaissance
Présentation du processus de l'extraction des connaissances

Datamining (explorationde données)

221

Les taches principales de datamining (exploration de données)

Laclassification
Larégression
Leclustering
Les régles d’association
Lasélectiond’attributs

vii

vi

@ 0 0 NI O O U1 U1 G1 Ut

1 T N T S v G
O O O O O O VWO WO o\

viii

2.3
24
25
2.6

2.7

La différence entre I’exploration de données et 1’extraction de connaissances
(KDD) . . . o
Les taches d’exploration de données comme des problemes d’optimisation . .
La recherche d’informations (IR)
BigData
261 LesbvdeBigData
Conclusion

Réseaux de neurones et apprentissage profond

3.1
3.2

3.3

34

35

3.6

3.7

Introduction L
Réseau de neurones artificiels oo 0 0L
321 PFonctionsd’activation Lo Lo Lo
Fonction d’activation linéaire
Fonction d’activation pasouparseuil
Fonction d’activation sigmoide
Fonction d’activation de la tangente hyperbolique
Unités linéaires rectifiées (ReLU)
Les architectures de base des réseaux de neurones
3.3.1 Réseau de neurones a propagation avant a une seule couche
3.3.2 Réseau de neurones a propagation avant multicouches
3.3.3 Réseau deneuronesrécurrents
3.34 Réseau de neurones d’architectures maillées
L'apprentissage profondo L L
34.1 Réseaudeneuronesprofonds
Réseaux de neurones convolutifs
Réseaux de neurones récurrents,
Formation et évaluation d'un réseau de neurones
3.5.1 Formation par la rétropropagation du gradient
Algorithme rétropropagation
Description de l'algorithme rétropropagation
Amélioration de l’algorithme rétropropagation.
Problemes pratiques dans la formation des réseaux neuronaux
3.6.1 Leprobleme dusur-ajustement
3.6.2 Difficultés de convergence L L
3.6.3 Défisinformatiques. Lo oL oo
3.6.4 Optimalocaux fallacieux
Conclusion L

Métaheuristiques pour la classification supervisée et l1a sélection d’attributs

41
4.2

43

Introduction
Métaheuristiques pour la classification supervisée
421 Descriptionduprobleme
422 Modeledoptimisation Lo
Un probléme combinatoire
Mesuresdequalitéo 0 L
423 Métaheuristiques pour optimiser des algorithmes de classification
Optimisation des réseaux de neurones artificiels (ANN)
Optimisation de machine a vecteurs de support (SVM)
Meétaheuristiques pour la sélection d’attributs
43.1 Descriptionduprobleme
Méthodes de filtres (filter methods)

30
30
31
32
32

33
33
33
35
35
35
36
37
37
37
38
39
39
40
41
41
42
43
43
44
44
44
47
48
48
49
49
49
49

ix

Meéthodes enveloppes (wrapper methods) 59

Meéthodes embarquées (embedded methods) 59

432 Modeled’optimisation L o Lo Lo 60

Un probléme combinatoire 60
Représentation 60

Mesures de performance L L L 60

44 Conclusion 63

Un nouvel algorithme basé sur I'optimisation des chauves-souris avec 1’évolution
différentielle auto-adaptative pour I’entrainement de réseaux de neurones a pro-

pagation avant 65
51 Introduction 65
5.2 L’entrainement de réseaux de neurones a propagationavant 65
5.2.1 Réseaux de Neurones artificiels (ANNs) 67
5.2.2 Laméthode proposée pour entrainer les réseaux de neurones a propa-
gationavanto 67
Dispositif expérimental 0 0L 68
52.3 BAT-SDE pour l'entrainement du réseau de neurones a propagation
avant L 69
L’algorithme des chauves-souris (Bat algorithm) 69
L’évolution différentielle 70
Auto-Adaptatif hybride BAT 71
Les parametres F et CR auto-adaptatifs : algorithme jDE modifié . .. 71
Expérimentationetrésultats. 73
Vued’ensemble L oo 74
Résultats 75
Classification de I’ensemble de données européen 79
Ensemble de données déséquilibré 79
Prétraitement dans les ensembles de données déséquilibrés 80
Evaluation dans des domaines déséquilibrés 80
53 Conclusiondel'approche 81

Sélection automatique des neurones cachés et des poids dans les réseaux de neu-
rones pour la classification des données a I’aide de 1’optimisation hybride des es-

saims de particules et 'optimisation multi-verse basée sur le vol de Lévy 83
6.1 Introduction 83
Optimisation des essaims de particules (PSO) 84
Optimiseur multi-vers MVO) 85
VoldeLévy 87
Optimisation multi-verse basée sur le vol de Lévy (LMVO). 88
Hybride PSO-LMVO (PLMVO) 88
PLMVO pour la formationduMLP 89
Expérimentationetrésultats. 91
Dispositif expérimental 0o 0L 92
Série d’expériences 1 : fonctionsdetest 92

Série d’expériences 2 : I'entrainement du réseau de neurones a propa-
gationavanto o oL oL 95
Série d’expériences 3 : classification et détection des logiciels malveillants102
Ensemblededonnées: 103
L’approche proposée pour détecter les malwares Linux 103

Expériencesetrésultats o000 105

6.2 Conclusiondel’approche

7 Lhybridation entre I’optimiseur de loup gris et ’optimiseur de multi-vers (MVGWO)
pour les problemes d’optimisation globale a grande dimension

7.0.1
7.0.2
7.0.3

7.0.4
7.0.5
7.0.6
7.0.7

7.0.8

7.09
7.0.10

7.0.11

7.0.12

Etat de I’art sur 'optimisation des loups gris
Optimiseur de loup gris (GWO)
L'algorithme MVGWO proposé
Coefficient d’équilibre adaptatif
L’hybridation entre 1’optimiseur de loup gris et I'optimiseur de multi-

vers (GWO-MVO)
La complexitt de MVGWO,
Expériencesetrésultats 0L
Configuration de I'expérience
Série d’expériences 1 : 'optimisation globale
Résultats et discussions o oL
Parametresinitiaux o oL L
Analyse statistique o L Lo L o
Analysedeconvergence L
Série d’expériences 2 : MVGWO pour la sélection d’attributs et I'opti-
misation des parametresdeSVM oo
Machine a vecteur de support (SVM)
Modeéele MVGWO-SVM proposé
Schémad’encodage.
Evaluation de fitness (fonction objectif)
Architecturedusysteme Lo Lo Lo
Expériencesetrésultats
Résultats et discussions 0oL
Comparaison avec la recherche de grille (sans sélection d’attributs) . .
Conclusiondel’approche

7.1 Un réseau de neurones récurrent optimisé par 1’hybridation entre 1’optimi-
seur de loup gris et 'optimiseur de multi-vers (MVGWO) pour la sécurité

IoT

7.1.1
7.1.2
7.1.3
714
7.15
7.1.6

717

Réseau de neurones récurrents (RNN)
Un réseau de neurones récurrent modifié
Le M-RNNMVGWO o
Calcul de la complexité despoids
La prédiction d’anomalies dans le réseauloT
Configuration Expérimentale et analyse des résultats
Résultats et discussion L Lo
Conclusiondel’approche

72 Conclusion e

8 Conclusion générale

Conclusion générale

Bibliographie

Liste des publications

109

151

155

167

xi

Table des figures

1.1

1.2
1.3
14

2.1
2.2

2.3
24

25
2.6

3.1
3.2
3.3
34
3.5
3.6
3.7

3.8

3.9
3.10

3.11

4.1

51
52
5.3
54

5.5

5.6

Vue globale des approches de résolution des problemes d’optimisation com-

binatoire(TALBI, 2002) 7
Classification des métaheuristiques (TALBI, 2002) 10
Déplacement d'une particule o L. 16
Classification hiérarchique des métaheuristiques hybride (TALBI, 2002) 18
Structure séquentielledumodeleKDP 22
Vue globale des taches et approches de ’exploration de données (DHAENENS,

2016) '« o v e e e e 25
La tache de classification (DHAENENS, 2016) 25
Un dendrogramme construit par un algorithme de clustering d’aggloméra-

tion (ZHANG et ZHANG, 2003) o o v vt i e e e 27
Processus de I’extraction de données (KDD). 30
La différence entre 'extraction de données (KDD) et I’exploration de données
(datamining). 30
Réseau artificiel (HODGKIN et HUXLEY, 1952) 34
Fonction d’activation linéaire 35
Fonction d’activation par pasouparseuil 36
Fonction d’activation sigmoide 36
Fonction d’activation de la tangente hyperbolique 37
Fonction d’activationReLU 38
Exemple de réseau de neurones a propagation avant a une seule couche (HODGKIN
et HUXLEY, 1952) e e e e e e 39
Exemple de réseau de neurones a propagation avant multicouches (HODGKIN

et HUXLEY, 1952) o o 40
Exemple de réseau de neurones récurrents (HODGKIN et HUXLEY, 1952) . .. 40
Exemple de réseau de neurones d’architectures maillées (HODGKIN et HUXLEY,
1952) o o e e 41
Une représentation simple de l'opération de convolution en 2 dimensions
(BENGIO, 2009) e e e 42
La matricede confusion L oL 52
Représentation de la structure de solution 68
Affectation du vecteur de solutionauMLP 68
Etapes générales de I'approche BAT-SDE-MLP 73
Courbe de convergence basé sur le MSE pour Hepatitis et Vertebral, respecti-
vement 78
Courbe de convergence basé sur le MSE pour blood, breast cancer, diabetes,
hepatitis 78

Courbe de convergence basée sur le MSE pour Européen dataset 81

xii

6.1

6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1
7.2
7.3

74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

7.15

7.16

717

7.18

7.19

7.20

Le schéma de codage utilisé pour représenter PLMVO pour la formation du

MLP . . e 89
Le schéma de codage utilisé pour représenter PLMVO pour la formation du

MLP . . 90
Les étapes générales de l'approche PLMVO-MLP 91
Courbe de convergence basée sur le MSE pour Breast cancer, Blood et Diabete
datasets, respectivement L L L oo 98
Courbe de convergence basée sur le MSE pour Liver, Vertebral et Parkinson
datasets, respectivement L L L L oo 98
Courbe de convergence basée sur le MSE pour Hepatitis, Heart et BrestEW
datasets, respectivement L L Lo Lo 99
Boxplot basé sur le MSE pour Breast cancer, Blood et Diabetes datasets, res-
pectivement 99
Boxplot basé sur le MSE pour Liver, Vertebral et Parkinson datasets, respecti-
vement e 100
Boxplot basé sur le MSE pour Hepatitis, Heart et BrestEW datasets, respecti-
vement 100
Schéma de codage des individus PSO pour la sélection d’attributs (FARIS,
MIRJALILI et ALJARAH, 2019b) 104
Description des fonctions de test unimodales (FAN etal., 2020) 117
Description des fonctions de test multimodales (FAN et al., 2020) 118
Description des fonctions de test multimodales & dimension fixe (FAN et al.,
2020) .. e e e e 118
Résultats des fonctions de test unimodales a 30 dimensions (F1-F7) 123
Résultats des fonctions de test multimodales a 30 dimensions (F8-F13) 124
Résultats des fonctions de test unimodales a 100 dimensions (F1-F7) 124
Résultats des fonctions de test multimodales a 100 dimensions (F8-F13) . . . 125
Résultats des fonctions de test unimodales a 500 dimensions (F1-F7) 125
Résultats des fonctions de test multimodales a 500 dimensions (F8-F13) . . . 126
Résultats des fonctions de test unimodales a 1000 dimensions (F1-F7) 126
Résultats des fonctions de test multimodales a 1000 dimensions (F8-F13) . . . 127
Résultats des fonctions de référence multimodales a dimension fixe (F14-F22) 128
Hyperplan optimal dans une machine a vecteurs de support 130
Schéma de codage des individus MVGWO pour I'optimisation de SVM et la
sélection d’attributs (FARIS, MIRJALILI et ALJARAH,2019b) 132
Courbe de convergence basé sur l'exactitude pour BreastCancer, Blood, et
Diabetes respectivement Lo Lo L 137
Courbe de convergence basé sur l'exactitude pour Heart, Hepatitis, et Liver,
respectivement L 138
Courbe de convergence basé sur I’exactitude pour Parkinson, Lymphography,

et Vote, respectivement Lo o Lo 138
Courbe de convergence basé sur 1'exactitude pour Wine, Zoo, et Sonar, res-
pectivement 139
Courbe de convergence basé sur I'exactitude pour Exactly, Inosophere, et Breas-
tEW, respectivement Lo 139
Un modele simple de RNN (RASHID, ABBAS et TUREL,2019) 145

xiii

Liste des tableaux

5.1 Parametres initiaux des algorithmes d’optimisation 69
5.2 Les ensembles de données de classification 74
53 Lesfonctionsdetest 74
5.4 Résultats de I’exactitude de la classification 75
5.5 Résultats de I'exactitude de la classification 76
5.6 Résultatsde MSE e 77
5.7 Comparaison des algorithmes en terme de F-mesure, MCC, GMEAN, EN-

TROPIEet MSE 80
5.8 Classements moyens des algorithmes (le test de Friedman) 81
6.1 Résumé des ensembles de données de classification 92
6.2 Les fonctions d’optimisation 93
6.3 Les résultats statistiques des algorithmes PLMVO et MVO avec 15 fonctions

detest. 94
6.4 Les résultats statistiques des algorithmes PLMVO et PSO avec 15 fonctions de

test . .o 94
6.5 Résultats de I'exactitude de la classification 96
6.6 Résultatsde MSE 97
6.7 Classement moyen des algorithmes en fonction de 1’exactitude moyenne (test

de Friedman) 101
6.8 Classement moyen des algorithmes en fonction de de la meilleure exactitude

(testde Friedman) 101
6.9 Classement moyen des algorithmes en fonction de de la plus mauvaise exac-

titude (test de Friedman) L. 101
6.10 L'ensemble de données utilisé pour la prédiction des logiciels malveillants

pourLinux 103
6.11 Lamatricede confusion 105
6.12 Comparaison des résultats des algorithmes d’apprentissage automatique sans

la sélection d’attributs Lo 105
6.13 Comparaison des résultats des algorithmes d’apprentissage automatique avec

la sélection d’attributs 106
7.1 Les modifications de l'algorithme GWO 112
7.2 Les hybridations de l'algorithme GWO 113
7.3 Résultats des fonctions de test unimodales a 30 dimensions (F1-F7) 119
7.4 Résultats des fonctions de test multimodales a 30 dimensions (F8-F13) 120
7.5 Résultats des fonctions de test unimodales a 100 dimensions (F1-F7) 120
7.6 Résultats des fonctions de test multimodales a 100 dimensions (F8-F13) . . . 120
7.7 Résultats des fonctions de test unimodales de 500 dimensions (F1-F7) 121
7.8 Résultats des fonctions de test multimodales de 500 dimensions (F8-F13) . . 121
7.9 Résultats des fonctions de test unimodales de 1000 dimensions (F1-F7) 121
7.10 Résultats des fonctions de test multimodales de 1000 dimensions (F8-F13) . . 122

7.11 Résultats des fonctions de test multimodales a dimension fixe (F14-F23) . . . 122

Xiv

7.12
7.13
7.14
7.15
7.16
7.17

7.18

7.19

7.20

Les ensembles de données de classification 133
Résultats de 'architecture 1 134
Résultats de 'architecture2 134
Meilleurs résultats obtenus sur la base de l'architecture1 136
Meilleurs résultats obtenus sur la base de l’architecture2 140
Valeurs p du test de Wilcoxon des résultats de la classification MVGWO par

rapport aux autres algorithmes (p >=0,05). 141
Comparaison entre MVGWO et la recherche de grille pour 1'optimisation des

parametresduSVM L L 142
L’ensemble de données utilisé pour la prédiction d’anomalies dans le réseau

TIoT . . e 148
Analyse des performances avec SMOTE et sans SMOTE 148

Liste des abréviations

XV

KDP Knowledge Discovery Process
KDD Knowledge Discovery in Databases
IR Information Research

DE Differential Evolution

BA BAT

BAT-SDE AUTO-ADAPTATIF HYBRIDE BAT
PSO Particle Swarm Optimization
MVO Multi-Verse Optimizer

MFO Moth-Flame optimization

WOA Whale Optimization Algorithm
PMVO HYBRID PSO-MVO

PLMVO HYBRID PSO-LMVO

MVGWO HYBRID GWO-MVO

HC Hill Climbing

GP Genetic Programming

ES Evolution Strategy

EP Evolutionary Programming

ACO Ant colony Optimization

TS Tabu search

AIS Artificial Immune System

FA Firefly algorithm

LM Levenberg-Marquardt

BBO Biogeography-Based Optimiser
MFO Moth Flame Optimizer

IMBO Improved monarch butterfly optimization

GCMBO IMBO using Greedy strategy and self-adaptive Crossover operator

GWO Grey Wolf Optimizer

LPSONS Hybrid Particle Swarm Optimization, Mantegna Lévy flight and neighborhood search
HACPSO Hybrid Accelerated Cuckoo Particle Swarm Optimization

APSO Adaptive Particle Swarm Optimization
GSA Gravitational Search Algorithm

SSD Social Ski Driver

RS Random search

SEOA Social Emotional Optimization Algorithm
FOA Forest Optimization Algorithm

SCA Sine Cosine Algorithm

ALO Ant Lion Optimizer

CSO Competitive Swarm Optimizer

BGSA Binary Gravitational Search Algorithm
NFL No-Free-Lunch

jDE Self-adaptive Differential Evolution
HBA Hybrid BAT Algorithm

ABC Artificial Bee Colony Algorithm

XVi

CGWO
MGWO
BGWO
PGWO
IGWO
CS
FFNN
ANN
ReLU
MLP
RBF
DBN
RNN
DNN
CNN
LSTM
BP
MSE
MCC
G-mean
FS

ML
SVM
J48
MaxEnt
MNB
SMOTE
ENN
GPU
CPU
Avg
STD
Best
Worst
CPU time

Chaotic GWO

Modified GWO

Binary GWO

Power GWO

Intelligent GWO

Cuckoo Search

Feed-Forward Neural Network
Artificial Neural Network
Rectified Linear Units

Multilayer Perceptron

Radial Basis Function

Deep Belief Network

Recurrent Neural Network

Deep Neural Networks
Convolutional Neural Network
Long short-term memory
Backpropagation

Mean Squared Error

Matthews Correlation Coefficient
Geometric Mean

Feature Selection

Machine Learning

Support Vector Machine
Decision Tree Algorithm
Maximum

Multinomial / Multimodal Naive Bayes
Synthetic Minority Oversampling Technique
Extended Nearest Neighbor
Graphics Processing Unit
Central Processing Unit

Average value (la valeur moyenne)
Standard Deviation (1'écart type)
Best value (la meilleure valeur)
Worst Value (la pire valeur)
Temps de traitement

Introduction

L’extraction des connaissances (KDD) et 1’exploration de données (datamining) est un
domaine interdisciplinaire axé sur les méthodologies permettant d’extraire des connais-
sances utiles a partir de données. La croissance rapide et continue des données en ligne due
a I'Internet et l'utilisation généralisée des bases de données a créé un immense besoin de
méthodologies de I'extraction de connaissance. Le défi de 1’extraction des connaissances
a partir des données s’appuie sur la recherche dans les statistiques, les bases de données,
la reconnaissance de formes, l'apprentissage automatique, la visualisation des données,
I'optimisation et le calcul haute performance, pour fournir des solutions avancées de
business Intelligente.

L’extraction de connaissances a partir des Données (ECD). L'ECD, ot Knowledge Discovery
in databases en anglais, est le processus de découverte de connaissances utiles a partir d'une
collection de données. Plus précisément, I'ECD est un “processus non trivial d’identification
dans les bases de données de structures inconnues, valides et potentiellement exploitables”
(FAYYAD, PIATETSKY-SHAPIRO et SMYTH, 1996). Cette technique d’extraction de connais-
sances largement utilisée est un processus qui comprend quatre phases : acquisition et
stockage des données, prétraitement des données (la préparation, la sélection et le nettoyage
des données), I'exploration de données (datamining), post-traitement (I'intégration des
connaissances préalables sur les ensembles de données et 'interprétation de solutions a
partir des résultats observés). Nos travaux se situent principalement au niveau de 1'étape
deux et I'étape trois : le prétraitement et ’exploration des données (fouille de données).
Lors de I’extraction de connaissance, dans laquelle des modeles inconnus doivent étre dé-
couverts, ’analyse peut étre tres complexe en raison de la nature des données manipulées.
C’est ce qui est au cceur de I'exploration de données. Une fagon de résoudre les problemes
d’exploration de données consiste a les modéliser comme des problémes d’optimisation
combinatoire. L'exploration de données peut se décomposer en trois tdches majeures : la
discrimination (classification supervisée), la catégorisation ou le clustering et la recherche
de regles d’association. Ces taches peuvent, par leur formalisation, étre modélisées en
problémes d’optimisation combinatoire. A partir de la formalisation des tiches d’extraction
de connaissances en problemes d’optimisation combinatoire, il faut mettre en ceuvre des
méthodes de résolution (JOURDAN, 2003). Habituellement, les méthodes utilisées pour
résoudre ces problemes sont de trois types : les méthodes exactes, les méthodes heuristiques
spécifiques a une tache et les métaheuristiques.

Un probleme d’optimisation combinatoire est généralement caractérisé par un ensemble
fini de solutions admissibles (D) (espace de décision), et une fonction objective (f) asso-
ciant une valeur a chaque solution admissible. Par conséquent, un probléme d’optimisation
consiste & minimiser ou maximiser la fonction objective (f) sous un ensemble de contraintes
permettant de décrire I’ensemble de solutions réalisables.

I existe de nombreux exemples de problemes d’optimisation combinatoire (GAREY, 1979).
En effet, ils peuvent se retrouver dans la gestion de la production, la conception de réseaux
de télécommunications, la bio-informatique, la programmation etc. Nous nous intéressons
dans notre theése aux problemes relatifs a I’extraction de connaissances et a leur modélisa-
tion en problémes d’optimisation.

Cette thése a pour but de réunir les forces des métaheuristiques et des méthodes bio-
inspirées ainsi que le datamining pour effectuer I'extraction des connaissances robustes, et
d’optimiser les méthodes existantes.

Nous nous sommes particulierement intéressés a la réalisation et la conception des
algorithmes basés sur ’hybridation des algorithmes évolutionnaires et les algorithmes d’in-
telligence des essaims pour l'optimisation globale et pour résoudre différents problémes
d’extraction de connaissances : la sélection d’attributs, et 'optimisation des algorithmes
de classification a savoir les réseaux de neurones a propagation avant, les réseaux de
neurones récurrents et les machines a vecteurs de support (SVM) appliqué sur plusieurs
domaines afin d’augmenter 1'exactitude de la classification. Ces deux problemes peuvent
étre modélisés comme des problemes d’optimisation NP-difficiles.

Dans notre premiére approche, une nouvelle hybridation entre 1’évolution différentielle
auto-adaptative et ’algorithme des chauves-souris a été proposée pour entrainer les réseaux
de neurones propagation avant. L'algorithme proposé est comparé a I'évolution différen-
tielle et I'algorithme des chauves-souris pour résoudre un ensemble de cinq fonctions de
tests afin de trouver la solution globale. Dans la deuxiéme expérience, la performance de
I'approche proposée a été comparée a huit algorithmes utilisés pour entrainer les réseaux
de neurones dans la littérature. La comparaison a été étalonnée et évaluée a l'aide de
sept ensembles de données biomédicales standard provenant des dépdts d’ensembles de
données (UCI) et d'un grand ensemble de données de détection des fraudes par carte de
crédit. Cet ensemble de données est tres déséquilibré ; la méthode combinée SMOTE + ENN
a été utilisée pour résoudre ce probleme en tant que technique de prétraitement utilisée
pour traiter des ensembles de données déséquilibrées. L'ensemble de données étant tres
bruyant; 1’élimination récursive des caractéristiques avec validation croisée est utilisée
comme méthode de sélection des caractéristiques.

Dans les réseaux de neurones, optimiser le nombre de neurones cachés et les poids de
connexion simultanément, il est considéré comme une tache difficile. En effet, la modifi-
cation des neurones cachés affecte considérablement la structure d’un réseau de neurones
et augmente la difficulté du processus d’entrainement qui nécessite des considérations
spéciales. L'optimisation de 1'essaim de particules (PSO) est 1'un des algorithmes méta-
heuristiques les plus importants en raison de sa vitesse de convergence et sa simplicité
de mise en ceuvre. L'optimisation de multi-verse (MVO) basée sur le vol de Lévy est un
algorithme récent et rapide qui peut éviter la convergence prématurée et peut atteindre
un meilleur équilibre entre I'exploration et I’exploitation. Dans notre deuxieme approche,
nous avons proposé une nouvelle méthode de formation basée sur l'optimisation des
essaims de particules hybrides avec I'optimisation de multi-verse basée sur le vol de Lévy
nommé (PLMVO) pour optimiser le nombre de neurones cachés et les poids de connexion
simultanément dans les réseaux de neurones a propagation avant. L’algorithme hybride est
utilisé pour mieux chercher dans I'espace des solutions qui prouve son efficacité a réduire
les problemes de piégeage en minima locaux. Pour évaluer l’algorithme proposé, nous
avons utilisé trois séries expérimentales, dans la premiere, I’algorithme PLMVO proposé
est comparé aux algorithmes MVO et PSO pour résoudre un ensemble de 15 fonctions de
tests afin de trouver la solution globale. Dans la deuxieme expérience, la performance de
I"approche proposée a été comparée a cinq techniques utilisées pour entrainer les réseaux
de neurones dans la littérature. La comparaison a été évaluée a I'aide de neuf ensembles
de données biomédicales. Dans la troisiéme expérience, le PLMVO-MLP proposé est utilisé
pour prédire les fichiers exécutables malveillants de Linux.

Dans la troisiéme approche, un nouvel algorithme hybride nommé MVGWO basé sur
I'optimiseur loup gris en exploitation avec I’optimiseur multi-vers en exploration en posant
un coefficient d’équilibre est proposé pour résoudre des problemes d’optimisation a grande
dimension. L'algorithme hybride utilise pour fusionner les avantages et pour surmonter

les problemes de ces deux algorithmes afin d’atteindre un optimum global. Une version
améliorée de GWO basée sur un poids d’inertie adaptatif est proposée pour améliorer la
capacité de recherche globale de cet algorithme et pour maintenir la diversité des solutions.
Pour évaluer l'algorithme proposé, nous avons utilisé deux expériences. Dans la premiere,
vingt-deux fonctions de test de différents types et dimensions sont utilisées et le MVGWO
est comparé au GWO et au MVO. Dans la deuxieme expérience, MVGWO est utilisé pour la
sélection d’attributs et I'optimisation des parametres du SVM afin d’obtenir une exactitude
de classification élevée. Les résultats de MVGWO-SVM sont comparés a la recherche de
grille et & quatre algorithmes métaheuristiques : GWO, MVO, WOA et BAT en utilisant
quinze ensembles de données étiquetés.

Dans la quatriéme approche, un modéle basé sur les réseaux de neurones récurrents
optimisé par l'algorithme MVGWO nommé (M-RNNMVGWO) a été proposé pour la
prédiction des anomalies dans le réseau IoT en utilisant la technique de sur-échantillonnage
des minorités synthétiques (SMOTE). Les approches proposées sont simulées avec des
données DS20S et les performances sont comparées a d’autres approches d’apprentissage
automatique. Les parametres d’évaluation tels que la précision, la sensibilité, la spécificité,
et la F-mesure sont utilisés pour confirmer la supériorité de notre approche proposée.

Ce mémoire s’articule en cinq parties.

Le premier chapitre fournit d’abord quelques informations de base sur les problémes
d’optimisation combinatoires et leurs méthodes de résolution.

La deuxieme partie se concentre sur les métaheuristiques classées en deux groupes : les
méthodes a population de solutions et les méthodes a solution unique. Ensuite, la derniere
partie du chapitre fournit quelques informations sur les méthodes d’hybridation des
algorithmes métaheuristiques. Dans ce but on a présenté deux taxinomies, elles permettent
de comprendre quels sont les différents moyens d’hybridation possibles et comment ceux-ci
ont été exploités dans la littérature scientifique.

Dans le deuxiéme chapitre, nous décrivons le processus de l'extraction de connais-
sances, nous introduirons une présentation générale de chaque étape, et nous détaillerons
ensuite plus précisément 1’étape de datamining (I’exploration de données).

Le troisieme chapitre, présente un apercu général sur les réseaux de neurones, 1'ap-
prentissage profond et les réseaux de neurones profonds.

Le quatrieme chapitre fournit d’abord une description de la tache de classification et
une présentation des méthodes de classification standard. Ensuite, il aborde 'utilisation des
métaheuristiques pour optimiser ces méthodes de classification et nous proposons ensuite
de montrer comment la sélection d’attributs peut étre réalisée avec les métaheuristiques.

Dans le cinquieme chapitre, nous présentons nos approches proposées basées sur
I'hybridation des métaheuristiques pour la sélection d’attributs et pour optimiser quelques
algorithmes de classification a savoir les réseaux de neurones et les machines a vecteurs de
support (SVM) appliqué sur plusieurs domaines.

Nous terminerons ce mémoire par différentes perspectives de recherche qui nous semblent
intéressantes pour continuer ce travail.

Chapitre 1

Meétaheuristiques et bio-inspirations

1.1 Introduction

Les problemes d’extraction de connaissances peuvent étre formulés comme des pro-
blemes d’optimisation combinatoire or, de nombreux problemes d’optimisation combina-
toire sont NP-difficile et ne pourront pas étre résolus de maniére exacte dans un temps
raisonnable. Des méthodes dédiées a ce genre de probleme. comme les métaheuristiques
peuvent étre utilisées.

L’extraction de connaissances en particulier la phase de datamining implique la construc-
tion et ’évaluation de nombreux modeéles, certains de ces modeéles semblent étre trés bons
prédicateurs, tandis que certains modéles peuvent étre mauvais. La qualité de ces modeles
peut étre mesurée en fonction du contexte et de 1’objectif du processus de 'extraction de
connaissances. Une approche d’optimisation considérerait chaque modele comme une so-
lution possible du probléme de datamining qui consiste a expliquer les relations entre les
données. La qualité d"une solution dépend de la qualité du modele.

Ce chapitre, fournit d’abord quelques informations de base sur les problemes d’optimisa-
tion combinatoires et leurs méthodes de résolution.

La deuxieme partie se concentre sur les métaheuristiques classées en deux groupes : les
méthodes a population de solutions et les méthodes a solution unique. Ensuite, la derniere
partie du chapitre fournit quelques informations sur les méthodes d’hybridation des algo-
rithmes métaheuristiques. Dans ce but on a présenté deux taxinomies, elles permettent de
comprendre quels sont les différents moyens d’hybridation possibles et comment ceux-ci
ont été exploités dans la littérature scientifique.

1.2 Les problemes combinatoires

1.2.1 Optimisation

Un probleme d’optimisation peut étre définit par :
D, un ensemble de solutions qui représente 1’espace de recherche (espace de décision).
F, une fonction objective qui associe a chaque solution une valeur représentative de sa qua-
lité (la plupart du temps une valeur réelle) (DHAENENS, 2016).
Selon le probleme, les solutions S € D peuvent étre de natures différentes et peuvent étre
définies par des contraintes déterminant des solutions réalisables. Dans le cas d'un ensemble
fini de solutions discrétes D, on parle alors de problemes d’optimisation combinatoire.
Par conséquent, un probleme d’optimisation consiste a minimiser ou maximiser un critere
nommé fonction objectif donné sous un ensemble de contraintes permettant de décrire 1’en-
semble de solutions réalisables (DHAENENS, 2016).
Un probléme de minimisation peut étre définis par :

Min f(S)

6 Chapitre 1. Métaheuristiques et bio-inspirations

SeD

Un probléme de maximisation peut étre définis par :

Max f(S)
SeD

La grande variété des problemes liés a 1’optimisation combinatoire est due aux nom-
breuses applications. En effet, les problémes d’optimisation combinatoire peuvent se retrou-
ver dans, la conception de réseaux de télécommunications, la bio-informatique et 1'extrac-
tion de connaissances (DHAENENS, 2016), etc..

1.2.2 Résolution

La résolution d’un probleme d’optimisation combinatoire nécessite trois points princi-
paux :

— Définition de I’ensemble des solutions réalisables;

— Détermination de la fonction objective a optimiser;

— Choix de la méthode d’optimisation.
Les deux premiers points concernent la modélisation du probleme, tandis que le troisieme
concerne la résolution du probleme. Pour définir ’ensemble des solutions réalisables, il est
nécessaire d’exprimer 1’ensemble des contraintes du probléme qui nécessite la connaissance
du probleme étudié et de son domaine d’application.
De méme, la détermination de la fonction objective nécessite également la connaissance du
probleme, car il est nécessaire de pouvoir qualifier ce que serait une bonne solution. Enfin,
le choix de la méthode d’optimisation dépendra souvent de la complexité du probleme. En
effet, selon sa complexité, il peut ou non étre possible de résoudre le probléme de maniere
optimale (DHAENENS, 2016).

1.3 Méthodes d’optimisation

Le but des méthodes d’optimisation est de trouver une solution optimale ou quasi opti-
male avec un faible effort de calcul. L'effort d"une méthode d’optimisation peut étre mesuré
comme le temps (temps de calcul) et I'espace (mémoire d’ordinateur) consommé par la mé-
thode. Pour de nombreuses méthodes d’optimisation, et en particulier pour les méthodes
heuristiques, il existe un compromis entre la qualité de la solution et I'effort, comme avec
l'augmentation de l'effort, la qualité de la solution augmente (DHAENENS, 2016).

Nous pouvons distinguer deux types différents de méthodes d’optimisation : les méthodes
d’optimisation exactes qui garantissent de trouver une solution optimale et les méthodes
d’optimisation heuristiques ot nous n’avons aucune garantie qu'une solution optimale est
trouvée. Le choix de la méthode a utiliser pour résoudre un probléme d’optimisation com-
binatoire peut dépendre de sa complexité. Dans le cas de problemes de classe P, un algo-
rithme d’optimisation polynomiale peut étre utilisé pour résoudre le probleme de manieére
optimale. En cas de problémes de classe NP pas d’algorithme d’optimisation polynomiale
est trouvé, et deux approches sont possibles (voir figure 1.1) (DHAENENS, 2016).

Habituellement, une méthode d’optimisation exacte est la méthode de choix si elle peut ré-
soudre un probleme d’optimisation avec un effort qui croit polynomialement avec la taille
du probleme. La situation est différente si les problemes sont NP-difficiles car les méthodes
d’optimisation exactes nécessitent alors un effort exponentiel (DHAENENS, 2016). Ensuite,
méme les instances de probleme de taille moyenne deviennent souvent insolubles et ne

1.4. Les métaheuristiques 7

Mathodes de résolution de problames d'optimisation
combinataira

Méthodes Classiques

Méthodes hybrides
Méthodes exactes Méthodes Approchdes
/ B \\ j \
Programmation Relaxatbon
Dynamique B&B Ingrangienie Haurlstigues Métaheuristigues

FIGURE 1.1 — Vue globale des approches de résolution des problémes d’opti-
misation combinatoire(TALBI, 2002)

peuvent plus étre résolues a I'aide de méthodes exactes. Pour surmonter ces problemes,
il est recommandé d’utiliser des méthodes heuristiques pour trouver de bonnes solutions
dans un délai raisonnable, méme si l'optimalité n’est pas garantie (ROTHLAUF, 2011). Parmi
ces méthodes, il existe soit des méthodes heuristiques spécifiques développées pour un pro-
bleme dédié, soit des métaheuristiques qui proposent des schémas de résolution génériques
pouvant potentiellement étre adaptés a tout type de probleme d’optimisation. En effet, une
métaheuristique peut étre définie comme un algorithme congu pour résoudre approxima-
tivement un large éventail de problemes d’optimisation difficile sans étre profondément
adapté a chaque probleme (DHAENENS, 2016).

Le but d"une telle métaheuristique est d’explorer efficacement 1’espace de recherche, sans
énumérer toutes les solutions. Ensuite, une métaheuristique réussira sur un probléme d’op-
timisation donné si elle peut fournir un équilibre entre I’exploration (diversification) et 1’ex-
ploitation (intensification) (HAMOU, AMINE et BOUDIA, 2013). Une exploration est néces-
saire pour identifier les régions de I’espace de recherche avec des solutions de haute qualité.
L’exploitation est importante pour intensifier la recherche dans ces régions prometteuses.
Les principales différences entre les métaheuristiques existantes sont dans la maniére parti-
culiere dont elles tentent d’atteindre cet équilibre.

La modélisation est donc une phase importante dans I’analyse d"un probleme, car les pro-
blemes de classe P ou NP ne peuvent pas étre abordés exactement de la méme manieére. En
outre, la définition de la fonction objective est cruciale mais peut-étre difficile a réaliser, en
particulier pour les problemes du monde réel. (BARTZ-BEIELSTEIN, 2006).

1.4 Les métaheuristiques

Les métaheuristiques d’optimisation sont des algorithmes stochastiques généraux qui
permettent d’approximer les solutions de problemes d’optimisation difficiles et réels, qui
sont souvent des problemes NP-difficiles pour lesquels on ne connait pas des méthodes
classiques plus efficaces pour les résoudre dans un temps raisonnable.

Les métaheuristiques peuvent étre classifiées en deux classes : les métaheuristiques a so-
lution unique et les métaheuristiques a population de solutions (GUENDOUZ, AMINE et

8 Chapitre 1. Métaheuristiques et bio-inspirations

HAMOU, 2017) (voir figure 1.2). Dans ce chapitre, nous décrirons brievement les méthodes
associées a chacune de ces classes.

1.4.1 Concepts des métaheuristiques

Il existe deux concepts de base communs a tout type de métaheuristique : la représen-
tation des solutions traitées par des algorithmes et la définition de la fonction objective qui
guidera la recherche.

Représentation

La conception de tout métaheuristique itérative nécessite un encodage (représentation)
d’une solution. C’est une question de conception fondamentale dans le développement de
la métaheuristique. L'encodage joue un role majeur dans 1'efficience et 1’efficacité de toute
métaheuristique. En effet, pour un probléme donné, plusieurs encodages peuvent étre utili-
sés(DHAENENS, 2016).

Chaque codage peut étre manipulé différemment par la métaheuristique a travers des mé-
canismes d’optimisation (opérateurs, fonction d’évaluation, etc.) qui peuvent étre plus ou
moins efficaces pour le probleme étudié. De plus, 'efficacité d"une représentation est égale-
ment liée aux opérateurs de recherche appliqués sur cette représentation (voisinage, recom-
binaison, etc..). En effet, lors de la définition d"une représentation, il faut garder a l'esprit
comment la solution sera évaluée et comment les opérateurs de recherche fonctionneront.
Concernant les probléemes d’exploration de données, de nombreux encodages ont été pro-
posés(DHAENENS, 2016).
Parmi les plus céléebres, on peut citer :
— Codage binaire : la solution est représentée par un vecteur de n valeurs binaires,
représentant les variables de décision du probléme. L'espace de recherche est de taille
2",

— Vecteur de valeurs discreétes : les variables ne sont pas limitées aux valeurs binaires,

mais elles peuvent prendre des valeurs discreétes.

— Permutation : la solution est décrite par une permutation de taille n. Chaque permu-

tation décode une solution unique. L'espace de solution est représenté par I’ensemble
de toutes permutations de taille (n —1)!.

— Vecteur de valeurs réelles : les variables peuvent avoir des valeurs réelles.

Enfin, il est important de rappeler que l'efficacité de tout codage est fortement liée aux
mécanismes qui seront appliqués a ce codage spécifique.

Fonction objectif

La détermination du critére d’optimisation - qui mesure la qualité des solutions - est
cruciale car la performance du processus d’optimisation en dépend. En effet, développer
une méthode efficace qui n’utilise pas le bon critéere nous conduira a obtenir la bonne
réponse a la mauvaise question. L'une des phases les plus difficiles pour transformer
une tache d’extraction de connaissances en un probleme d’optimisation est de définir ce
critere d’optimisation qui peut-étre soit spécifique a la tache de datamining, soit dépendant
de l'application. Une fois le critére d’optimisation défini, la fonction objective doit étre
formulée(DHAENENS, 2016).

La fonction d’objectif f formule le but a atteindre. Elle associe a chaque solution de l'es-
pace de recherche une valeur réelle qui décrit la qualité de la solution, f : S — R. Elle

1.4. Les métaheuristiques 9

représente alors une valeur absolue et permet un ordonnancement complet de toutes les
solutions de I'espace de recherche. A partir de 'espace de représentation des solutions R,
certaines fonctions de décodage d peuvent étre appliquées, d : R — S, pour générer une
solution qui peut étre évaluée par la fonction f. La fonction objective est un élément impor-
tant dans la conception d"une métaheuristique. Elle va guider la recherche vers de "bonnes"
solutions de I'espace de recherche. Si la fonction objective est mal définie, elle peut conduire
a des solutions inacceptables, quelle que soit la métaheuristique utilisée(DHAENENS, 2016).
Par conséquent, l'utilisation de méthodes d’optimisation, en particulier la métaheuristique,
requiert une attention particuliere sur la maniere de définir les criteres d’optimisation pour
traiter les problemes de 'extraction de connaissances(DHAENENS, 2016).

Analyse de performance

Les métaheuristiques sont des méthodes stochastiques et 1’analyse des performances
de ces méthodes est une tache nécessaire doit étre effectuée de maniére équitable. Une
approche théorique n’est généralement pas suffisante pour évaluer une métaheuristique
(BARTZ-BEIELSTEIN, 2006). Une attention particuliere doit étre portée a la comparaison de
plusieurs métaheuristiques.

Cette section aborde quelques lignes directrices pour évaluer expérimentalement une méta-
heuristique et / ou comparer les métaheuristiques de maniere rigoureuse.

Pour évaluer les performances d 'une métaheuristique de maniere rigoureuse, les trois étapes
suivantes doivent étre prises en compte(DHAENENS, 2016).

Conception expérimentale : dans la premiere étape, les objectifs des expériences (la qua-
lité des solutions, le temps de calcul, la robustesse), les instances sélectionnées (benchmarks
réels, benchmarks aléatoires) et les facteurs doivent étre définis(DHAENENS, 2016).

Mesures de performance : dans la deuxiéme étape, les mesures de performance doivent

étre identifiés. Apres avoir exécuté les différentes expériences, une analyse statistique est ap-
pliquée aux résultats obtenus. Cette analyse statistique doit étre utilisée pour effectuer I'éva-
luation des performances des métaheuristiques. Par conséquent, des tests statistiques sont
effectués pour estimer si la confiance des résultats est valide. L'analyse des performances
doit étre effectuée avec des algorithmes d’optimisation de I’état de 1’art qui sont dédiés au
probleme.
Pour évaluer le temps de calcul, la mesure peut étre, par exemple, le temps nécessaire pour
atteindre la solution optimale. La difficulté avec cette mesure est que le temps de calcul
dépend de I’architecture de I’ordinateur et les résultats de la littérature sont difficiles a com-
parer.

Rapports : les résultats sont présentés de maniére globale, et une analyse est effectuée
en fonction des objectifs définis. Un autre point important est de garantir la reproductibilité
des expériences de calcul.

Une difficulté supplémentaire pour évaluer les performances de la métaheuristique face
a des problemes d’exploration de données (datamining) est de mesurer 'intérét de la so-
lution, c’est-a-dire les connaissances extraites, lorsqu’elles sont appliquées a de nouvelles
données(DHAENENS, 2016).

I1 peut étre intéressant de différencier deux points de vue pour ’analyse des performances :

— Point de vue datamining : le but de I’analyse de performance est d’évaluer 1'intérét

des connaissances extraites et, en particulier, sa capacité a traiter des données incon-
nues)(DHAENENS, 2016).

10 Chapitre 1. Métaheuristiques et bio-inspirations

Métaheuristiques

Métaheuristigues &

Métaheuristiques population de
& solution unique (2.1} solutlons (2.2}

[
/ Les systémes immunitaires
artificiels
l Algorithmes Génétiques {2.3) |

Mithada da descanta

algorithme & essalm

Recharche Tabow 3
colonie de fourmis da particulas
Recherche Locale m

FIGURE 1.2 - Classification des métaheuristiques (TALBI, 2002)

— DPoint de vue optimisation : le but de 1’analyse de performance est d’évaluer la capa-
cité de la méthode a explorer 'espace de recherche et a trouver une solution de bonne
qualité (la plupart du temps par rapport a d’autres méthodes)(DHAENENS, 2016).

1.4.2 Classification des métaheuristiques
Les métaheuristiques a solution unique / recherche locale

Tout en résolvant les problemes d’optimisation, les métaheuristiques basées sur une so-
lution unique (S-métaheuristiques) améliorent une solution unique.
La S-métaheuristique applique la procédure de génération et de remplacement a une so-
lution unique. Au stade de la génération, un ensemble de solutions candidates est généré
a partir de la solution actuelle. Dans la phase de remplacement, une solution appropriée,
parmi l’ensemble généré, est choisie pour remplacer la solution actuelle. Ce processus se
poursuit jusqu’a 1’obtention d"un résultat satisfaisant (solution de bonne qualité).
Plusieurs métaheuristiques de recherche locale et leurs extensions ont été proposées. Le
principal concept commun a ces méthodes est 1’application d"une transformation locale sur
la solution actuelle, appelée opérateur de voisinage.
Ainsi, ce concept est défini dans cette section, puis plusieurs méthodes de recherche locales
bien connues sont présentées.
Le voisinage d’une solution
La définition du voisinage est une étape requise pour la conception de toute S-métaheuristique.
La structure du voisinage joue un role crucial dans la performance d"une S-métaheuristique.
Si la structure du voisinage n’est pas adaptée au probleme, toute métaheuristique S ne ré-
soudra pas ce probléme (DHAENENS, 2016).
Le voisinage de s, désigné par N(s), est 'ensemble des solutions qui peuvent étre obtenues
a partir de s en utilisant une transformation locale (ou élémentaire) appelée I'opérateur de
voisinage N (ROTHLAUF, 2011). Une transformation sera considérée comme locale (ou élé-
mentaire) si elles ne perturbent pas globalement la structure de la solution qu’elles changent
(FouIiLHOUX, 2015).

N:s— N(s)

Pour illustrer cette notion de voisinage, considérons un probleme de voyageur de commerce
avec sept villes a visiter une seule fois (A, B, C, D, E, F et G). Les solutions peuvent étre en-
codées avec la liste ordonnée des villes visitées. Plusieurs opérateurs de voisinage peuvent
étre définis :

— déplacer : déplacer la position d"une ville;

1.4. Les métaheuristiques 11

— échange : échange la position de deux villes;
— inverse : inverse une sous-séquence de villes.
Soit une solution initiale: ADCBEGF:

— en déplacant F, on peut obtenirs1: ADCBEFG;

— en échangeant A et E, on peut obtenirs2: ED CB A GF;

— en inversant la sous-séquence D C B, on peut obtenir s3: ABCDEGF

En plus de cette définition du voisinage, il faut définir le concept d’optimum local.

Local optimum

Définition

Etant donné un opérateur de voisinage N, une solution s € D est un optimum local si au-
cun de ses voisins n’a une meilleure qualité. Dans un contexte de minimisation, cela peut
s’exprimer par : s est un optimum local, si Vs’ € N(s), f(s) < f(s).

Dans le reste de cette section plusieurs méthodes de recherche locale sont présentées (DHAENENS,
2016).

Les méthodes de descente (Hill Climbing)

La méthode de descente (appelée "hill-climbing") Il commence avec une solution initiale,
explore son voisinage et elle sélectionne ensuite une solution qui améliore strictement la
solution actuelle. Cette sélection peut se faire de différentes maniéres. La solution retenue
peut-étre la premiére solution réalisable qui améliore la fonction objective ou la meilleure
solution réalisable de tout le voisinage (DHAENENS, 2016).

En fonction de ce choix, la méthode est respectivement appelée méthode de descente simple,
descentes itérées ou descente stochastique (DHAENENS, 2016).

Concernant la maniére dont le voisin est sélectionné. Plusieurs stratégies de sélections peuvent
étre envisagées :

— Descente simple (la meilleure amélioration) : dans cette stratégie, le meilleur voisin
est sélectionné parmi I'ensemble du voisinage. Cela nécessite de générer et d’évaluer
de maniere exhaustive tous les voisins de la solution actuelle. L’algorithme s’arréte
donc quand il n’est plus possible d’améliorer la solution. Cette descente simple n’est
intéressante que dans le cas ot le voisinage est suffisamment petit.

— Descentes itérées (La premiere amélioration) : dans cette stratégie, le premier voisin
qui améliore la solution est choisi parmi I’ensemble du voisinage. Cela peut éviter
I'exploration de 1’ensemble voisinage. Cette descente aléatoire évite de visiter systé-
matiquement un voisinage qui serait trop grand.

— Descente stochastique (I’amélioration aléatoire) : plusieurs voisins sont générés et
une sélection aléatoire est effectuée parmi ceux qui améliorent la solution actuelle.

Algorithm 1 Méthode de descente générique

Procédure : ¢ fonction de cout
Variable locale : S solution courante
Choix d’une solution initiale Sy;
Solution courante S < Sy;
(a.) Génération des condidats par voisinage;
Choix du meilleur candidat C;
if p(C) < ¢(S) then

S+ C;

Aller en (a.);
end if
return S

La méthode de descente est 1'une des méthodes les plus simples trouvées dans la littéra-
ture; cependant, il présente une limitation importante. Il peut se retrouver facilement piégé

12 Chapitre 1. Métaheuristiques et bio-inspirations

dans un minimum local et encourage donc ’exploitation et non 1’exploration. Afin de sur-
monter ce probléme certains mécanismes ont été proposés pour échapper a I’optimum local.
IIs conduisent a la proposition d’autres méthodes de recherche locale, telles que la recherche
taboue (TS), le recuit simulé et autres (DHAENENS, 2016).

Le recuit simulé (Simulated Annealing)

Le recuit simulé (FREDEERIC et al., 2017) est la premiére métaheuristique a proposer un pro-
cessus permettant d’échapper aux optima locaux. Il s’agit d"'une méthode inspirée du pro-
cessus de recuit pratiqué en métallurgie, qui consiste a fondre le métal a haute température
pour étre ensuite refroidi jusqu’a I'obtention d’un état stable, appelé équilibre thermodyna-
mique. Cet état stable peut étre "bon" ou "mauvais", c’est-a-dire avec une énergie minimale
ou non. En effet, lorsque le métal est rapidement refroidi, des déformations peuvent appa-
raitre, alors qu'un métal "parfait” est obtenu si le processus de refroidissement est adéquat.
La température correspond au parametre de controle de la stabilité du métal (FREDEERIC
etal., 2017).

Par analogie, sur la base d"une solution aléatoire s , une solution $ est générée dans le voisi-
nage de s. Si cette solution voisine améliore la solution actuelle, s est mis a jour. Sinon, $§ peut
également étre accepté selon la probabilité exp(A—Tf). Cette probabilité permet d’accepter une
solution dégradante dans le cas ot la solution § présente une faible dégradation exp(Af) par
rapport a s ou lorsque la température T est suffisamment élevée. L'exploration est donc pré-
férable. Cependant, cette probabilité devient plus faible lorsque 1’on sait que la température
suit une fonction décroissante et est actualisée a chaque itération, ce qui rend l'exploitation
plus appropriée.

La recherche Taboue (Tabu Search)

Algorithm 2 Le recuit simulé

Initialiser la température initiale T
Générer une solution initiale aléatoire s
while le critere d’arrét n’est pas satisfait do
Générer une voisine s/ de s
Evaluer s/
if f(s) < f(s) or exp(A—Tf) > rand(0,1) then
Mettre a jour s avec s/
end if
Mettre a jour la température T
end while
return s

TS a été initialement proposé par Glover (EL GHAZALI, 2009). Le principe est d’accepter,
dans certains cas, des solutions qui semblent moins intéressantes pour éviter de tomber dans
un optimum local. Cette méthode fonctionne d’abord comme 1’algorithme HC. Cependant,
lorsqu’un optimum local est atteint, la méthode accepte un voisin non améliorant (en géné-
ral, la meilleure solution du voisinage) comme la prochaine solution actuelle. Remarquons
que dans ce cas, la solution actuelle a la fin de la recherche peut ne pas étre la meilleure
solution rencontrée lors de la recherche et qu’il faut mémoriser sx comme une meilleure so-
lution. Apres avoir sélectionné un voisin qui semble moins intéressant comme une solution
actuelle, le prochain mouvement peut créer un cycle entre ce voisin et 'optimum local. Pour
éviter de tels cycles, TS interdit de revenir a des solutions récemment visitées a 1’aide d'une
mémoire. Cette mémoire, appelée liste Taboue, peut stocker soit les derniéres solutions vi-
sitées, soit les derniers mouvements visités. Dans ce dernier cas, un mouvement tabou peut
encore étre appliqué s’il permet d’atteindre une meilleure solution que s*. Ce mécanisme
est géré par le critere d’aspiration. La conception de la méthode doit spécifier la gestion de

1.4. Les métaheuristiques 13

la liste Taboue.

Cette méthode ne s’arréte pas d’elle-méme et il faut déterminer un critere d’arrét en fonc-
tion du temps de recherche que l'on s’octroie. Ce critere peut étre, par exemple, la non-
amélioration de la meilleure solution pendant un certain nombre d’itérations ou l’exécution
d’un certain nombre d’itérations (EL GHAZALI, 2009).

Algorithm 3 Méthode générique du Tabou

Procédure : ¢ fonction de cout
Variable locale : S solution courante, Liste Taboue L, meilleure solution M,itération cou-
rante K, Nombre d’iterations N
Paramétrages : Taille de la liste taboue, critére d’aspiration, choix d’une solution initiale
So.
Choix d’une solution initiale Sy;
Solution courante S < Sy;
Meilleure solution M < S;
K+ 0;
while K < N do
K<+ K+1;
Mise a jour de L
Génération des condidats E par opération de voisinage;
C < best(E)
Choix du meilleur candidat C;
if (S) < (M) OU C n’est pas tabou OU C vérife 1’aspiration then
S+ C
else
E«+ E\C
end if
end while
return S

Les métaheuristiques a population de solution

Les métaheuristiques basées sur la population (P-métaheuristique) partagent de nom-
breux concepts communs. Elles peuvent étre considérées comme une amélioration itérative
d’une population de solutions. Tout d’abord, la population est initialisée. Ensuite, une nou-
velle population de solutions est générée. Enfin, cette nouvelle population est intégrée a la
population actuelle a 1’aide de procédures de sélection. Le processus de recherche est arrété
lorsqu’une condition donnée est satisfaite (critere d’arrét) (FREITAS, 2011).

Les métaheuristiques basées sur la population offrent une bonne occasion d’explorer 1'es-
pace de recherche. La plupart de ces approches sont basées sur des analogies avec des
concepts naturels. Les algorithmes de calcul évolutif sont donc inspirées de la théorie de
I'évolution de Darwin et de la capacité de la nature a faire évoluer les étres vivants en
les adaptant a leur environnement. C’est 1’objet de la premiére partie de cette section.
Dans la deuxiéme partie, des algorithmes inspirés de 1'intelligence en essaim sont présentés
(FREITAS, 2011).

Les algorithmes évolutionnaires

Les algorithmes évolutionnistes ce sont des algorithmes de recherche stochastiques qui sont
basés sur des abstractions des processus de 'évolution darwinienne. Les idées de base de ce
paradigme sont les suivantes. Un algorithme évolutif maintient une population d"'individus",
chacun d’entre eux étant une solution candidate a un probleme donné.

14 Chapitre 1. Métaheuristiques et bio-inspirations

Chaque individu est évalué par une fonction objective, qui mesure la qualité de sa solu-
tion candidate correspondante. Les individus évoluent vers dés meilleurs individus par le
biais d"une procédure de sélection basée sur la sélection naturelle, et des opérateurs basés
sur la génétique, par exemple les opérateurs de croisement (recombinaison) et de mutation
(COELLO, 2005). L'algorithme suivant décrit le schéma général des algorithmes évolution-
naires(DHAENENS, 2016).

Algorithm 4 Les approches générales du calcul évolutif

Initialiser la population initiale P;
while critere d’arrét non satisfait do
Sélectionner des parents dans P;
Appliquer les opérateurs de recherche (recombinaison, mutation)
Evaluer les nouvelles individus
construire la prochaine population P;yq
end while

Les algorithmes génétiques (Genetic Algorithm)
Les algorithmes génétiques ont été introduits par John H. Holland au début des années
1960 (HOLLAND, 1962a; HOLLAND, 1962b). La principale motivation pour la création de
l'algorithme génétique était la résolution des problemes d’apprentissage automatique. La
conception d'un tel algorithme nécessite de définir la représentation des solutions (appelée
chromosomes), la stratégie de sélection, les opérateurs de recherche (cross-over et mutation).
L’objectif de la stratégie de sélection est de choisir les individus (appelés parents) qui seront
utilisés pour la construction de la prochaine génération. Ceci est principalement basé sur
les valeurs de la fonction objective des solutions qui représentent leur capacité a répondre
au probleme a résoudre. L'une des spécificités des GA est 'opérateur de croisement (cross-
over) le processus ou de nouveaux individus sont formés a partir des parents. L’objectif est
de partager de bonnes caractéristiques pour obtenir des descendants de meilleure qualité.
Etant donné que dans les premiers GA, les chromosomes étaient principalement codés par
des chaines binaires de longueur fixe, de nombreux opérateurs de croisement classiques
adaptés a cette représentation ont été proposés, tels que le croisement & 1-point (ou plus gé-
néralement le croisement a n-points), le croisement uniforme (HOLLAND, 1962a), etc.
De nos jours, le développement des GA ne se limite pas aux codages de chaines de bits, mais
d’autres représentations ont été proposées pour traiter différents types de problemes d’opti-
misation. Ce sera le cas pour les problémes de 'extraction de connaissances (RECHENBERG,
1965).
Programmation génétique (Genetic Programming)
GP regroupe des approches plus récentes. Elles ont été proposées par Koza au début des
années 1990 (KozA et KOza, 1992). Les GP sont tres similaires aux GA, mais la principale
différence est que les individus sont eux-mémes des programmes. Une représentation arbo-
rescente est utilisée. Les feuilles de I'arbre (appelées terminaux dans les GP) représentent
les variables et les constantes et les nceuds internes représentent les opérations arithmé-
tiques (appelées fonctions). Comme dans Les GA, la sélection des parents est principale-
ment proportionnelle a I’aptitude (fitness) et un remplacement générationnel est adopté.
Des opérateurs spécifiques gérant les arbres sont nécessaires. Les opérateurs de croisement
peuvent étre basés sur des échanges d’arbres (ou de sous-arbres) et les opérateurs de muta-
tion peuvent étre basés sur des changements aléatoires dans I’arbre I'une des difficultés de
la GP est la représentation a longueur variable, car les programmes encodés peuvent étre de
plusieurs tailles. Au niveau le plus abstrait, la PG est une méthode systématique indépen-
dante du domaine qui permet de résoudre des problemes a partir d"une déclaration de haut

1.4. Les métaheuristiques 15

niveau de ce qui doit étre fait. Les GP sont largement utilisés dans les taches d’apprentissage
automatique et de datamining (KOzA et KOza, 1992).

La stratégie d’évolution (Evolution Strategy)

La stratégie d’évolution est un paradigme particulierement bien adapté pour les taches
d’optimisation continue ot les représentations sont basées sur des vecteurs de valeur réelle
(RECHENBERG, 1973; FOGEL, OWENS et WALSH, 1966). Similaire aux autres algorithmes
évolutionnaires, les opérateurs génétiques en SE sont appliqués dans une boucle jusqu’a ce
qu’un critere d’arrét soit atteint. Elles utilisent généralement un remplacement élitiste et une
mutation spécifique normalement distribuée (gaussienne). Le croisement (cross-over) est ra-
rement utilisé. Dans un ES, il y a une distinction entre la population des parents de taille p
et la population des descendants de taille A > u. L'opérateur de sélection est déterministe
et elle est basée sur le classement de I’aptitude. Une caractéristique importante de la SE est
l"utilisation des mécanismes d’auto-adaptation pour optimiser non seulement les solutions
du probleme étudié, mais aussi certains parametres pour muter ces solutions. Leur princi-
pal avantage est leur efficacité en termes de complexité temporelle (KENNEDY et EBERHART,
1995a).

Programmation évolutionnaire (Evolutionary Programming)

La programmation Evolutionnaire (EP), initialement proposée par Fogel et al. (BEYER, 2001),
utilise des opérateurs de mutation exclusivement pour générer des descendants. Aucune re-
combinaison n’est appliquée et le mécanisme de sélection des parents est déterministe. Les
opérateurs de mutation consistent a ajouter aux parents un nombre aléatoire des certaines
distributions. EP est trés similaire a ES et, par conséquent, n’est pas largement utilisé.
Evolution différentielle (Differential Evolution)

L’évolution différentielle de Stom & Prince (1995) (STORN et PRICE, 1997a) est un algorithme
d’optimisation qui a connu énormément de succes depuis son apparition et qui fut initiale-
ment créé pour résoudre des problemes continus. Chaque individu est codé par un vecteur
de valeurs réelles. L'idée principale derriere I'évolution différentielle est 1'utilisation d'un
opérateur de recombinaison ternaire pour la création des nouvelles générations. Les spé-
cificités de ces approches sont les opérateurs. L'opérateur de croisement ne combine pas
une partie du chromosome des parents comme dans les EA classiques, mais fait une com-
binaison linéaire de trois solutions choisies au hasard. De méme, 1'opérateur de mutation
sélectionne aléatoirement trois solutions et ajoute le vecteur de différence pondérée entre
deux solutions a la troisieme solution. DE est une méthode simple qui a I’avantage de ne
nécessiter que quelques parametres de controle et ensuite elle est facile a régler (STORN et
PRICE, 1997a). Nous détaillerons plus amplement cet algorithme dans le chapitre 06.
L'intelligence en essaim

Les algorithmes inspirés du comportement collectif d’especes telles que les fourmis, les
abeilles, les guépes, les termites, les poissons et les oiseaux sont appelés algorithmes d’in-
telligence des essaims (BONABEAU, DORIGO et THERAULAZ, 1999; PINTO, RUNKLER et
S0ousA, 2005).

L’intelligence des essaims est issue du comportement social des espéces en compétition pour
I'acces a la nourriture (DHAENENS, 2016). Les principales caractéristiques des algorithmes
basés sur l'intelligence en essaim sont les suivantes : les particules sont des agents simples
et non sophistiqués, elles coopérent par un moyen de communication indirect et effectuent
des mouvements dans l’espace de décision.

Parmi les algorithmes d’optimisation inspirés de l'intelligence en essaim, on trouve 1'opti-
misation des colonies de fourmis et ’optimisation par essaims de particulaires (RUNKLER,
2008).

Algorithmes a essaim de particules (Particle Swarm Optimizer)

L’optimisation des essaims de particules (PSO) est une technique d’optimisation globale

16 Chapitre 1. Métaheuristiques et bio-inspirations

Vers sa meilleure
performance

Nouvelle
— position Vers la meilleure
. performance des
particules voisines

Position
actuelle

Vers le point
accessible avec sa
vitesse courante

FIGURE 1.3 — Déplacement d’une particule

développée par Kennedy et Eberhart en 1995 (FOGEL, OWENS et WALSH, 1966). Ces algo-
rithmes sont inspirés des essaims d’insectes (ou des bancs de poissons ou des nuées d’oi-
seaux) et de leurs mouvements coordonnés. Les individus de I’algorithme sont appelés par-
ticules et la population appelée essaim. Chaque particule est considérée comme une solu-
tion du probleme, ol elle posseéde une position (le vecteur de solution) et une vitesse. De
plus, chaque particule possede une mémoire lui permettant de se souvenir de sa meilleure
performance (Pbest) et de la meilleure performance atteinte par les particules « voisines
» (Gbest). Les nouvelles vitesses et direction de la particule seront définies en fonction de
trois composantes : une composante d’inertie; la propension a suivre son propre chemin,
une composante cognitive; sa tendance a revenir vers sa meilleure position atteinte et une
composante sociale; sa tendance a aller vers son meilleur voisin (KENNEDY et EBERHART,
1995a) (voir figure 1.3). Un schéma général de l'algorithme est donné dans 'algorithme 5
(KENNEDY et EBERHART, 1995a).

Algorithm 5 Algorithme d’optimisation de I'essaim de particules

Initialiser les particules initials
while critere d’arrét non satisfait do
for tous les particules i do
Mettre a jour la vitesse
Déplacer la nouvelle position x;

end for

if f(x;) < f(pbest;) then
pbest; < x;)
if f(x;) < f(gbest) then

gbest «+ x;)

end if

end if

end while

Les colonies de fourmis (Ants System)
Les algorithmes des colonies de fourmis (ACO) ont été proposés par M. Dorigo dans les
années 1990 (EL DOR, 2012). Dans les ACO, une population de fourmis artificielles coopere
entre elles pour trouver le meilleur chemin dans un graphe, représentant une solution candi-
date au probléme cible, de maniére analogue a la fagon dont les fourmis naturelles cooperent
pour trouver le chemin le plus court entre deux points; leur nid est une source de nourriture.
En effet, en se déplacant du nid a la source de nourriture et vice-versa, les fourmis déposent
au passage sur le sol une substance odorante appelée phéromone, ce qui a pour effet de

1.5. Hybridation entre métaheuristiques 17

créer une piste chimique (DORIGO, 1992). Lorsqu’une fourmi choisit son chemin, elle choisit
la piste qui porte la plus forte concentration de phéromone, ce qui entraine I’apparition des
chemins plus courts.

Les colonies artificielles de fourmis simulent ce comportement pour construire des solutions
a un probleme d’optimisation. Par conséquent, le probleme étudié est modélisé comme un
graphe completement connecté, dont les nceuds sont des composants de solutions. Une va-
leur de phéromone est associée a chaque composante de la solution et guide la construction
de cette solution (DHAENENS, 2016). Le systeme de fourmis a été employé avec succés sur
des nombreux problemes par exemple : voyageur de commerce, affectation quadratique, etc.
Un apergu global est présenté dans 1’algorithme 6.

Algorithm 6 algorithme d’optimisation des colonies de fourmis

Initialiser les valeurs de phéromone
while critere d’arrét non satisfait do
for tous les fourmis i do
Construire des solutions en utilisant le chemin des phéromones
Mettre a jour les chemins de phéromones (évaporation, renforcement)
end for
end while

Systémes immunitaires artificiels (Artificial Inmune System)
Les systemes immunitaires artificiels (AIS) sont des systémes informatiques métaphoriques
apparus dans les années 90 et sont inspirés du fonctionnement du systéme immunitaire na-
turel pour ce qui est de la mémorisation et 'apprentissage comme moyens de résolution
de problémes d’optimisation (JOURDAN, 2003). Les fonctionnements des systémes immuni-
taires ont un grand intérét pour les informaticiens comprennent notamment :
— chaque corps posséde son propre systéme immunitaire avec ses faiblesses et forces,
— le systéme immunitaire reconnait et élimine les molécules qui n’appartiennent pas a
I'individu,
— le systeme immunitaire peut détecter et réagir aux antigenes que le corps n’a jamais
rencontrés,
Les AIS utilisent la métaphore de sécrétion d’anticorps ol un anticorps va représenter une
solution potentielle au probléeme (JOURDAN, 2003).

1.5 Hybridation entre métaheuristiques

Le développement des métaheuristiques hybrides est susciter I'intérét académique. Les

méthodes hybrides combinent différents concepts de différentes métaheuristiques. L’hybri-
dation des métaheuristiques tentent de fusionner les points forts et éliminent les faiblesses
des métaheuristiques (JOURDAN, 2003).
Toutes les métaheuristiques ont été hybridées avec succes dans plusieurs applications. Se-
lon la taxonomie proposée par Talbi (JOURDAN, 2003) I'hybridation des métaheuristiques
entre elles se fait en deux classifications principales. Une classification hiérarchique et une
classification a plat.

1.5.1 Classification hiérarchique des métaheuristiques

La classification hiérarchique (JACQUIN, 2015) est caractérisée par le niveau et le mode
de I'hybridation. L’hybridation par niveau se divise en deux classes : 1'hybridation de bas

18 Chapitre 1. Métaheuristiques et bio-inspirations

Métaheuristiques hybrides

LN

hybridation de bas niveau hybridation de haut niveau
v >< /
hybridation relals | | hybridation collaborative

FIGURE 1.4 - Classification hiérarchique des métaheuristiques hybride
(TALBI, 2002)

niveau et I'hybridation de haut niveau . Dans le niveau bas, une métaheuristique hl rem-
place une fonction ou un opérateur d’une autre méthode h1 qui I'englobe. A l'inverse, dans
I'hybridation de haut niveau, chaque métaheuristique garde sa propriété au cours de I'hybri-
dation. Chacun des deux niveaux d’hybridation se subdivise en deux modes de coopération
a savoir, le mode collaboratif et le mode relais. L’hybridation collaborative se fait lorsque les
différentes méthodes fonctionnent en parallele pour explorer I'espace de solutions. Dans le
mode relais, les métaheuristiques sont exécutées de fagons séquentielles, c’est-a-dire le ré-
sultat de la méthode précédente est I’entrée de la méthode suivante.

La combinaison des classes précédente (niveaux et mode) donne quatre classes d’hybrida-
tion comme illustrée la figure 1.4. A savoir I'hybridation relais de bas niveau, 'hybridation
collaborative de bas niveau, ’hybridation relais de haut niveau et 1'hybridation collabora-
tive de haut niveau.

L'hybridation relais de bas niveau

Cette classe d’hybridation représente des algorithmes dans lesquels une métaheuristique
donnée est incorporée dans une métaheuristique a solution unique. Les méthodes doivent
ne s’exécutent que séquentiellement. L'exécution de la méthode globale doit dépendre du
résultat de la méthode intégrée (HACHIMI, 2013). Pour résoudre le probleme du voyageur
de commerce et celui de la partition de graphe, Martin (MARTIN, 1990) est incorporé une re-
cherche locale dans un algorithme de recuit simulé. Cette méthode a surpassé les méthodes
traditionnelles basées sur la recherche locale.

L'hybridation collaborative de bas niveau

Consiste a intégrer une métaheuristique a base de solution unique dans une métaheu-
ristique a population de solutions. L’avantage de ce type d’hybridation est de compenser
la puissance d’exploration d’une recherche globale et 1’exploitation d"une recherche locale
(STUTZLE et HOOS, 2000). Pour résoudre le probleme du voyageur de commerce et la parti-
tion de graphes Stttzle et Hoos (AzIMI, 2005) inserent une fonction de recherche locale dans
un algorithme de colonie de fourmis. Pour résoudre le probleme de partition de graphes
Gambardella et al. (TANESE, 1987) incorporent un algorithme de descente dans un algo-
rithme de colonie de fourmis. Taillard et al. Remplacent 'algorithme de descente par 1'al-
gorithme du recuit simulé. Fleurent et Ferland (ELBENANI, FERLAND et BELLEMARE, 2012)

1.5. Hybridation entre métaheuristiques 19

remplacent 1'opérateur de mutation d'un algorithme génétique par une recherche taboue
pour résoudre le probleme de partition de graphe.

L'hybridation relais de haut niveau

On parle de I'hybridation relais de haut niveau lorsque les métaheuristiques sont s’exé-
cuter de maniere séquentielle c’est-a-dire les solutions finales de la premiére métaheuris-
tique sont des entrées de la deuxiéme. Ce type d’hybridation est le plus utilisé dans la litté-
rature. Pour résoudre le probléme d’agencement d’horaires d’examens (LIN et YAMASHITA,
2002) utilisent deux hybridations de ce type, la premiere, consiste a initialiser les phéro-
mones des colonies de fourmis par une recherche locale. Dans la deuxieme, il a utilisé la
solution finale de I'algorithme de colonie de fourmis en tant quune solution initiale pour
une recherche taboue. Dans (BOUHLEL et al., 2007), une hybridation entre I’algorithme gé-
nétique et le recuit simulé est proposée ot1 la population initiale de I'algorithme génétique
est créé par la méthode du recuit simulé.

L'hybridation collaborative de haut niveau

Cette hybridation consiste a combiner deux méthodes métaheuristiques qui ne s’im-
briquent pas l'une dans l'autre et qui s’exécutent parallelement. Ces deux algorithmes
travaillent sur le méme probleme d’optimisation mais sur des parties différentes de 1'es-
pace de recherche et échangent des informations. Dans (GAMBARDELLA, MONTEMANNI et
WEYLAND, 2012), pour résoudre le probleme du partitionnement de graphe Ghédira et al,
utilisent le recuit simulé et la recherche Taboue, les deux méthodes travaillent paralléelement
et échangent des informations a intervalles réguliers pour trouver la meilleure solution. No-
tons qu'il existe d’autres travaux basés sur ce type d’hybridation en utilisant des recuits
simulés, des recherches taboues.

Classification a plat des métaheuristiques

La classification a plat des métaheuristiques comporte 3 criteres (HACHIMI, 2013) de
classification :

Homogenes/Hétérogenes

On trouve des méthodes hybridées homogenes lorsque les algorithmes hybridés sont
identiques. C.-a-d. se basent sur la méme métaheuristique, si les métaheuristiques utilisées
sont différentes 1’hybridation est dite hétérogene. Une méthode collaborative de haut niveau
dans (TAILLARD, 1993) est proposée ou plusieurs algorithmes génétiques sont combinés. Ces
algorithmes travaillent en parallele sur des petites sous populations.

Globales/Partielles

L’hybridation globale a lieu lorsque toutes les méthodes combinées agissent sur 'en-
semble de 'espace de recherche. A I'opposé, 'hybridation partielle découpe un probléeme
en sous problémes ot1 chaque probléme a son propre espace de recherche. Comme exemple
de I'hybridation partielle, dans (ABBATTISTA, ABBATTISTA et CAPONETTI, 1995), une dé-
composition du probléme du routage de véhicules en divisant I'ensemble des villes a visiter
en secteurs dont chacun représente un espace de recherche, I’algorithme utilisé pour la ré-
solution de ce probleme est la recherche taboue.

20 Chapitre 1. Métaheuristiques et bio-inspirations

Généralistes/Spécialistes

On parle de I'hybridation générale quand toutes les méthodes hybridées résolvent le
méme probléme d’optimisation. A I'inverse, les hybridations spécialistes ont lieu lorsque
chaque méthode traite un probleme d’optimisation différent. Par exemple, I'utilisation d'une
métaheuristique pour optimiser les parametres d’une autre métaheuristique. L'utilisation
d’une métaheuristique pour initialiser les paramétres d’une autre métaheuristique est un
exemple de ce type. On peut citer, Abbattista (KRUEGER, 1994) optimise un algorithme de
colonie de fourmis a 'aide d"un l’algorithme génétique (AG). Dans (GRINSTEIN et WIERSE,
2002) les parametres d'un recuit simulé sont optimisés a ’aide d'un AG.

1.6 Conclusion

Dans ce chapitre, nous avons présenté quelques méthodes d’optimisation en s’appuyant
sur les métaheuristiques. Ces dernieres sont tres efficaces pour la résolution d’un probleme
d’optimisation combinatoire sans avoir besoin de modifier la structure de base de 'algo-
rithme utilisé. Elles sont devenues tres populaires grace a leur simplicité, diversité et flexibi-
lité. Il est a noter quune bonne performance nécessite souvent une formalisation adéquate
du probleme posé et une adaptation intelligente d’'une métaheuristique.

Nous nous sommes ensuite intéressés aux techniques d’hybridations permettant d’hybrider
plusieurs approches de résolutions pour objectif d’obtenir une nouvelle approche plus ra-
pide et / ou plus efficace. Dans ce but on a présenté deux taxinomies, elles permettent de
comprendre quels sont les différents moyens d’hybridation possibles et comment ceux-ci
ont été exploités dans la littérature scientifique.

Les métaheuristiques sont des méthodes génériques capables de traiter de nombreux pro-
blemes d’optimisation. Leur diversité et leur flexibilité rendent cette classe de méthodes
tres attrayante pour s’attaquer aux problemes difficiles qui apparaissent dans 1’extraction
de connaissances. Ceci est I’objet des chapitres suivants.

21

Chapitre 2

L’extraction de connaissances

2.1 Introduction

Nous vivons dans un monde out de grandes quantités de données sont collectées quo-
tidiennement. Cette quantité est stockée dans des bases de données réelles, et continue
de croitre rapidement, cela permet de créé a la fois une opportunité et un besoin de mé-
thodes automatiques qui découvrent les connaissances "cachées" dans telles bases de don-
nées. Si une telle activité d’extraction de connaissances est réussie, les connaissances décou-
vertes peuvent étre utilisées pour améliorer le processus décisionnel d"une organisation par
exemple.

I existe une distinction entre les termes datamining (exploration de données) et I’extraction
de connaissances. Le terme exploration de données se réfere a 1’étape centrale du processus
de I'extraction de connaissances dans des bases de données.

Le processus de I'extraction de connaissances comprend plusieurs étapes de prétraitement
(ou de préparation des données) et de post-traitement (ou d’affinement des connaissances).
Le but des méthodes de préparation des données est de transformer les données pour facili-
ter 'application d"un (ou plusieurs) algorithme (s) donné (s) de datamining, alors que le but
des méthodes de raffinement des connaissances est de valider et d’affiner les connaissances
découvertes.

Dans ce chapitre, nous décrivons le processus de l'extraction de connaissances, nous intro-
duirons une présentation générale de chaque étape, et nous détaillerons ensuite plus préci-
sément |'étape de datamining (1’exploration de données).

2.1.1 L’extraction de connaissance

Le processus de 'extraction de connaissances (ECD) (knowledge discovery in databases,
KDD) (FAYYAD et al., 1996; FREITAS, 2002a), également appelé 1'extraction des connais-
sances a partir des données, recherche de nouvelles connaissances dans certains domaines
d’application. Il est défini comme un processus non trivial consistant & identifier des mo-
deles de données valides, nouveaux, potentiellement utiles et finalement compréhensibles.
Ce processus est constitué de plusieurs étapes, qui couvre la préparation des données, 1’ap-
plication de méthodes de fouille (datamining) et enfin la validation ou la visualisation des
résultats, plus précisément l'extraction de connaissances concerne 1’ensemble du proces-
sus d’extraction de connaissances, y compris la maniere dont les données sont stockées et
accessibles, la maniére d’utiliser des algorithmes efficaces et évolutifs pour analyser des en-
sembles de données massives, la maniere d’interpréter et de visualiser les résultats, et la
maniere de modéliser et de soutenir l'interaction entre I’homme et la machine (voir Figure
2.1). Lautomatisation d’une de ces étapes se révele une tache difficile (CI10S et al., 2007).

22 Chapitre 2. L’extraction de connaissances

i r—.-| 5Tt

[3] !
i
o

P 1 l—-—[STEP2 1—-——-—| STEP o 1}—-| STEPn]_...
- _— o S ——

v 1 1 :

1 1 i [

L —

FIGURE 2.1 — Structure séquentielle du modele KDP

Présentation du processus de 1’extraction des connaissances

Le processus de 'extraction de connaissance (Knowledge Discovery Process (KDP)) est
un modele constitué d"un ensemble d’étapes de traitement a suivre par les praticiens lors de
I’exécution d"un projet de I’extraction de connaissances. Le modele décrit les procédures qui
sont exécutées dans chacune de ses étapes. Il est principalement utilisé pour planifier, mener
abien et réduire le cotit d"un projet donné. Depuis les années 1990, plusieurs KDP ont été dé-
veloppés. Les premiers efforts ont été menés par la recherche universitaire, mais ont été ra-
pidement suivis par I'industrie (CIOS et al., 2007). La premiere structure de base du modéle
a été proposée par Fayyad et al. (FAYYAD et al., 1996) puis améliorée/modifiée par d’autres.
Le processus se compose de plusieurs étapes, qui sont exécutées séquentiellement. Chaque
étape est lancée apres 1’achevement de 1'étape précédente et requiert le résultat généré par
I'étape précédente comme entrée. Une autre caractéristique commune des modeles propo-
sés est la gamme d’activités couvertes, qui s’étend de comprendre le domaine du projet et
les données, en passant par la préparation et ’analyse des données, jusqu’a I'évaluation,
la compréhension et ’application des résultats générés. Tous les modéles proposés mettent
également 'accent sur la nature itérative du modele, en termes de nombreuses boucles de
rétroaction qui sont déclenchées par un processus de révision. Un schéma est présenté a la
figure 2.1. Les principales différences entre les modeles décrits ici résident dans le nombre
et la portée de leurs étapes spécifiques. Une caractéristique commune a tous les modéles est
la définition des entrées et des sorties. Les entrées typiques incluent des données dans dif-
térents formats, tels que des données numériques et nominales stockées dans des bases de
données ou des fichiers plats; images; vidéo; des données semi-structurées, telles que XML
ou HTML; etc. Le résultat est la nouvelle connaissance générée - généralement décrite en
matiére de regles, modeles, modeles de classification, associations, analyse statistique, etc
(HAND et ADAMS, 2014).

Apercu du processus de I’extraction des connaissances

Les efforts pour établir un modele du processus de 'extraction de connaissances ont été
lancés dans le milieu universitaire. Au milieu des années 1990, lorsque le domaine de data-
mining était en cours d’élaboration, les chercheurs ont commencé a définir des procédures
en plusieurs étapes pour guider les utilisateurs de datamining dans le monde complexe de
I'extraction des connaissances. L'accent principal était de fournir une séquence d’activités
qui aideraient a exécuter un processus de l'extraction de connaissances dans un domaine ar-
bitraire. Les deux modeles de processus développés en 1996 et 1998 sont le modéle en neuf
étapes de Fayyad et al.(FAYYAD et al., 1996) et le modele en huit étapes d’Anand et Buchner
(BUCHNER et al., 1999). Nous présentons ci-dessous le premier d’entre eux, qui est pergu
comme le modéle de recherche le plus important.

Le processus de 'extraction de connaissances proposé par Fayyed et al. (FAYYAD et al., 1996)
est une séquence itérative et interactive des principales étapes suivantes :

1. Développer et comprendre le domaine d’application. Cette étape permettra d’abord
de comprendre le domaine d’application, les connaissances antérieures pertinentes,

2.2. Datamining (exploration de données) 23

2.2

et les objectifs de l'utilisateur final des connaissances extraites (FAYYAD et al., 1996).

. Création d"un ensemble de données cible. Dans cette étape a partir de données brutes,

certaines informations sont sélectionnées pour faire face aux objectifs de 1’extraction
de connaissance qui sont identifiés. Cette étape comprend généralement 1'interroga-
tion des données existantes pour sélectionner le sous-ensemble souhaité (FAYYAD et
al., 1996).

. Nettoyage et prétraitement des données. L'étape de nettoyage peut consister a gé-

rer les valeurs manquantes et a supprimer le bruit ou les valeurs aberrantes, par
exemple. Des méthodes statistiques complexes, ainsi que des algorithmes d’explo-
ration de données, ont été proposés a cet effet. Il s’agit d'une étape cruciale car ces
données représentent la matiere premiere pour les étapes suivantes (FAYYAD et al.,
1996).

. Réduction et projection des données. Cette étape a pour but de préparer des don-

nées a exploiter. Il peut s’agir de la réduction des dimensions (sélection d’attributs,
échantillonnage) et la transformation des attributs (par exemple la discrétisation des
attributs numériques). Cela peut également étre une étape cruciale pour la réussite
du projet de I'extraction de connaissances car elle dépend du contexte et est liée di-
rectement aux objectifs du projet I’extraction de connaissances (FAYYAD et al., 1996).

. Choix de la tache d’exploration de données. Ici, le data mineur fait une correspon-

dance entre les objectifs définis a 1’étape une et une tache d’exploration de données
(datamining) particuliéres, telle que la classification, la régression, le clustering, etc
(FAYYAD et al., 1996).

. Choix de l'algorithme d’exploration de données (datamining). Le data mineur sélec-

tionne des méthodes (algorithmes) pour créer des modeles pertinents (FAYYAD et al.,
1996).

. Exploration de données. C’est le cceur du processus de 1’extraction des connaissances.

Cette étape génere des modeles permettre de I’extraction d’informations utiles a par-
tir de grands ensembles de données ou de bases de données. Plusieurs taches d’explo-
ration de données peuvent étre identifiées selon le type de modeles attendus (FAYYAD
etal., 1996).

. Interpréter les modéles extraits. Les modeles extraits de 1'étape d’exploration des

données (datamining) sont transformés en connaissances, grace a l'interprétation.
Une évaluation est réalisée pour déterminer si la connaissance extraite il s’agit d"une
nouvelle connaissance et si elle répond aux objectifs identifiés. Si ce n’est pas le cas,
certains ajustements doivent étre faits et le processus est répété soit depuis le début,
soit depuis une étape intermédiaire (FAYYAD et al., 1996).

N

. Consolider les connaissances extraites. La derniere étape consiste a intégrer les

connaissances extraites dans le systeme de performance, a les documenter et a les
communiquer aux parties intéressées. Cette étape peut également inclure la vérifi-
cation et la résolution de conflits potentiels avec des connaissances précédemment
crues (FAYYAD et al., 1996).

Datamining (exploration de données)

Le terme de datamining signifie littéralement forage de données, ou la fouille de données
est 'ensemble des méthodes et techniques destinées a ’exploration et I’analyse de grandes
bases de données informatiques. Et de transformer ces données en informations utiles, en
établissant des relations entre les données ou en repérant des patterns. Ces informations

24 Chapitre 2. L’extraction de connaissances

peuvent ensuite étre utilisées par les entreprises pour augmenter un chiffre d’affaires ou
pour réduire des cotits. (FALTINGS et SCHUMACHER, 2009).
Plusieurs définitions ont été proposées dans (FALTINGS et SCHUMACHER, 2009),

— Le datamining serait : - " la découverte de nouvelles corrélations, tendances et mo-
deles par le tamisage d"un grand nombre de données ";

— "l'extraction d'informations originales, auparavant inconnues, potentiellement utiles
a partir des données ";

— "un processus d’aide a la décision ot les utilisateurs cherchent des modeles d’inter-
prétation dans les données";

— "un processus de mise a jour de nouvelles corrélations, tendances et de modeles si-
gnificatifs par un passage au crible des bases de données volumineuses, et par 1'uti-
lisation de modéles d’identification technique aussi bien statistiques que mathéma-
tiques." .

2.2.1 Les taches principales de datamining (exploration de données)

Les taches d’exploration de données peuvent étre classées en deux catégories : taches
supervisées et non supervisées (prédictives ou descriptives). Les taches supervisées ap-
prennent sur les données disponibles pour faire des prédictions sur des nouvelles données,
tandis que les taches non supervisées impliquent une description des données et des rela-
tions existantes. Les principales taches d’exploration de données sont la classification (super-
visée), le clustering (également appelé classification non supervisée), I’extraction de regles
d’association et la sélection des attributs, comme illustré la Figure 2.2. En effet, méme si la
sélection d’attributs peut étre utilisée dans I’étape d’intégration, pour préparer des données,
elle peut également étre utilisée conjointement avec d’autres taches d’exploration de don-
nées telles que la classification ou le clustering (DHAENENS, 2016). Pour donner un apergu
général, chacune de ces taches est brievement décrite ci-apres.

La classification

La classification est probablement la tache d’exploration de données la plus étudiée.
Nous présentons ci-dessous un aperqu des concepts de base et des problemes liés a cette
tache. Dans la tache de classification, chaque instance de données (ou enregistrement de
base de données) appartient a une classe, qui est indiquée par la valeur d"un attribut cible
(DHAENENS, 2016). Cet attribut peut prendre un petit nombre de valeurs discrétes, chacune
d’entre elles correspondent a une classe. Chaque instance se compose de deux parties, a sa-
voir un ensemble de valeurs d’attributs prédicteurs et une valeur d’attribut cible (classe).
Les premieres sont utilisées pour prédire la valeur de la seconde. Notez que les attributs
prédicteurs doivent étre pertinents pour prédire la classe (valeur d’attribut cible) d"une ins-
tance de données (DHAENENS, 2016). Par exemple, si I'attribut cible indique si un patient a
ou va développer une certaine maladie, les attributs prédicteurs doivent contenir des infor-
mations médicales pertinentes pour cette prédiction, et non pas des attributs non pertinents
tels que le nom du patient.

Le modele est construit a partir des données disponibles (observations disponibles), puis
pour les nouvelles observations, le modele est appliqué pour déterminer la valeur de la va-
riable cible (DHAENENS, 2016).

I existe de nombreuses applications de la classification. Il peut étre utilisé, par exemple :

— Dans la détection de fraude, pour déterminer si une carte de crédit particuliere est

frauduleuse;

— Dans le diagnostic médical des maladies, pour déterminer si un patient peut contrac-

ter une maladie a I’avenir;

2.2. Datamining (exploration de données) 25

Datamining ™
tasks g

— T
i —
_'____.,—-'-"" e
o ——
—— ——
— E/ \| —
¥

[classlﬁcaﬁon,“ ‘ AssociationJ [Feature]

rules

Clusteri
Regression J ‘k e — selection

- Probabilitic - Partitioning - Apriori algorithim - Filter

[Maree Baygis, HMM.) methods approaches.

- Decision tree Hierarchical - \Wrapper

I€4.5, 03, CART...} methods approaches

- kNN - Embedded
Neural networks appreaches

- SVM

FIGURE 2.2 — Vue globale des taches et approches de I'exploration de données
(DHAENENS, 2016)

Phase 1 Learning —_—
e algarithm : :
Data
Phase 2 ‘ - — A O @
R ——
Unknawn data Predicted Class

FIGURE 2.3 - La tache de classification (DHAENENS, 2016)

— En marketing, pour identifier les clients susceptibles d’étre intéressés par un produit

donné;

— Dans l'analyse des réseaux sociaux, pour prédire les propriétés utiles des acteurs d'un

réseau social.

Comme mentionné précédemment, ’objectif de cette tache d’exploration de données est
de construire un modele qui prédit la valeur d"une variable, appelée la «classe», a partir des
valeurs connues d’autres variables. Le modele est construit a partir d’observations connues,
puis le modéle est appliqué pour déterminer la valeur de la variable cible (la classe) pour
des nouvelles observations. La Figure 2.3 illustre ce processus en deux phases (DHAENENS,
2016).

Dans sa forme de base, la variable prédite (la classe) est catégorique sans aucun classement.
Cependant, des extensions ont été proposées pour considérer les cas ot1 la classe est décrite
par un ensemble fini de valeurs avec une relation d’ordre. De plus, lorsque la variable pré-
dite est numérique, la tache devient une régression.

Plusieurs approches standard ont été proposées pour traiter la classification supervisée
(DHAENENS, 2016).

26 Chapitre 2. L’extraction de connaissances

La régression

La régression est une méthode statistique utilisée dans la finance, et d’autres disciplines
qui tente de déterminer la force de la relation entre une variable dépendante (généralement
désignée par Y) et une série d’autres variables (appelées variables indépendantes).

Les deux types de régression de base sont la régression linéaire simple et la régression li-
néaire multiple. La régression linéaire simple utilise une variable indépendante pour ex-
pliquer ou prédire le résultat de la variable dépendante Y, tandis que la régression linéaire
multiple utilise deux variables indépendantes ou plus pour prédire le résultat (DHAENENS,
2016).

Comme la classification, la régression peut étre considérée comme une tache d’exploration
de données impliquant la prédiction de la valeur d"un attribut cible (classe) défini par 'uti-
lisateur, compte tenu des valeurs des autres attributs (prédicteurs). La principale différence
entre la classification et la régression est la suivante. Dans la classification, 1’attribut cible est
catégorique (nominal). En revanche, dans la régression, l'attribut cible est continu (valeur
réelle). Dans les deux taches, ’ensemble des attributs peut inclure des attributs catégoriels et
continus. Cependant, dans la tache de régression, il est probablement plus courant d’avoir
un ensemble d’attributs ne contenant que des attributs continus. Cela permet 'utilisation
d’un large éventail de méthodes de régression statistique / numérique (DHAENENS, 2016).

Le clustering

En substance, la tache de clustering vise a décomposer ou a partitionner un ensemble
de données en groupes (ou clusters) d’instances de données, de telle sorte que : (a) chaque
cluster possede des instances tres similaires (ou "proches") les unes des autres (la distance
entre les points des groupes est minimisée). Et (b) les instances de chaque cluster soient aussi
différentes (ou "éloignées") que possible des points des autres clusters (la distance entre les
points de différents groupes est maximisée) (DHAENENS, 2016).

En d’autres termes, un algorithme de clustering devrait maximiser la similitude intra-cluster
(ou intra-cluster) et minimiser la similitude intercluster (entre-clusters). Cependant, la satis-
faction de ces deux objectifs de base ne suffit pas pour obtenir une bonne solution de clus-
tering, car ces deux objectifs peuvent étre satisfaits de maniere triviale en attribuant simple-
ment chaque instance de données vers un cluster singleton différent. Par conséquent, il est
également important de privilégier un nombre relativement faible de clusters, augmentant
ainsi le nombre d’instances de données affectées a un cluster. Un défi majeur de la tache
de regroupement est de trouver un bon compromis entre les trois objectifs ci-dessus (C10S
et al., 2007).

Parmi les différents types d’algorithmes de clustering, nous mentionnons ici deux les
plus populaires : le partitionnement itératif et le clustering hiérarchique (ALDENDERFER
et BLASHFIELD, 1984; BACKER, 1995). Chacun de ces deux types peut étre divisé en deux
sous-types (DHAENENS, 2016).

— les méthodes de partitionnement partitionnent les données en ensemble afin que les
ensembles soient aussi homogenes que possibles. La méthode la plus connue est k-
means;

— les méthodes hiérarchiques fusionnent ou divisent les clusters pour construir des
clusters homogenes.

Plus précisément, les méthodes hiérarchiques produisent une hiérarchie de clusters, tandis
que les méthodes de partitionnement itératives produisent une solution de cluster "plate".
Les méthodes hiérarchiques peuvent étre subdivisées en méthodes d’agglomération et de
division. Les méthodes agglomérées commencent a affecter chaque instance de données a
un cluster, puis fusionnent de maniere itérative les deux clusters les plus proches jusqu’a

2.2. Datamining (exploration de données) 27

5II‘I‘I:|&I’I[E‘ |
T T

|

|

[

|
I b

|
—|_|

|

FIGURE 2.4 — Un dendrogramme construit par un algorithme de clustering
d’agglomération (ZHANG et ZHANG, 2003)

ce qu’il n’y ait qu'un seul cluster, contenant toutes les instances des données en cours d’ex-
ploration. Les méthodes de divisons fonctionnent en sens inverse. Ils commencent a affecter
toutes les instances de données a un cluster. Ensuite, ce cluster est itérativement divisé en
clusters de plus en plus petits (ZHANG et ZHANG, 2003).

Les méthodes de regroupement par division sont en général beaucoup plus coliteuses en
termes de calcul que les méthodes d’agglomération. C’est probablement 1'une des raisons
de la plus grande popularité des méthodes d’agglomération.

Les méthodes de partitionnement itératives peuvent étre subdivisées en méthodes qui pro-
duisent des clusters qui ne se chevauchent pas et en méthodes qui produisent des clusters
qui se chevauchent. Dans ce dernier, une instance de données peut appartenir a deux clus-
ters ou plus en méme temps, ce qui n’est pas autorisé dans le premier (ZHANG et ZHANG,
2003).

Dans ce qui suit, seuls les algorithmes standards sont décrits.

Clustering hiérarchique Il existe deux types distincts de méthodes hiérarchiques : les mé-
thodes agglomératives, qui commencent par un nombre de clusters et les fusionnent pro-
gressivement, et les méthodes de division, qui commencent avec toutes les données dans
un seul cluster et les divisent progressivement en clusters plus petits. Les méthodes d’ag-
glomération sont les méthodes les plus utilisées. Les méthodes hiérarchiques d’analyse des
clusters permettent un affichage graphique pratique dans lequel la séquence entiere de fu-
sion (ou de fractionnement) des clusters sont affichés. En raison de sa structure arborescente,
le résultat 1’affichage s’appelle un dendrogramme, comme illustrait la figure 2.4.

Les méthodes d’agglomération sont basées sur des mesures de distance entre clusters
et sont décrits dans l’algorithme 7. Ils fusionnent de maniere itérative les deux clusters les
plus proches pour réduire le nombre de clusters. Habituellement, la configuration de dé-
part du processus se compose de chaque point de son propre cluster. Ensuite, la fusion est
réalisée jusqu’a ce qu'un seul cluster contenant tous les points de données soit obtenu. Dif-
férentes mesures de distance entre les clusters ont été proposées et conduisent a différents
algorithmes : par exemple, I'algorithme de clustering hiérarchique a lien unique (single-
link) ou la distance entre deux clusters est le minimum des distances entre toutes les paires
d’exemples de ces deux clusters. Une autre variante est l'algorithme de clustering hiérar-
chique a lien complet (complete-link), ott on prend le maximum des distances (ZHANG et
ZHANG, 2003).

Les méthodes de division commencent par un seul cluster qui contient tous les points
de données et le divise en sous-ensembles. Le processus de division est répété autant de fois
que nécessaire et se termine par des clusters singleton.

28 Chapitre 2. L’extraction de connaissances

Algorithm 7 Méthodes d’agglomération

fori=1,.. ndo
while Il reste plus d'un cluster a gauche do
fork=1,..,Kdo
Laisser C; et C; étre les clusters minimisant la distance D(Cy, Cy,) entre n’'importe
deux clusters
C;i=CU C]'
Supprimer le cluster C;
end for
end while
end for

Clustering de partitionnement

Dans le clustering par partition, I’objectif est de partitionner un ensemble de données en K
ensembles disjoints de points, de sorte que les points d'un ensemble soient aussi homo-
genes que possibles. L'homogénéité est calculée a 1’aide d'une fonction de score qui est
souvent basée sur une notion de similarité ou de distance dénotée par d. L'objectif est de
minimiser une fonction (moyenne, somme, etc.) sur la dissimilitude entre chaque point et le
centroide du cluster a laquelle il est attribué. Le centroide d'un ensemble pourrait étre un
point de données réelles, ou une "position" dans 1'espace des caractéristiques. L'algorithme
le plus connu de cette catégorie est le K-means (MACQUEEN et al., 1967). Dans sa version
la plus basique, cet algorithme commence par choisir au hasard K centres de grappes, puis
il étiquette chaque point en fonction du centre de grappe le plus proche. L’algorithme itéré
ensuite jusqu’a ce qu’il ny ait plus de changement des centres de grappe (DHAENENS, 2016).

Les regles d’association

Le probleme des régles d’association a été formulé pour la premiere fois par Agrawal
et al. (MAFARJA et MIRJALILI, 2018) prenons un ensemble de données dans lequel une ins-
tance de données se compose d'un ensemble d’attributs binaires appelés éléments. Chaque
instance de données représente une transaction client et chaque élément de cette transac-
tion peut prendre la valeur oui ou non, indiquant si le client correspondant a acheté cet
article dans cette transaction ou non. Une regle d’association est une relation de la forme
X ~Y,ou X etY sont des ensembles d’éléments disjoints, c’est-a-dire X N'Y = 0 (MITRA et
CHAUDHURI, 2000; DHAENENS, 2016). Chaque regle d’association est généralement évaluée
par un support et une mesure de confiance (KABLI, HAMOU et AMINE, 2018). La prise en
charge d"une regle d’association est le rapport du nombre d’instances (transactions) ayant la
valeur oui pour tous les éléments dans 1’ensemble X et 'ensemble Y diviser par le nombre
total d’instances. La confiance d"une regle d’association est le rapport du nombre d’instances
ayant la valeur oui pour tous les éléments dans 'ensemble X et ’ensemble Y diviser par le
nombre d’instances ayant la valeur oui pour tous les éléments dans I'ensemble X (MITRA
et CHAUDHURI, 2000; DHAENENS, 2016). Les regles avec un support et une confiance supé-
rieurs ou égaux aux seuils spécifiés par 1'utilisateur (appelés support minimum et confiance
minimum). L'algorithme le plus connu pour extraire des regles d’association est a priori
proposé par Agrawal et Srikant (AGRAWAL, SRIKANT et al., 1994; DHAENENS, 2016). Cet
algorithme en deux phases trouve d’abord tous les ensembles d’éléments fréquents, puis
génere des regles de confiance élevée a partir de ces ensembles. Des nombreuses amélio-
rations de la méthode initiale, y compris des implémentations paralléeles, ont été proposées
pour nous permettre de traiter des trés grandes bases de données (BORGELT, 2003; YE et
CHIANG, 2006; ZAKI, 2001 ; MITRA et CHAUDHURI, 2000; DHAENENS, 2016).

2.3. La différence entre I’'exploration de données et I’extraction de connaissances (KDD) 29

La sélection d’attributs

Une difficulté dans 1’exploration de données, en particulier dans le cas du Big Data
est liée a la taille énorme des ensembles de données et a la présence de trop d’attributs
(DHAENENS, 2016).
En classification, toutes les variables qui sont stockées dans la base de données ne sont pas
toutes nécessaire a une discrimination précise. Leur inclusion dans la classification peut
méme réduire les performances du modele (DHAENENS, 2016). La sélection des caracté-
ristiques, également connue sous le nom de sélection de variables, sélection d’attributs ou
sélection de sous-ensembles de variables, vise a sélectionner un ensemble optimal de ca-
ractéristiques ou d’attributs pertinents qui sont nécessaires a la classification. Par exemple,
certains attributs peuvent étre redondants ou non liés a la variable prédictive (DHAENENS,
2016). Par conséquent, la sélection de certains attributs pourrait étre nécessaire pour réduire
le temps de calcul des algorithmes d’exploration de données, pour simplifier le modéle ob-
tenu afin d’avoir une discrimination précise entre les observations (DHAENENS, 2016). En-
suite, I’objectif est de trouver un sous-ensemble de variables pertinentes p;, o p; << p.
Par conséquent, ’objectif principal de la sélection des attributs dans ’apprentissage super-
visé est de trouver un sous-ensemble d’attributs qui produit une précision de classification
plus élevée. D’autre part, dans I’apprentissage non supervisé, la sélection des attributs vise a
trouver un bon sous-ensemble de variables qui forme des clusters de haute qualité pour un
nombre donné de clusters. Une sélection appropriée des attributs peut améliorer l'efficacité
d’un modele d’inférence (DHAENENS, 2016).
En apprentissage supervisé, trois approches existent selon I'interaction avec la procédure de
classification :
— les approches de filtrage évaluent les attributs en fonction de leurs caractéristiques
pour les sélectionner (ou non) (DHAENENS, 2016);

— les approches wrapper évaluent la qualité d'un sous-ensemble des attributs a ’aide
d’un algorithme d’apprentissage (DHAENENS, 2016);

— les approches intégrées combinent les deux approches susmentionnées en incorpo-
rant dans une approche wrapper une interaction plus profonde entre la sélection des
attributs et la construction du classificateur (DHAENENS, 2016).

2.3 La différence entre 1’exploration de données et I’extraction de
connaissances (KDD)

Le terme KDD doit étre employé pour décrire I'ensemble du processus de I’extraction de
connaissances a partir de données. Dans le contexte, la connaissance signifie les relations et
les modeéles entre les éléments de données. L'exploration de données (datamining) doit étre
utilisée exclusivement pour l'étape de 'extraction de connaissances dans le processus de
KDD. Plus précisément,]’exploration de données (datamining) est le processus de recherche
ou d’analyse de données a partir d’'une grande quantité de données, tandis que 1'extrac-
tion de connaissances est le processus de recherche de connaissances a partir d"une grande
quantité de données en utilisant I'exploration de données comme montre la figure 2.6.

La partie de I’extraction de connaissances (KDD) qui traitant I'analyse des données a été
appelée "datamining" et c’est une étape tres cruciale du processus KDD.

30 Chapitre 2. L’extraction de connaissances

FIGURE 2.5 — Processus de I’extraction de données (KDD).

Data Mining

FIGURE 2.6 - La différence entre 1'extraction de données (KDD) et I'explora-
tion de données (datamining).

24 Lestaches d’exploration de données comme des problemes d’op-
timisation

Comme nous l'avons vu précédemment, les taches d’exploration de données portent
sur des opérations telles que la classification, le clustering, la sélection d’attributs, etc. Tous
ces problemes peuvent étre formulés comme des problémes d’optimisation combinatoire
(DHAENENS, 2016). C’est pourquoi plusieurs travaux utilisant des méthodes d’optimisation
pour résoudre des problemes d’exploration de données (OLAFSSON, 2006 ; OLAFSSON, L1 et
WU, 2008; MEISEL et MATTFELD, 2010; CORNE, DHAENENS et JOURDAN, 2012; MAIMON
et ROKACH, 2007).

Le contexte des Big Data rend difficile la résolution de ces problémes en utilisant des ap-
proches exactes. La métaheuristique sera donc une solution intéressante. Maimon et al
se concentre sur les métaheuristiques, en particulier les algorithmes évolutionnaires et
lI'intelligence en essaim (MAIMON et ROKACH, 2005) pour l'extraction des connaissances
(DHAENENS, 2016).

De plus, Freitas se concentre dans son livre sur I’exploration de données (datamining) et
I'extraction de connaissances avec des algorithmes évolutifs, qui représentent une partie de
la métaheuristique (FREITAS, 2002b; AGGARWAL et al., 2018). En particulier, cette these ré-
vele comment les métaheuristiques peuvent étre utilisées pour la sélection d’attributs et la
classification (DHAENENS, 2016).

2.5 Larecherche d’informations (IR)

La recherche d’informations (IR) est la science de la recherche d’informations dans des
documents. Les documents peuvent étre textuels ou multimédias et peuvent résider sur le
Web (FALTINGS et SCHUMACHER, 2009). Les différences entre les systemes traditionnels de

2.6. Big Data 31

recherche d’informations et les systéemes de bases de données sont les suivants : la recherche
d’informations suppose que :

1. les données recherchées ne sont pas structurées;

2. Les requétes sont formées principalement par des mots-clés, qui n’ont pas de struc-
tures complexes (contrairement aux requétes SQL dans les systemes de base de don-
nées).

En bref, la tache d’un systeme de recherche d’informations (IR) est la suivante : a partir
d"une collection de documents, trouver des informations utiles correspondant a la requéte
d’un utilisateur. Plusieurs facteurs rendent cette tiche difficile (KARASOZEN, RUBINOV,
WEBER et al., 2006) :

— les informations contenues dans la base de données de documents ne sont générale-

ment pas structurées;

— les documents sont généralement écrits dans un langage naturel sans contrainte;

— Trés souvent, les documents couvrent un large éventail de sujets.

Les approches typiques de la recherche d’informations adoptent des modeles probabilistes.
Par exemple, un document texte peut étre considéré comme un sac de mots, c’est-a-dire
un ensemble multiple de mots apparaissant dans le document. Le modele de langage du
document est la fonction de densité de probabilité qui génere le sac de mots dans le do-
cument (FALTINGS et SCHUMACHER, 2009). La similitude entre deux documents peut étre
mesurée par la similitude entre leurs modeles linguistiques correspondants (FALTINGS et
SCHUMACHER, 2009). De plus, un sujet dans un ensemble de documents textuels peut étre
modélisé comme une distribution de probabilité sur le vocabulaire, appelé modele de sujet
(un topic model). Un document texte, qui peut porter sur un ou plusieurs sujets, peut étre
considéré comme un mélange de plusieurs modeles de sujets (FALTINGS et SCHUMACHER,
2009).

D’intégrant des modéles de recherche d’informations et des techniques d’exploration de
données (datamining), on peut trouver les principaux sujets dans une collection de docu-
ments et, pour chaque document de la collection, les principaux sujets impliqués. De plus
en plus des données textuelles et multimédias ont été accumulées et mises a disposition
en ligne en raison de la croissance rapide du Web et d’applications telles que les biblio-
theques numériques, et les systemes d’informations sur les soins de santé. Leur recherche
et leur analyse efficaces ont soulevé de nombreux problemes difficiles dans I’exploration de
données. Par conséquent, I'exploration de texte et 'exploration de données multimédias,
intégrées aux méthodes de recherche d’informations, sont devenues de plus en plus impor-
tantes (FALTINGS et SCHUMACHER, 2009).

2.6 Big Data

Récemment, le terme de Big Data a été inventé se référant a ces défis et avantages pro-
venant de la collecte et le traitement de grandes quantités de données . Ce theme est apparu
depuis que les organisations doivent faire face a plusieurs pétaoctets de données a grande
échelle. Les sources de cette énorme quantité d’informations sont les applications qui col-
lectent des données a partir des traces de transactions, des capteurs, et d"ailleurs. Cependant,
le premier probleme pour la définition exacte de "Big Data" est le nom lui-méme, comme on
pourrait penser que c’est juste en rapport avec le volume de données (DHAENENS, 2016).
La structure hétérogene, diversifiée et dimensionnalité, variété de la représentation de don-
nées, s’est également portée sur cette question cela dépend aussi bien stir sur le temps de
calcul, c. -a-d. I'efficacité et la vitesse a la fois dans la réception et le traitement des données
(DHAENENS, 2016).

32

Chapitre 2. L’extraction de connaissances

2.6.1 Les5vdeBigData

Pour exprimer le Big Data, c’est souvent I'image des 5V, ou plus précisément de 4 V a
I'origine augmentés plus récemment d"un cinquiéme V.
— Volume : fait référence a la masse des données générées chaque seconde. Ce volume

2.7

augmente a un rythme exponentiel, Nous ne parlons plus en Téraoctets mais en Zet-
tabytes ou Brontobytes. Ce volume important de données est désormais trop impor-
tant pour étre stocké ou analysé de facon « traditionnelle », c’est-a-dire avec des bases
de données. Avec le Big Data, nous pouvons stocker et utiliser ces jeux de données
al’aide de systémes distribués dans lesquels les différentes parties des données sont
stockées dans différents endroits mais rassemblées grace a un logiciel.

Vélocité : fait référence a la vitesse a laquelle la donnée est créée et se déplace. Pen-
sez juste aux messages sur les réseaux sociaux qui deviennent viraux en quelques
secondes, les transactions bancaires frauduleuses détectées en quelques minutes ou
encore le temps que prennent les logiciels pour analyser les réseaux sociaux et capter
les comportements qui déclenchent 1’achat, doit des millisecondes!Et le big data se
doit d’étre performant pour analyser la donnée, méme si elle n’est pas dans nos bases
de données.

Variété : faite référence aux différents types de données que nous pouvons utiliser.
Dans le passé, nous nous sommes appuyés principalement sur des données structu-
rées. Aujourd’hui, nous avons la possibilité d’utiliser et d’analyser une grande va-
riété de données, Le Big Data offre la capacité de réunir toutes ces données et de les
analyser.

Véracité : faite référence a la fiabilité de la donnée. Avec autant de types de grosse
donnée, la précision et la qualité sont moins vérifiables. L'une des missions du big
data est d’apporter un peu d’ordre a tout cela non pas en organisant la donnée, mais
plutdt en organisant son acces et en permettant d’y associer les analytiques qui cor-
respondent aux besoins des utilisateurs. Le manque de qualité et d’exactitude résulte
souvent des gros volumes.

Valeur : c’est le dernier V a prendre en compte quand on parle de Big Data, La notion
de valeur s’est tres rapidement associée aux quatre précédents "V’. Un projet big data
et son acces aux utilisateurs n’a d’intérét que s’il apporte de la valeur.

Conclusion

Dans ce chapitre, nous avons présenté le processus de l'extraction de connaissances,
nous avons introduire une présentation générale de chaque étape, nous avons détaillé en-
suite plus précisément 1'étape de I'exploration de données (datamining), aprés nous avons
présenté les principaux différences entre I'exploration de données et 1’extraction de connais-
sances (KDD). Nous nous sommes ensuite intéressés a présenter une vue d’ensemble sur la
recherche d’informations.

Plusieurs taches de 1’exploration de données (datamining) peuvent étre considérées comme
des problémes d’optimisation combinatoire ou des approches d’optimisation, et, en particu-
lier, les métaheuristiques sont de bons candidats pour traiter ces problémes.

33

Chapitre 3

Réseaux de neurones et apprentissage
profond

3.1 Introduction

Les réseaux de neurones artificiels sont des techniques d’apprentissage automatique
populaires qui simulent le mécanisme d’apprentissage dans les organismes biologiques.
Le systeme nerveux humain contient des cellules, appelées neurones. Les neurones sont
connectés les uns aux autres a 'aide d’axones et de dendrites, et les régions de connexion
entre les axones et les dendrites sont appelées synapses. Ce changement est la facon dont
I'apprentissage se déroule dans les organismes vivants. Ce mécanisme biologique est simulé
dans des réseaux de neurones artificiels, qui contiennent des unités de calcul appelées neu-
rones (DA SILVA et al., 2017). Les unités de calcul sont connectées les unes aux autres par
des poids, qui jouent le méme rdle que les forces des connexions synaptiques dans les or-
ganismes biologiques. Chaque entrée d'un neurone est mise a I’échelle avec un poids, qui
affecte la fonction calculée a cette unité. Un réseau de neurones artificiel calcule une fonc-
tion des entrées en propageant les valeurs calculées des neurones d’entrée aux neurones de
sortie et en utilisant les poids comme parameétres intermédiaires.

Les poids entre les neurones sont ajustés dans un réseau de neurone en réponse a des erreurs
de prédiction. Le but de changer les poids est de modifier la fonction calculée pour rendre
les prédictions plus correctes dans les futures itérations. Par conséquent, les poids sont soi-
gneusement modifiés d"une maniére mathématiquement justifiée afin de réduire I'erreur de
calcul. En ajustant successivement les poids entre les neurones sur de nombreuses paires
entrée-sortie, la fonction calculée par le réseau de neurones est affinée au fil du temps afin
de fournir des prédictions plus précises.

Ce chapitre, présente un aperqu général sur les réseaux de neurones, I'apprentissage pro-
fond et les réseaux de neurones profonds.

3.2 Réseau de neurones artificiels

Un réseau de neurones artificiels (ANN) est un modele de calcul basé sur la structure et
les fonctions du cerveau biologiques et du systeme nerveux. Les composants de calcul ou
unités de traitement, appelés neurones artificiels, sont des modeles simplifiés de neurones
biologiques. Ces modeles ont été inspirés par 1’analyse de la fagon dont une membrane cel-
lulaire d’un neurone génere et propage des impulsions électriques (MCCULLOCH et PITTS,
1943). Les neurones artificiels utilisés dans les réseaux de neurones artificiels sont non li-
néaires, fournissant généralement des sorties continues et exécutant des fonctions simples,
telles que la collecte des signaux disponibles sur leurs entrées, leur assemblage en fonction
de leurs fonctions opérationnelles et la production d’une réponse tenant compte de leurs
fonctions d’activation (MCCULLOCH et PITTS, 1943).

34 Chapitre 3. Réseaux de neurones et apprentissage profond

FIGURE 3.1 — Réseau artificiel (HODGKIN et HUXLEY, 1952)

Dans ce modeéle, chaque neurone dans le réseau peut étre mis en ceuvre comme montre la
figure 3.1. Les multiples signaux d’entrée provenant de I’environnement externe sont repré-
sentés par l'ensemble {x1,x2,x3,...x, }. Les pesées effectuées par les jonctions synaptiques
du réseau sont mises en ceuvre sur le neurone artificial sous la forme d’un ensemble de
poids synaptiques {w;, wy, w3, ...w, }. De méme, la pertinence de chacune des entrées du
neurone {x;} est calculée en les multipliant par leur poids synaptique correspondant {w;},
ce qui permet de pondérer toutes les informations externes arrivants sur le neurone. Par
conséquent, il est possible que la sortie du corps cellulaire artificial, désignée par u, soit la
somme pondérée de ses entrées (HODGKIN et HUXLEY, 1952).

A partir de la figure 3.1, il est possible de voir que le neurone artificiel est composé de
sept éléments de base, a savoir;

1. Les signaux d’entrée ({x1, x2, X3, ..., }) sont les signaux ou les échantillons provenant
de I'environnement externe. Les signaux d’entrée sont généralement normalisés afin
d’améliorer l'efficacité de calcul des algorithmes d’apprentissage.

2. Les poids synaptiques ({w1, wo, w3, ...wy }) sont les valeurs utilisées pour pondérer
chacune des variables d’entrée, ce qui permet de quantifier leur pertinence par rap-
port a la fonctionnalité du neurone.

3. L'agrégateur linéaire ()_) rassemble tous les signaux d’entrée pondérés par les poids
synaptiques pour produire une tension d’activation.

4. Seuil d’activation ou biais (0) est une variable utilisée pour spécifier le seuil approprié
que le résultat produit par 'agrégateur linéaire devrait avoir pour générer une valeur
de déclenchement vers la sortie du neurone.

5. Le potentiel d’activation (u) est le résultat produit par la différence entre I’agrégateur
linéaire et le seuil d’activation. Si cette valeur est positive, c’est-a-dire si u > 0, alors
le neurone produit un potentiel excitateur; sinon, il sera inhibiteur.

6. Fonction d’activation (g) dont le but est de limiter la sortie des neurones dans une
plage raisonnable de valeurs, assumée par sa propre image fonctionnelle.

7. Le signal de sortie (y) consiste a la valeur finale produite par le neurone a partir d'un
ensemble particulier de sighaux d’entrée, et peut également étre utilisé comme entrée
pour d’autres neurones interconnectés séquentiellement.

3.2. Réseau de neurones artificiels 35

FIGURE 3.2 — Fonction d’activation linéaire

Les deux expressions suivantes synthétisent le résultat produit par le neurone artificiel pro-
posé par (TEH et HINTON, 2001) :

n
=)y wi-x—0 (3.1)
i=1

y=g(u) (32)

3.2.1 Fonctions d’activation

Dans la programmation de réseaux de neurones, les fonctions d’activation ou de trans-
fert établissent des limites pour la sortie des neurones. Les réseaux de neurones peuvent uti-
liser de nombreuses fonctions d’activation différentes (RUMELHART, HINTON et WILLIAMS,
1988). Nous discuterons dans cette section les fonctions d’activation les plus courantes.

Le choix de la fonction d’activation est un élément essentiel dans la conception du réseau
de neurones car cela peut affecter la facon dont vous devez formater les données d’entrée
(RUMELHART, HINTON et WILLIAMS, 1988).

Fonction d’activation linéaire

La fonction d’activation la plus fondamentale est la fonction linéaire car elle ne modifie
pas du tout la sortie des neurones (RUMELHART, HINTON et WILLIAMS, 1988). L'équation
3.3 montre comment le programme implémente généralement une fonction d’activation li-
néaire (RUMELHART, HINTON et WILLIAMS, 1988).

P(x) =x (3.3)

Cette fonction d’activation renvoie simplement la valeur que les entrées du neurone lui
ont transmise (RUMELHART, HINTON et WILLIAMS, 1988). La figure 3.2 montre le graphe
d’une fonction d’activation linéaire.

Fonction d’activation pas ou par seuil

La fonction d’activation par seuil est une fonction d’activation simple. Les réseaux de
neurones étaient a l'origine perceptrons (RUMELHART, HINTON et WILLIAMS, 1988). Mc-
Culloch (1943) a introduit le premier perceptron et a utilisé une fonction d’activation par

36 Chapitre 3. Réseaux de neurones et apprentissage profond

04 06 0.8

0.2

0.0

FIGURE 3.3 - Fonction d’activation par pas ou par seuil

0.4 06 0.8

0.2

0.0

FIGURE 3.4 - Fonction d’activation sigmoide

seuil comme montre I'équation 3.4 (TEH et HINTON, 2001).

1 x>05
X) = - 3.4
(@) {0 otherwise) B4
L’équation 3.4 génere une valeur de 1,0 pour les valeurs entrantes de 0,5 ou plus et 0 pour
toutes les autres valeurs (RUMELHART, HINTON et WILLIAMS, 1988). Les fonctions de pas
sont souvent appelées fonction de seuil car elles ne renvoient que 1 (vrai) pour les valeurs
supérieures au seuil spécifié, comme le montre la figure 3.3.

Fonction d’activation sigmoide

La fonction d’activation sigmoide ou logistique est un choix tres courant pour les réseaux
de neurones a propagation avant (RUMELHART, HINTON et WILLIAMS, 1988). qui n’ont
besoin de produire que des nombres positifs (RUMELHART, HINTON et WILLIAMS, 1988).
L’équation 3.5 montre la fonction d’activation sigmoide. La figure 3.4 montre le graphe de
la fonction d’activation sigmoide.

(3.5)

3.3. Les architectures de base des réseaux de neurones 37

0.5

0.0

-05

FIGURE 3.5 — Fonction d’activation de la tangente hyperbolique

Fonction d’activation de la tangente hyperbolique

La fonction de tangente hyperbolique est également une fonction d’activation trés cou-
rante pour les réseaux de neurones qui doivent produire des valeurs comprises entre -1 et
1 (RUMELHART, HINTON et WILLIAMS, 1988). Cette fonction d’activation est simplement la
fonction de tangente hyperbolique (tanh), comme le montre 1’équation 3.6.

¢(x) = tanh(x) (3.6)

Le graphique de la fonction tangente hyperbolique a une forme similaire a la fonction d’ac-
tivation sigmoide, comme le montre la figure 3.5.

Unités linéaires rectifiées (ReLU)

Introduite en 2000 par Teh & Hinton (HEATON, 2015), I'unité linéaire rectifiée (ReLU) a
été adoptée tres rapidement au cours des dernieres années. La plupart des recherches ac-
tuelles recommandent désormais le ReLU en raison de résultats d’entrainement supérieurs
(RUMELHART, HINTON et WILLIAMS, 1988). En conséquence, la plupart des réseaux de neu-
rones devraient utiliser le ReLLU sur les couches cachées et la fonction softmax ou linéaire
sur la couche de sortie. L'équation 3.7 montre la fonction ReLU.

¢(x) = max(0, x) (3.7)

Pourquoi ReLU fonctionne généralement mieux que d’autres fonctions d’activation pour
les couches cachées. Une partie de I'augmentation des performances est due au fait que la
fonction d’activation ReLU est une fonction linéaire non saturante (RUMELHART, HINTON
et WILLIAMS, 1988).

La figure 3.6 montre le graphe de la fonction d’activation ReLU.

3.3 Les architectures de base des réseaux de neurones

L’architecture d"un réseau neuronal artificiel définit la fagon dont ses différents neurones
sont disposés ou placés les uns par rapport aux autres. Ces arrangements sont structurés es-
sentiellement en dirigeant les connexions synaptiques des neurones (HODGKIN et HUXLEY,
1952).

Dans cette section, nous présenterons les réseaux de neurones monocouches et multicouches.
Dans le réseau monocouche, un ensemble d’entrée est directement mappé a une sortie en

38 Chapitre 3. Réseaux de neurones et apprentissage profond

FIGURE 3.6 — Fonction d’activation ReLU

utilisant une variation généralisée d’une fonction linéaire. Cette simple instanciation d’un
réseau de neurones est appelée perceptron (DA SILVA et al., 2017). Dans les réseaux de neu-
rones multicouches, les neurones sont disposés en couches, dans lesquelles les couches d’en-
trée et de sortie sont séparées par un groupe de couches cachées. Cette architecture par
couches du réseau de neurones est également appelée réseau de neurones a propagation
avant. Cette section abordera les réseaux de neurones monocouches et multicouches (DA
SILVA et al., 2017).

En général, un réseau neuronal artificiel peut étre divisé en trois parties, appelées couches,
qui sont connues comme :

— Couche d’entrée : cette couche est chargée de recevoir des informations (données),
des signaux, des attributs. Ces entrées sont généralement normalisées dans les limites
des valeurs produites par les fonctions d’activation. Cette normalisation se traduit
par une meilleure précision numérique pour les opérations mathématiques effectuées
par le réseau.

— Couches cachées : intermédiaires ou invisibles : ces couches sont composées de neu-
rones qui sont chargés d’extraire les schémas associés au processus ou au systéme
analysé. Ces couches effectuent la plupart du traitement interne a partir d"un réseau.

— Couche de sortie : cette couche est également composée de neurones et est donc
chargée de produire et de présenter les sorties finales du réseau, qui résultent du
traitement effectué par les neurones dans les couches précédentes.

Les principales architectures des réseaux de neurones artificiels, compte tenu de la disposi-
tion des neurones, ainsi que de la fagon dont ils sont interconnectés et de la fagon dont ses
couches sont composées.

Les principales architectures des réseaux de neurones peuvent étre divisées comme suit :

— réseau de neurones a propagation avant a une seule couche,

— réseau de neurones a propagation avant a plusieurs couches,

— réseaux récurrents

— réseaux maillés.

3.3.1 Réseau de neurones a propagation avant a une seule couche

L’architecture de réseau de neurones la plus simple (DA SILVA et al., 2017). Ce réseau
de neurones artificiel ne comporte qu'une seule couche d’entrée et une seule couche de
sortie. La figure 3.7 illustre un réseau a propagation avant a couche simple composé de n
entrées et m sorties (HODGKIN et HUXLEY, 1952). Les informations circulent toujours dans
une seule direction (donc unidirectionnelle), qui va de la couche d’entrée a la couche de
sortie. A partir de la figure 3.7, il est possible de voir que dans les réseaux appartenant a
cette architecture, le nombre de sorties de réseau coincidera toujours avec sa quantité de

3.3. Les architectures de base des réseaux de neurones 39

X4 ¥y
x: FE
X, O ¥m

Input laysr Dutput nawral layer

FIGURE 3.7 — Exemple de réseau de neurones a propagation avant a une seule
couche (HODGKIN et HUXLEY, 1952)

neurones. Ces réseaux sont généralement utilisés dans les problemes de classification de
motifs et de filtrage linéaire (HODGKIN et HUXLEY, 1952). Parmi les principaux types de
réseaux appartenant a cette architecture sont le perceptron et ’ADALINE.

3.3.2 Réseau de neurones a propagation avant multicouches

Contrairement aux réseaux appartenant a I’architecture précédente, les réseaux de neu-
rones multicouches contiennent plusieurs couches de calcul ; les couches intermédiaires sup-
plémentaires (entre entrée et sortie) sont appelées couches cachées car les calculs effectués
ne sont pas visibles pour 1'utilisateur (DA SILVA et al., 2017; AMINE et al., 2011). Les réseaux
a propagation avant multicouches sont composés d'une ou plusieurs couches neuronales
cachées (Figure 3.8). Ils sont utilisés pour résoudre divers problémes, comme ceux liés a
I'approximation des fonctions, a la classification des modeles, a I'identification du systeme,
au controle des processus, a I’optimisation, a la robotique, etc. La figure 3.8 montre un a pro-
pagation avant avec plusieurs couches composées d"une couche d’entrée avec n échantillons
de signaux, de deux couches cachées constituées respectivement 7; et 1, neurones et, enfin,
d’une couche neuronale de sortie composée de m neurones représentant les valeurs de sortie
respectives du probleme en cours d’analyse (HODGKIN et HUXLEY, 1952). Parmi les princi-
paux réseaux utilisant des architectures multicouches se trouvent le perceptron multicouche
(MLP) et la fonction de base radiale (RBF) (HODGKIN et HUXLEY, 1952). La figure 3.8 permet
de comprendre que la quantité de neurones composant la couche cachée est généralement
différente du nombre de signaux composant la couche d’entrée du réseau. En fait, le nombre
de couches cachées et leur nombre de neurones dépendent de la nature et de la complexité
du probléme cartographié par le réseau, ainsi que de la quantité et de la qualité des données
disponibles sur le probleme (HODGKIN et HUXLEY, 1952).

3.3.3 Réseau de neurones récurrents

Dans ces réseaux, les sorties des neurones sont utilisées comme entrées de rétroaction
pour d’autres neurones. La fonction de rétroaction qualifie ces réseaux pour le traitement
dynamique de l'information, ce qui signifie qu’ils peuvent étre utilisés sur des systemes va-
riant dans le temps, tels que la prédiction de séries chronologiques, 1'identification et ’opti-
misation du systéme, le controle de processus (HODGKIN et HUXLEY, 1952). Parmi les prin-
cipaux réseaux de rétroaction, il y a réseau de neurones d’'Hopfield et le perceptron avec
rétroaction entre les neurones de couches distinctes, dont les algorithmes d’apprentissage
utilisés dans leurs processus d’entrainement sont respectivement basés sur la minimisation

40 Chapitre 3. Réseaux de neurones et apprentissage profond

Input layer Output neural

15t Hidden neural
layer

layer

2" Hidden neural

layer

FIGURE 3.8 — Exemple de réseau de neurones a propagation avant multi-
couches (HODGKIN et HUXLEY, 1952)

Feedback

FIGURE 3.9 — Exemple de réseau de neurones récurrents (HODGKIN et
HUXLEY, 1952)

des fonctions énergétiques et la regle delta généralisée (HODGKIN et HUXLEY, 1952). La fi-
gure 3.9 illustre un exemple de réseau perceptron avec rétroaction, o1 1'un de ses signaux de
sortie est renvoyé a la couche intermédiaire. Ainsi, en utilisant le processus de rétroaction,
les réseaux avec cette architecture produisent des sorties de courant en tenant également
compte des valeurs de sortie précédentes.

3.3.4 Réseau de neurones d’architectures maillées

Les principales caractéristiques des réseaux a structure maillée résident dans la prise en
compte de la disposition spatiale des neurones a des fins d’extraction de motifs, c’est-a-dire
que la localisation spatiale des neurones est directement liée au processus d’ajustement de
leurs poids et seuils synaptiques (HODGKIN et HUXLEY, 1952). Ces réseaux servent un large
éventail des applications et sont utilisés dans des problemes impliquant le regroupement de
données (le clustering), la reconnaissance des formes, I'optimisation de systemes (HODGKIN
et HUXLEY, 1952).

Le réseau Kohonen est le principal réseau représentant cette architecture (HODGKIN et HUXLEY,

1952). La figure 3.10 illustre un exemple du réseau Kohonen.

3.4. L’apprentissage profond 41

X [

X [F

Xn 3

- O
-O- 110

FIGURE 3.10 — Exemple de réseau de neurones d’architectures maillées
(HODGKIN et HUXLEY, 1952)

3.4 L’apprentissage profond

L’apprentissage profond est une branche de l'apprentissage automatique basée sur un
ensemble d’algorithmes qui tentent de modéliser des abstractions de haut niveau dans les
données en utilisant plusieurs couches de traitement avec des structures complexes, ou au-
trement composées de multiples transformations non linéaires (AREL, ROSE et KARNOWSKI,
2010; MINAR et NAHER, 2018). L'apprentissage profond fait partie d'une famille plus large
de méthodes d’apprentissage automatique basées sur des représentations d’apprentissage
des données. Une observation (par exemple, une image) peut étre représentée de nom-
breuses fagons, comme un vecteur de valeurs d’intensité par pixel, ou par une maniere plus
abstraite comme un ensemble de bords, de régions de forme particuliere, etc. (COSKUN et
al., 2017).

L’apprentissage profond pourrait étre caractérisé comme une classe d’algorithmes d’appren-
tissage automatique qui utilisent une cascade de nombreuses couches d'unités de traite-
ment non linéaires pour 'extraction et la transformation des caractéristiques (COSKUN et
al., 2017). Chaque couche utilise la sortie de la couche précédente comme entrée. Les algo-
rithmes profonds peuvent étre supervisés ou non supervisés (COSKUN et al., 2017).
L’apprentissage automatique traditionnel repose sur des réseaux de neurones peu profonds
composés d'une couche d’entrée et d"une couche de sortie, et pas plus d"une couche cachée.
L’apprentissage profond est qualifié lorsqu’il existe plus de trois couches dans un réseau, y
compris les couches d’entrée et de sortie (BENGIO, 2009).

Diverses architectures d’apprentissage profond telles que les réseaux de neurones profonds,
les réseaux de neurones profonds convolutionnels, et les réseaux de neurones récurrents ont
été appliquées a des domaines tels que la vision par ordinateur, la reconnaissance vocale,
le traitement du langage naturel, la reconnaissance audio et la bio-informatique ot il a été
démontré qu'ils produisent des résultats tres satisfaisants pour diverses taches (COSKUN et
al., 2017).

3.4.1 Réseau de neurones profonds

Dans cette section, nous aborderons brievement les réseaux de neurones profonds (DNN),
ainsi que leurs améliorations. Les réseaux de neurones fonctionnent avec des fonctionnali-
tés similaires au cerveau humain. Ceux-ci sont composés principalement de neurones et de
connexions (GOODFELLOW et al., 2016). Lorsque nous parlons de réseau de neurones pro-
fonds, nous pouvons supposer qu’il devrait y avoir un certain nombre de couches cachées,
qui peuvent étre utilisées pour extraire des caractéristiques a partir des entrées et pour cal-
culer des fonctions complexes (GOODFELLOW et al., 2016). Bengio (WITTEN et al., 2005) a

42 Chapitre 3. Réseaux de neurones et apprentissage profond

FIGURE 3.11 — Une représentation simple de 1'opération de convolution en 2
dimensions (BENGIO, 2009)

expliqué les réseaux de neurones pour les architectures profondes, par ex. Réseaux de neu-
rones convolutifs (CNN), auto-encodeurs (AE), etc. Deng et Yu (GUPTA et RAZA, 2019) ont
détaillé certaines architectures de réseaux de neurones, par exemple AE et ses variantes.

Réseaux de neurones convolutifs

Le réseau de neurone convolutif (CNN), est un type spécialisé de réseau neuronal pour le
traitement de données ayant une topologie connue en forme de grille (YUVARAJ et THANGARA]J,
2019). Par exemple, les exemples incluent les données de séries temporelles, qui peuvent
étre considérées comme une grille 1D, et les données d'image, qui peuvent étre considérées
comme une grille 2D de pixels. Le nom «réseau neuronal convolutif» indique que le réseau
utilise une opération mathématique appelée convolution (YUVARA] et THANGARAJ, 2019).
La convolution est une opération linéaire spécialisée. Les réseaux convolutifs sont simple-
ment des réseaux de neurones qui utilisent la convolution a la place de la multiplication
matricielle générale dans au moins une de leurs couches (YUVARAJ et THANGARAJ, 2019).
Opération de convolution
La convolution n’est qu'une opération mathématique qui décrit une régle de mélange de
deux fonctions et produit une troisieme fonction. Cette troisieme fonction est une intégrale
qui exprime le degré de chevauchement d"une fonction lorsqu’elle est déplacée sur l'autre
fonction. En d’autres termes, une donnée d’entrée et un noyau de convolution sont soumis
a une opération mathématique particuliere pour générer une carte de caractéristiques (fea-
tures map) transformée (BENGIO, 2009).

La convolution est souvent interprétée comme un filtre, o1 le noyau filtre la carte des ca-
ractéristiques (features map) pour des informations d'un certain type (BENGIO, 2009). La
convolution est décrite formellement comme suit :

n) = [f)glt = (3.8)

CNN fonctionne généralement avec une opération de convolution bidimensionnelle comme
montre la figure 3.11. La matrice & gauche correspond aux données d’entrée. La matrice au
milieu est le noyau de convolution et la matrice a droite est une carte de caractéristiques. La
carte des caractéristiques (feature map) est calculée en glissant le noyau de convolution sur
toute la matrice d’entrée (BENGIO, 2009).

L'opération de convolution est généralement connue sous le nom de noyaux. Par diffé-
rents choix de noyaux, différentes opérations pour des images peuvent étre obtenues. Les

3.5. Formation et évaluation d’un réseau de neurones 43

opérations incluent généralement la détection des contours, le flou, la netteté, etc. (BENGIO,
2009).

Réseaux de neurones récurrents

Les réseaux de neurones récurrents sont des réseaux avec des connexions qui forment
des cycles dirigés. En d’autres termes, sont des réseaux de neurones dans lesquels l'infor-
mation peut se propager dans les deux sens. En conséquence, ils ont un état interne, ce qui
en fait des candidats de choix pour résoudre les problemes d’apprentissage impliquant des
séquences de données, comme la reconnaissance de 1’écriture manuscrite, la reconnaissance
vocale et la traduction automatique (FARIS et al., 2018).

Les RNN sont appelés récurrents car ils effectuent la méme tache pour chaque élément
d’une séquence, dans lequel les sorties de neurones sont utilisées comme rétroactions aux
neurones de la couche précédente (BENGIO, 2009). En d’autres termes, la sortie courante est
considérée comme une entrée pour la sortie suivante. Ces réseaux posseédent des connexions
récurrentes au sens ot elles conservent des informations en mémoire : ils peuvent prendre
en compte a un instant f un certain nombre d’états passés (FARIS et al., 2018). Plusieurs cher-
cheurs ont proposé des versions améliorées de réseaux de neurones récurrents par exemple
le LSTM (Long Short Term Memory).

Mémoire a long terme (LSTM)

Les réseaux de longue mémoire a court terme (LSTM) sont une extension des réseaux neuro-
naux récurrents (RNN), qui étend leur mémoire. Les unités d’un LSTM sont utilisées comme
unités de construction pour les couches d’un RNN, qui est alors souvent appelé un réseau
LSTM (VAPNIK, 1999).

Les LSTM permettent aux RNN de se souvenir de leurs intrants sur une longue période
de temps. C’est parce que les LSTM contiennent leurs informations dans une mémoire
(VAPNIK, 1999).

Cette mémoire peut étre vue comme une cellule gated, o gated signifie que la cellule décide
de stocker ou de supprimer des informations, en fonction de I'importance qu’elle attribue
a l'information (VAPNIK, 1999). L'attribution de l'importance se fait a travers des poids,
qui sont également appris par 'algorithme. Cela signifie simplement qu’il apprend avec le
temps quelle information est importante et laquelle ne I’est pas (VAPNIK, 1999).

Dans un LSTM il y a trois portes : la porte d’entrée, la porte d’oublie et la porte de sortie. Ces
portes déterminent s’il faut laisser entrer une nouvelle entrée ou non (porte d’entrée), sup-
primer l'information car elle n’est pas importante (oublier la porte) ou la laisser influencer
la sortie au pas de temps courant (porte de sortie) (VAPNIK, 1999). Depuis 1997, la recherche
liée au LSTM est un domaine tres actif et de nombreuses variations ont été proposées.

3.5 Formation et évaluation d’un réseau de neurones

La formation est le processus ot les poids d"un réseau de neurones sont ajustés pour
produire la sortie souhaitée. Le processus de formation peut ajuster les poids afin que le ré-
seau neuronal produise une sortie utile. La plupart des algorithmes de formation du réseau
neuronal commencent par initialiser les poids a un état aléatoire. La formation progresse en-
suite a travers une série d’itérations qui améliorent continuellement les poids pour produire
une meilleure sortie (RUMELHART, HINTON et WILLIAMS, 1988). La formation utilise 1’éva-
luation, qui est le processus o1 la sortie du réseau de neurones est évaluée par rapport a la
sortie attendue (RUMELHART, HINTON et WILLIAMS, 1988). Cette section couvrira 1'évalua-
tion et introduira la formation d"un réseau de neurones. Parce que les réseaux de neurones
peuvent étre formés et évalués de différentes manieres, nous avons besoin d’une méthode

44 Chapitre 3. Réseaux de neurones et apprentissage profond

cohérente pour les juger. Une fonction objective évalue un réseau neuronal et renvoie un
score. La formation ajuste le réseau neuronal de maniére & obtenir de meilleurs résultats.
En regle générale, la fonction objective souhaite des scores inférieurs. Le processus consis-
tant & tenter d’obtenir des scores inférieurs est appelé minimisation. On peut établir des
problemes de maximisation, dans lesquels la fonction objective souhaite des scores plus éle-
vés. Par conséquent, nous pouvons utiliser la plupart des algorithmes de formation pour les
problemes de minimisation ou de maximisation. On peut optimiser les poids d"un réseau de
neurones avec n'importe quel algorithme d’optimisation continue, comme le recuit simulé,
I'optimisation de 1’essaim de particules, les algorithmes génétiques (RUMELHART, HINTON
et WILLIAMS, 1988).

3.5.1 Formation par la rétropropagation du gradient

Rumelhart, Hinton et Williams (1986) (LI et al., 2012) ont introduit la rétropropagation.
La rétropropagation est 'une des méthodes les plus courantes pour former un réseau de
neurones. La rétropropagation est un type de descente de gradient. La descente de gradient
fait référence au calcul d"un gradient sur chaque poids dans le réseau neuronal pour chaque
élément d’entrainement. Si le réseau de neurones ne fournit pas la valeur attendue pour
un élément d’entrainement, le gradient de chaque poids vous donnera une indication sur
la maniere de modifier chaque poids pour obtenir la valeur attendue. Si le réseau neuronal
fournit exactement ce qui est attendu, le gradient de chaque poids sera égal a 0, ce qui si-
gnifie qu’il n’est pas nécessaire de modifier le poids (RUMELHART, HINTON et WILLIAMS,
1988).

Algorithme rétropropagation

Le processus de la rétropropagation peut étre décrit comme suit :

— Phase de propagation : dans cette phase, les données d’une instance de formation
sont introduites dans le réseau neuronal. Il en résulte une cascade de calculs a tra-
vers les couches, en utilisant ’ensemble des poids actuels. La sortie prédite peut étre
comparée a celle de I'instance de formation et la dérivée de la fonction de perte par
rapport a la sortie est calculée. La dérivée de cette perte doit maintenant étre calculée
par rapport aux poids dans toutes les couches de la phase de retour (DA SILVA et al.,
2017).

— Phase de rétropropagation : I’objectif principal de cette phase est d’apprendre le gra-
dient de la fonction de perte (fonction objectif) par rapport aux différents poids en
utilisant la regle de la chaine de calcul de differential. Cette phase est appelé la phase
inverse (DA SILVA et al., 2017).

Description de 1’algorithme rétropropagation

L'idéologie guidant les régles d’apprentissage du réseau BP est la suivante : la modifi-
cation de la valeur de poids et de la valeur seuil du réseau doit étre effectuée le long de la
direction du gradient négatif.

Xip1 = Xk — MkSk (3.9)

Dans la formule mentionnée ci-dessus, x; représente la matrice de la valeur de poids actuelle
et de la valeur seuil; g représente le gradient de la fonction actuelle; 1, représente le taux
d’apprentissage. Ici, le réseau BP a trois couches est pris comme exemple pour décrire en
détail I'algorithme BP (KUBAT, 1999). Comme pour le réseau BP a trois couches, supposons
que son neeud d’entrée est x;, le nceud de la couche cachée est y; et le nceud de la couche
de sortie est z; (KUBAT, 1999). La valeur de poids du réseau entre le noceud d’entrée et le

3.5. Formation et évaluation d’un réseau de neurones 45

nceud de la couche cachée est wjj, et la valeur de poids du réseau entre les nceuds de la
couche cachée et la couche de sortie est v);. Lorsque la valeur attendue du nceud de sortie
est t;, f(e) est la fonction d’activation (KUBAT, 1999). La formule de calcul du modele est
exprimée comme suit :

Propagation vers I’avant : sortie du réseau informatique

Sortie du nceud de la couche cachée :

y] = f(w]‘l'x,‘ — 9]) = f(net]-) (310)
netj = Zwﬁxi - 9] (311)

Sortie de calcul du nceud de sortie :

2= f()_wijy; — 61) = f(net;) (3.12)
j

1’l€tl = Zvl]y] — 91 (313)

j

Erreur du nceud de sortie :

1 1

E=sY(h—2)" =5} (h—f(Loyy—6)) (3.14)
) I j

3 0 F(Tof e =)) (3.15)
)

La rétropropagation : la méthode de descente de gradient est adoptée pour réguler la
valeur de poids de toutes les couches, et I’algorithme d’apprentissage de la valeur de poids
est exprimé comme suit (KUBAT, 1999) :

Modification de la valeur de poids

1. Dérivation du nceud de sortie au moyen d’une fonction d’erreur :

JoE " OE aZk JoE aZl

OE 9B 0z b 9z 3.16
avl]' =1 aZk avl]' le- Bv,j ()

E est une fonction contenant plusieurs zi, mais un seul z; est 1ié a vj; et tous les z; sont
indépendants les uns des autres, dans cette formule,

OE 1 ozx | _
T = oL | 2= ot | =~ -2) (3.17)
dz; 0dz; Odnet; ‘
ﬁlj = el 30, = fI(net;) Y (3.18)
De cette facon,
oE
glj = —(tl — Zl) . f/(net;) Y (319)

Supposons que l'erreur du nceud d’entrée soit,

o= (t —z) - fI(net)) (3.20)

46

Chapitre 3. Réseaux de neurones et apprentissage profond

De cette facon,
3 = —(51 -y]‘ (3.21)

. Déviation du nceud de la couche cachée par fonction d’erreur :

= — . 3.22
awﬁ]]-aZl ay] awj,- ()

E est une fonction contenant plusieurs z; ; il est ciblé sur certains wj;, correspondant a
un yj, et liés a tous les z;, dans cette formule,

sz o
8721 > Z 2(t — zx) | T —(t —z) (3.23)

De cette facon,

JE
awj,-

=Y (ty —z) - fr(net;) -vyj - fr(net;) - x; = =Y Svyifr(net;) - x; (3.24)
I I

Supposons que l'erreur du nceud de la couche de cachée soit,

01; = fl(net)) Zélvl] (3.25)
De cette facon,
oE
— = —0/x; 3.26

Comme la modification du poids Av;; et Aw;; est proportionnelle aux fonctions d’er-
reur et descend le long du gradient, la formule montrant la modification du poids de
la couche cachée et de la couche de sortie est exprimée comme suit :

oE
Avj; = —’7@ = 101y; (3.27)

Dans cette formule, # représente le taux d’apprentissage. La formule montrant la
modification entre la couche d’entrée et la couche cachée est exprimée comme suit :

oE
Awj; = —n! Jw, = 11d/;x; (3.28)
(5/ —f/ 7’l€t Z(Sﬂ]l] (3.29)

Dans cette formule, 77/ représente le taux d’apprentissage; }_ 6;v;; I'erreur de nceud de
l

la couche cachée, /; exprime 'erreur §; du nceud de sortie z; est propagé a nouveau
a travers la valeur des poids vj; vers le nceud y; pour devenir l'erreur de nceud de la
couche cachée.

Modification de la valeur de seuil

La valeur de seuil 0 est également une valeur de variation et elle doit également étre modi-
fiée pendant que la valeur de poids est modifiée; la théorie appliquée est la méme que celle
utilisée pour la modification de la valeur pondérale (KUBAT, 1999).

3.5. Formation et évaluation d’un réseau de neurones 47

1. Dérivation du seuil du nceud de sortie par la fonction d’erreur :

OE 9E 9z
3% = 3 5 (3.30)

Dans cette formule,
0z; dz; Odnet;
gal . — (=1 31
891 8netl 891 f/(rwtl) () (33)

De cette facon, la formule exprimant la modification de la valeur de seuil est :

oE

A savoir,
91(k + 1) = 91 (k) + A@l = 91 (k) + 17(51 (333)

2. Dérivation du seuil de nceud de la couche cachée par la fonction d’erreur :

oE d0E 9z, 9y
N =2 (3.34)
Dans cette formule,
9z _ 9m1 oMl _ ppony . (—1) (3.35)

879] a anet, 801

De cette facon,

35_ =Y (t1—z) - fr(net;) ~vjj - fl(net;) = Z(Slvljf/(netj) = J/ (3.36)
i]

La formule exprimant la modification de la valeur seuil est :

JE
Ab; = 77/879]' = n1dl; (3.37)
A savoir,

Amélioration de 1’algorithme rétropropagation

Les avantages de la mise en ceuvre de 1'algorithme de la rétropropagation sont sa sim-
plicité et son efficacité. Cependant, les inconvénients de cet algorithme sont par exemple :
tomber dans le minimum local et sa convergence lente, en particulier dans les tiches com-
plexes qui nécessitent un réseau massif (DENG et YU, 2014).

Les chercheurs ont proposé de nombreux algorithmes qui améliorent cet algorithme
(BENUWA et al., 2016) pour résoudre ces défauts. Ses méthodes améliorées peuvent généra-
lement étre classées en trois catégories : I'une consiste a améliorer la vitesse de la formation
du réseau neuronal; la seconde est d’améliorer la précision de la formation; et la troisiéme
est d’éviter de tomber dans le minimum local. Parmi ces méthodes, les plus typiques sont la
méthode de momentum et la méthode du taux d’apprentissage variable (KUBAT, 1999).
Méthode de Momentum

La méthode de momentum est formée en introduisant le coefficient de momentum « basé
sur l'algorithme de descente de gradient (KUBAT, 1999). La formule qui montre l’ajustement

48 Chapitre 3. Réseaux de neurones et apprentissage profond

de la valeur de poids et inclut le coefficient de moment est exprimée comme suit :

Aw(t+1) = aAw(t) +n(1 — oc)gi (3.39)
Dans cette formule, Aw(t + 1) et Aw(t) représentent les corrections de poids aprésla (¢ + 1)
et (t)'" itération; la valeur du coefficient de moment doit étre comprise entre 0 et 1, la valeur
0.9 est généralement sélectionnée (KUBAT, 1999).
Méthode adaptative du taux d’apprentissage
La surface d’erreur du réseau varie considérablement en fonction du parametre variable;
le taux d’apprentissage le plus élevé doit étre sélectionné pour les zones dont les surfaces
d’erreur sont trés réguliéres; le taux d’apprentissage le plus faible doit étre sélectionné pour
les zones dont les surfaces d’erreur sont tres précipitées (KUBAT, 1999). La méthode du taux
d’apprentissage variable est utilisée pour 1’ajustement auto-adaptatif du taux d’apprentis-
sage en fonction du changement d’erreur. La formule ci-dessous montre 1’ajustement du
taux d’apprentissage (KUBAT, 1999) :

kinc(t) E(t+1) < E(t)
7t +1) = { kgeeny(t) E(t+1) > E(f) (3.40)
n(t)

Dans cette formule, le facteur incrémental du taux d’apprentissage ki, > 1, généralement
kinc = 1.05; le facteur de réduction du taux d’apprentissage 0 < kzor < 1, généralement
kgee = 0.7; E(t + 1) et E(t) représentent la somme totale des erreurs quadratiques apres la
(t+1)" etla ()" itération respectivement; 7 représente le taux d’apprentissage. Si E(t -+
1) < E(t), cela représente que la (t)!" itération est efficace, alors la multiplication du facteur
incrémental augmente le taux d’apprentissage; si E(t +1) > E(t), cela représente que la
()" itération est inefficace, alors la multiplication du facteur de réduction pour réduire le
taux d’apprentissage afin de réduire l'itération inefficace et accélérer le taux d’apprentissage
du réseau (KUBAT, 1999).

3.6 Problémes pratiques dans la formation des réseaux neuronaux

Malgré la formidable réputation des réseaux de neurones, des défis considérables de-
meurent en ce qui concerne la formation (I'entrainement) effective des réseaux neuronaux.
Ces défis sont principalement liés a plusieurs problemes pratiques liés a la formation, dont
le plus important est le sur-ajustement (DA SILVA et al., 2017).

3.6.1 Le probléme du sur-ajustement

Le probleme du sur-ajustement est lié au fait que l'ajustement d’'un modele a un en-
semble de données d’entrainement particulier ne garantit pas qu’il fournira de bonnes per-
formances de prédiction sur des données de test invisibles, méme si le modéle prédit parfai-
tement les cibles sur les données d’entrainement (DA SILVA et al., 2017). En d’autres termes,
il existe toujours un écart entre les performances des données d’entrainement et de test, ce
qui est particulierement important lorsque les modéles sont complexes et que I'ensemble de
données est petit (DA SILVA et al., 2017).

3.7. Conclusion 49

3.6.2 Difficultés de convergence

Une convergence suffisamment rapide du processus d’optimisation est difficile & réa-
liser avec des réseaux tres profonds, car la profondeur entraine une résistance accrue au
processus d’entrainement en ce qui concerne la fluidité des gradients dans le réseau. Par
conséquent, certaines "astuces" ont été proposées dans la littérature pour ces cas, y compris
I'utilisation de réseaux résiduels (DA SILVA et al., 2017 ; KOHAVI et JOHN, 1997).

3.6.3 Défis informatiques

Un défi important dans la conception des réseaux de neurones est le temps de fonction-
nement nécessaire pour former le réseau. Il n’est pas rare qu’il faille des semaines pour for-
mer des réseaux de neurones dans les domaines d’images et du texte. Ces derniéres années,
les progres de la technologie matérielle, comme les unités de traitement graphique (GPU),
ont contribué dans une large mesure. Les GPU sont des processeurs matériels spécialisés
qui peuvent accélérer considérablement les types d’opérations couramment utilisées dans
les réseaux neuronaux.

3.6.4 Optima locaux fallacieux

La fonction d’optimisation dun réseau de neurones est hautement non linéaire, avec
de nombreux optima locaux. Lorsque 1'espace des parametres est grand et qu’il existe de
nombreux optima locaux, il est logique de faire un effort pour choisir de bons points d’ini-
tialisation. Un tel procédé pour améliorer l'initialisation du réseau de neurones est appelé
pré-entrainement (DA SILVA et al., 2017). L'idée de base est d"utiliser une formation supervi-
sée ou non supervisée sur des sous-réseaux peu profonds du réseau d’origine afin de créer
les poids initiaux. Ce type de pré-entrainement est effectué de maniere gourmande et par
couches dans laquelle une seule couche du réseau est formée a la fois afin d’apprendre les
points d’initialisation de cette couche (DA SILVA et al., 2017). Ce type d’approche fournit
des points d’initialisation qui ignorent des parties radicalement non pertinentes de I'espace
des parametres. De plus, un pré-entrainement non supervisé a souvent tendance a éviter les
problemes associés au sur-ajustement (DA SILVA et al., 2017). L'idée de base ici est que cer-
tains des minima de la fonction de perte sont des optima faux car ils ne sont présentés que
dans les données d’apprentissage et non pas dans les données de test. L'utilisation d"un pré-
entrainement non supervisé tend a rapprocher le point d’initialisation du bassin des «bons»
optima dans les données de test. C’est un probleme associé a la généralisation du modele
(DA SILVA et al., 2017).

3.7 Conclusion

Les réseaux neuronaux artificiels (ANN) sont largement utilisés pour la classification
supervisée et non supervisée et constituent une alternative aux autres méthodes de classifi-
cation (ZHANG, 2000).

Dans ce chapitre, nous avons présenté un apercu sur les réseaux de neurones et les réseaux
de neurones profonds.

Depuis le début des réseaux de neurones, ces méthodes sont utilisées dans plusieurs do-
maines et plusieurs optimisations sont proposées dans la littérature pour améliorer leurs
fonctionnements.

L’optimisation des ANN peut porter sur plusieurs aspects. Elle peut concerner soit I’'optimi-
sation de la topologie des réseaux de neurones, soit dans leur formation ou entrainement.
Les algorithmes métaheuristiques ont été largement utilisés pour traiter ces deux aspects.

51

Chapitre 4

Meétaheuristiques pour la classification
supervisée et la sélection d’attributs

4.1 Introduction

L'une des taches les plus importantes de I'exploration de données (datamining) est la
classification supervisée. Une telle tiche prend en entrée une collection d’observations (ou
objets), chacune appartenant & un petit nombre de classes et décrite par ses valeurs pour
un ensemble fixe d’attributs (également appelés variables ou caractéristiques) (DHAENENS,
2016). L'objectif est de construire un classificateur qui peut prédire avec précision la classe
a laquelle appartient une nouvelle observation. Par conséquent, le but de cette tache d’ex-
ploration de données est de créer un modele qui prédit la valeur de la classe a partir des
valeurs connues des autres variables (DHAENENS, 2016).

Dans la classification, toutes les variables qui sont stockées dans la base de données ne sont
pas toutes nécessaires pour une discrimination précise. Les inclure dans la classification peut
méme réduire les performances du modéle. La sélection d’attributs, également appelée sé-
lection de sous-ensembles de variables, vise a sélectionner un ensemble optimal d’attributs
pertinents et nécessaires a la classification. Une sélection d’attributs appropriée peut amé-
liorer 1'efficacité d’'un modele d’inférence. Dans (NDIAYE et al., 2014), les auteurs indiquent
que les effets de la sélection d’attributs sont les suivants : 1) améliorer les performances; 2)
visualiser les données pour la sélection du modele; 3) réduire la dimensionnalité et suppri-
mer le bruit.

La classification supervisée et I'optimisation mathématique ont des liens étroits (NARENDRA
et FUKUNAGA, 1977). Ce chapitre fournit d’abord une description de la tache de la classifica-
tion et une présentation des méthodes de classification standard. Ensuite, il aborde 'utilisa-
tion des métaheuristiques pour optimiser ces méthodes de classification et nous proposons
ensuite de montrer comment la sélection d’attributs peut étre réalisée avec les métaheuris-
tiques.

Dans ce chapitre, on se concentre sur deux méthodes de classification a savoir les réseaux
de neurones et les machines a vecteurs de support (SVM).

4.2 Métaheuristiques pour la classification supervisée

4.2.1 Description du probléme

L'objectif de cette tache d’exploration de données est de construire un modele qui prédit
la valeur d’une variable, appelée "classe", a partir des valeurs connues d’autres variables. Le
modele est construit a partir d’observations connues, puis, pour les nouvelles observations,
le modele est appliqué pour déterminer la valeur de la variable cible. Dans sa forme de
base, la variable prédite (la classe) est catégorielle. En outre, lorsque la variable prédite est

52 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

Predicted
Negative | Positive
Actual Negative TN rr
Actual Positive FN TP

FIGURE 4.1 — La matrice de confusion

numérique, la tdche devient une régression (DHAENENS, 2016).
Plusieurs approches standard ont été proposées pour traiter de la classification supervisée.

4.2.2 Modele d’optimisation
Un probléme combinatoire

La représentation descriptive des solutions du probleme de classification est directement
liée a la maniere dont le modele de classification est exprimé. Il n’est donc pas possible ici
de donner une maniére générale de représenter la solution. Au contraire, quel que soit le
modele de classification utilisé, les mesures de qualité, qui indiquent la capacité du modéle
a bien classer les nouvelles observations, sont les mémes (DHAENENS, 2016).

Mesures de qualité

Les mesures de qualité visent a évaluer les performances d’un classificateur. Plusieurs
mesures de qualité ont été proposées dans la littérature. Cette partie présente les plus utili-
sées.

Matrice de confusion

Un grand nombre de mesures de qualité sont basées sur la matrice de confusion. La figure
4.1 présente une telle matrice pour un cas de classification binaire (deux classes). Les deux
classes sont souvent appelées négatives et positives. Les lignes présentent la classe réelle,
tandis que les colonnes présentent la classe prédite par 1’algorithme de classification. La
matrice de confusion contient quatre valeurs. TP et TN représentent le nombre d’observa-
tions de I'ensemble de test qui sont correctement classées, tandis que FN et FP représentent
les observations mal classées. Notons N comme le nombre total d’observations.

Mesures de performance

Exactitude :1'exactitude mesure le ratio des observations bien classées

TP+ TN

< (4.1)

Accuracy =
Précision : la précision mesure le ratio des observations positives bien classées par rapport
a toutes les observations positives prévues

TP
Precision = ————— 4.2
TP+ FP (4.2)

Sensibilité :la sensibilité (ou rappel) mesure le rapport entre les observations positives bien
classées et toutes les observations positives réelles

TP

SenSitivity = m

(4.3)

4.2. Meétaheuristiques pour la classification supervisée 53

Spécificité :la spécificité mesure le rapport entre les observations négatives bien classées et
I'ensemble des observations négatives réelles

e TN
Specificity = TN L EP (4.4)
F-mesure : calcule une moyenne harmonique entre la précision et le rappel
F — measiure — (2 x Precision x Recall) 45)

(Precision + Recall)

Les mesures de performances les plus utilisées avec les jeux de données déséquilibrés sont
les suivants :

Le coefficient de corrélation de Matthews (MCC)

Le coefficient de corrélation de Matthews (MCC) est utilisé dans 1’apprentissage automa-
tique comme une mesure de la qualité des classifications binaires (a deux classes). Il est
défini en termes de vrai positif (TP), vrai négatif (TN), faux positif (FP) et faux négatif (FN).
En général, il est considéré comme une mesure équilibrée qui peut étre utilisée dans des
ensembles de données déséquilibrés. Il peut étre également écrit en termes de TP, y et T
comme suit (BOUGHORBEL, JARRAY et EL-ANBARI, 2017) :

MCC — (TP x TN — FP x FN) B TP — ym (46)
~ V(TP+FP)(FP+FN)(TIN+FP)(TN+FN)) (A —-yr(dl-n)
mn=P=(Y=1) and v(0) =P(O=1) 4.7)

Il est important de mentionner que 7t correspond a la classe minoritaire si la petite classe

est considérée comme ayant 1'étiquette 1. Le MCC prend des valeurs dans l'intervalle [-1,
1]. Un coefficient de +1 représente une prédiction parfaite, - 1 une prédiction inverse et 0 est
une prédiction aléatoire moyenne.
G-Moyenne :le score moyen géométrique correspond a la moyenne géométrique de la sen-
sibilité et de la spécificité est principalement utilisé dans les problémes déséquilibrés. La
moyenne géométrique essaie de maximiser la précision sur chacune des classes tout en gar-
dant ces précisions équilibrées.

G — moyenne = 4/ (Sens x Spec) (4.8)

Le choix de la mesure de qualité est fortement corrélé au contexte de I'application et peut-
étre considéré comme la fonction objective par une méthode d’optimisation utilisée pour
traiter la classification.

4.2.3 Métaheuristiques pour optimiser des algorithmes de classification
Optimisation des réseaux de neurones artificiels (ANN)

L’'optimisation des réseaux de neurones artificiels peut porter sur plusieurs aspects. Elle
peut concerner soit I'optimisation de la topologie des réseaux de neurones, soit la formation
du réseau de neurones. Plusieurs métaheuristiques ont été proposées dans la littérature
pour traiter ces deux aspects.

Les métaheuristiques présentent de nombreux avantages : elles s’appliquent a tout type
de réseau de neurones avec toute fonction d’activation (PALMES, HAYASAKA et UsUJ,
2005), fournissent des solutions acceptables dans un délai raisonnable pour résoudre des

54 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

problemes complexes et difficiles (BLUM et al., 2011), et sont particulierement utiles pour
traiter de grands problemes complexes qui génerent de nombreux optima locaux (MARTI et
EL-FALLAHI, 2004; HAMM, BRORSEN et HAGAN, 2002). Les métaheuristiques peuvent étre
divisées en deux catégories : les algorithmes basés sur une seule solution (NANDY, SARKAR
et DAS, 2012) et les algorithmes basés sur la population (NAWI, REHMAN et KHAN, 2014a).
Pour les algorithmes basés sur une solution unique, certaines études ont utilisé la recherche
taboue et le recuit simulé (SHAW et KINSNER, 1996; SEXTON et al., 1998) pour la formation
de réseaux de neurones a propagation avant. Les algorithmes basés sur la population
peuvent étre divisés en deux groupes : les algorithmes d’intelligence en essaim et les algo-
rithmes évolutionnaires (FEDOROVICI et al., 2012). Pour les algorithmes évolutionnaires,
P.P. Palms (PALMES, HAYASAKA et UsUI, 2005) a utilisé des algorithmes génétiques (GA).
Les auteurs ont montré que les GA surpassent les BP. Pour les algorithmes d’intelligence
en essaim, plusieurs auteurs ont proposé des algorithmes basés sur les essaims comme
méthodes de formation de réseau de neurones, par exemple, 'optimisation des essaims
de particules (PSO) (CHEN et al., 2007), 'optimisation des colonies de fourmis (ACO)
(NANDY, SARKAR et DAs, 2012), 'algorithme de chauve-souris (BA) (NAWI, REHMAN et
KHAN, 2014a), I'algorithme de chauve-souris modifié (JADDI, ABDULLAH et HAMDAN,
2015), l'algorithme d’optimisation des baleines (WOA) (FARIS, ALJARAH et MIRJALILI,
2018) etc.....

Dans (ALJARAH, FARIS et MIRJALILI, 2018a) un algorithme de formation de réseau de
neurones basé sur 'algorithme d’optimisation des baleines (WOA) a été proposé. Il a été
prouvé que cet algorithme est capable de résoudre un large éventail de problemes d’opti-
misation et de surpasser les algorithmes actuels. Pour la premiére fois dans la littérature, 20
ensembles de données présentant différents niveaux de difficulté ont été choisi pour tester
le formateur proposé (WOA). Les résultats sont vérifiés par des comparaisons avec 1'algo-
rithme de rétropropagation et six techniques évolutives. Les résultats qualitatifs et quan-
titatifs ont prouvé que ce formateur est capable de surpasser les autres algorithmes sur la
majorité des ensembles de données en termes d’évitement des optima locaux et de vitesse
de convergence.

Dans (FARIS, ALJARAH et MIRJALILI, 2016a) l'algorithme "multi-verse optimizer"
(MVO) est utilisé pour la formation du réseau de neurones a perceptron multicouches
(MLP). Cette approche de formation est comparée et évaluée a 1'aide de neuf ensembles
de données biomédicales. Les résultats sont comparés a cinq algorithmes métaheuristiques
évolutionnaires classiques et récents : algorithme génétique (GA), optimisation de 1’es-
saim de particules (PSO), évolution différentielle (DE), algorithme des lucioles (FF) et la
recherche du coucou (CS). De plus, les résultats sont comparés a deux méthodes classiques
d’entrainement basées sur le gradient : les algorithmes conventionnels de rétropropagation
(BP) et de Levenberg-Marquardt (LM). L'étude comparative a démontré que MVO est trés
compétitif et surpasse les autres algorithmes de formation dans la majorité des ensembles
de données en termes d’évitement d’optima locaux et la vitesse de convergence.

(ALJARAH et al., 2018) propose un nouveau mécanisme d’entrainement pour les ré-
seaux de neurones a fonctions de base radiale basé sur "biogeography-based optimiser
(BBO)". Pour prouver l'efficacité de cette méthode, 12 ensembles de données bien connus
sont utilisés et 1’algorithme est comparé a 11 algorithmes de formation utilisés dans la
littérature, y compris les approches basées sur les gradients et les approches stochastiques.
L’article envisage de modifier le nombre de neurones et d’étudier les performances des
réseaux de fonctions de base radiales avec un nombre différent de parametres. Un test
statistique est également effectué pour juger la signification des résultats. Les résultats ont
montré que ce formateur est capable de surpasser considérablement les autres algorithmes

4.2. Meétaheuristiques pour la classification supervisée 55

d’entrainement sur tous les ensembles de données en termes de précision de classification,
de vitesse de convergence et d’évitement d’optima locaux. De plus, la comparaison des
entraineurs sur des réseaux de fonctions de base radiales avec différentes tailles de neurones
a révélé que ce formateur est capable d’entrainer efficacement des réseaux de neurones a
fonctions de base radiales avec un nombre différent de parametres.

Un nouvel algorithme d’optimisation appelé "Moth-Flame Optimizer" (MFO) est pro-
posé dans (FARIS, ALJARAH et MIRJALILI, 2017) pour entrainer les réseaux de neurones a
fonctions de base radiales. Sept ensembles de données standard sont utilisées pour tester
ce formateur. L'entraineur basé sur le MFO est comparé a l'algorithme des essaims de
particules (PSO), I'algorithme génétique (GA), l'algorithme des chauves-souris (BA). Les
résultats ont montré que ce formateur a donné des résultats supérieurs dans la majorité des
cas. L'observation du comportement de convergence prouve que cet entraineur bénéficie
également de 1’accélération de la vitesse de convergence.

Un nouvel algorithme d’optimisation "Improved monarch butterfly optimization" (IMBO)
a été proposé par Faris et al. (FARIS, ALJARAH et MIRJALILI, 2018) afin de remédier aux
inconvénients de l'algorithme "Monarch butterfly optimization" (MBO) récemment pro-
posé. Pour prouver 1'efficacité d'IMBO, un ensemble de 23 fonctions de test est utilisée. Les
résultats statistiques montrent qu'IMBO bénéficie d'un évitement élevé des optima locaux
et d’une vitesse de convergence rapide, ce qui aide cet algorithme a surpasser le MBO de
base et une autre variante récente de cet algorithme (GCMBO). Les résultats de I’algorithme
proposé sont comparés a neuf autres approches pour la vérification. L’analyse compara-
tive montre qu'IMBO fournit des résultats tres compétitifs et a tendance a surpasser les
autres algorithmes. Pour démontrer I'applicabilité de I'IMBO a la résolution de problémes
pratiques difficiles, il est également utilisé pour entrainer les réseaux de neurones. Le
formateur basé sur IMBO est testé sur 15 ensembles de données de classification populaires
obtenus aupres du référentiel d’apprentissage automatique de I'Université de Californie a
Irvine (UCI).). Les résultats sont comparés a une variété de techniques dans la littérature, y
compris le MBO original et le GCMBO. Les expérimentations ont montré qu'IMBO améliore
considérablement l'apprentissage des réseaux de neurones, prouvant les mérites de cet
algorithme pour résoudre des problemes difficiles.

Dans les réseaux de neurones, trouver simultanément des valeurs optimales pour le nombre
de neurones cachés et les poids de connexion est considéré comme une tache difficile. En ef-
fet, la modification des neurones cachés a un impact substantiel sur la structure entiere d’un
réseau de neurones et augmente la complexité du processus d’entrainement qui nécessite
des considérations spéciales. En fait, le nombre de variables change proportionnellement
au nombre de nceuds cachés lors de la formation des réseaux de neurones. En tant que
I'une des tentatives fondamentales, un schéma de codage hybride est proposé Dans (FARIS,
MIRJALILI et ALJARAH, 2019a) pour faire face aux défis susmentionnés. Un ensemble
d’algorithmes basés sur la population stochastiques récents et bien considérés est ensuite
utilisé pour optimiser le nombre de neurones cachés et les poids de connexion dans un
réseau de neurones a propagation avant avec une seule couche cachée. Dans les expériences,
vingt-trois ensembles de données standard de classification sont utilisés pour évaluer la
technique proposée qualitativement et quantitativement. Les résultats montrent que le
schéma de codage hybride permet aux algorithmes d’optimisation de trouver facilement
les valeurs optimales pour le nombre de nceuds cachés et les poids de connexion. De plus,
I'optimiseur de loup gris "Grey — Wolf Optimizer " (GWO) a surpassé les autres algorithmes.

Dans (TARKHANEH et SHEN, 2019), Tarkhaneh et al. ont proposé un nouvel algorithme de

56 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

formation évolutif appelé LPSONS, qui combine les opérateurs de vitesse dans 1’optimisa-
tion des essaims de particules (PSO) avec la distribution de Mantegna Lévy pour produire
des solutions plus diverses en divisant la population et la génération entre différentes
sections de l'algorithme. Il combine en outre la recherche du voisinage avec la distribution
de Mantegna Lévy pour atténuer la convergence prématurée et éviter les minima locaux.
Cet algorithme peut trouver des résultats optimaux et en méme temps éviter la stagnation
dans les solutions optimales locales ainsi que la convergence prématurée dans la formation
des réseaux de neurones a propagation avant. Les expériences menées avec quatorze
ensembles de données standard provenant du référentiel d’apprentissage automatique de
I"UCI confirment que 1'algorithme LPSONS a surpassé largement une approche basée sur
les gradients ainsi que certains algorithmes évolutifs bien connus qui sont également des
améliorations de PSO.

Dans (KHAN et al., 2019) une nouvelle méthode appelée algorithme hybride (HACPSO),
basée sur deux algorithmes métaheuristiques APSO et CS est proposé pour entrainer les
réseaux de neurones a propagation avant. Dans cet algorithme (HACPSO), I’APSO permet
de communiquer pour rechercher le meilleur endroit ayant le meilleur nid avec une plus
grande capacité de survie pour les coucous. Différentes simulations ont été réalisées sur
des ensembles de données standard et l'efficacité de 1’algorithme proposé est comparée a
CS, I'optimisation des colonies de fourmis (ACO) et d’autres variantes hybrides similaires.
Les résultats de la simulation montrent que l'algorithme HACPSO est plus performant
par rapport aux autres algorithmes en termes de précision, MSE, STD avec un taux de
convergence rapide.

Rashid et al. (RASHID, ABBAS et TUREL, 2019) Ont proposé un réseau de neurones ré-
currents modifié avec un optimiseur de loup gris modifié pour identifier les faiblesses des
étudiants universitaires. L'optimiseur de loup gris modifié est utilisé pour optimiser le
réseau de neurones récurrent. Les résultats ont montré que le réseau de neurones récurrents
modifié avec un optimiseur de loup gris modifié a la meilleure précision par rapport a
d’autres modeéles.

L’auteur dans (FEDOROVICI et al., 2012) a incorporé "Gravitational Search Algorithm"
GSA dans ConvNet pour améliorer ses performances et éviter d’étre coincé dans les minima
locaux. Le GSA est utilisé pour la formation du ConvNet en conjonction avec 1’algorithme
de rétropropagation (GSA-ConvNet). Le GSA-ConvNet est évalué sur l'application OCR.
Le GSA-ConvNet améliore les performances du ConvINet conventionnel.

L’EA "Evolutionary Algorithm" est utilisé pour optimiser les parametres du DBN "Deep
Belief Network". L'auteur de (ZHANG et al., 2018a) a appliqué I'EA adaptative dans le DBN
pour régler automatiquement les parameétres sans avoir besoin de connaissances préalables
sur le DBN. L’EADBN est évalué a la fois sur des ensemble de données de référence et du
monde réel. Le résultat de I’évaluation montre que 'EADBN améliore les performances des
variantes standard du DBN.

Optimisation de machine a vecteurs de support (SVM)

SVM est un modele proposé et développé par Vapnik (KIRA et RENDELL, 1992). SVM
est 'un des types d’algorithmes d’apprentissage basé sur la théorie de l'apprentissage
statistique (HE et al., 2016). SVM peut étre utilisé pour les taches de classification et de ré-
gression. Récemment, dans une étude comparative approfondie (CARRIZOSA et MORALES,
2013), il a été montré que SVM figure parmi les meilleurs classificateurs (LTU et MOTODA,
2007).

4.2. Meétaheuristiques pour la classification supervisée 57

Comme dans la majorité des classificateurs, SVM dépend du processus de formation
pour construire son modele. En utilisant I'astuce du noyau, SVM transforme les données
d’apprentissage par des fonctions de mappage non linéaires en un espace dimensionnel
supérieur ot les données peuvent étre séparées linéairement, ou pour trouver les meilleurs
hyperplans (vecteurs de support) avec une marge maximale normalisée par rapport aux
points de données. Par conséquent, le but du processus d’apprentissage de SVM est de
rechercher les hyperplans linéaires optimaux dans cette dimension (LIU et MOTODA, 2007).
Bien que l'algorithme d’apprentissage SVM ait généralement de bonnes performances
et une base statistique robuste, la qualit¢é d’'un SVM est largement influencée par les
parameétres des fonctions du noyau. Les parametres de la fonction noyau, ainsi que le
parametre de régularisation, sont les hyper-parametres du SVM. En pratique, la méthode
standard pour déterminer les hyper-parametres est la recherche par grille. Dans une simple
recherche de grille, les hyper-parametres varient avec une taille de pas fixe a travers une
large gamme de valeurs et les performances de chaque combinaison sont mesurées. En
raison de sa complexité de calcul, des approches d’optimisation ont été proposées pour
traiter la sélection du modele SVM (sélection d’hyper-parameétres) et en particulier les
approches basées sur les métaheuristiques évolutionnaires (DHAENENS, 2016).

Dans la littérature, les algorithmes métaheuristiques ont montré une grande efficacité
dans la génération de solutions acceptables lorsque le probléme est tres complexe et
I'espace de recherche est extrémement large. Dans (THARWAT, MOEMEN et HASSANIEN,
2017) L'algorithme d’optimisation des baleines (WOA) a été proposé pour optimiser les
parametres de SVM, afin que l’erreur de classification puisse étre réduite. Les résultats
expérimentaux ont prouvé que le modele proposé atteignait une sensibilité élevée.

Dans (THARWAT et GABEL, 2019) les auteurs ont proposé un algorithme d’optimisa-
tion SSD (social ski driver) pour optimiser les parameétres des SVM, dans le but d’améliorer
les performances de classification. Dans cette étude, huit ensembles de données déséquili-
brés ont été utilisés pour tester I'algorithme proposé. Pour la vérification, les résultats de
l'algorithme SSD-SVM sont comparés a la recherche de grille, et a I'optimisation de 1'essaim
de particules (PSO). Les résultats expérimentaux montrent que l'algorithme SSD-SVM
est capable de trouver des valeurs quasi optimales pour les parametres de SVM. Les
résultats ont également démontré des performances de classification élevées par rapport a
'algorithme PSO.

Dans (THARWAT, HASSANIEN et ELNAGHI, 2017), l'algorithme des chauves-souris (BA) a
été proposé pour optimiser les parametres de SVM, de sorte que l'erreur de classification
puisse étre réduite. Pour évaluer le modele proposé (BA-SVM), I'expérience a adopté neuf
ensembles de données standard. Pour la vérification, les résultats de 1’algorithme BA-SVM
sont comparés a la recherche de grille, et a deux algorithmes d’optimisation : ’algorithme
génétique (GA) et I'optimisation des essaims de particules (PSO). Les résultats expérimen-
taux ont prouvé que le modele proposé est capable de trouver les valeurs optimales pour
les parameétres de SVM et évite le probleme des optima locaux. Les résultats ont également
démontré des taux d’erreur de classification inférieures par rapport aux algorithmes PSO et
GA.

Une étude suggere qu'une technique d’optimisation moins complexe, telle que la re-
cherche aléatoire (RS), pourrait étre suffisante pour optimiser les parametres de SVM
(MANTOVANI et al., 2015). Les expériences ont utilisé un grand nombre d’ensemble de
données, et ils ont comparé RS avec trois métaheuristiques couramment utilisées pour
le réglage des parametres du SVM, a savoir GA, PSO et EDA, et avec la recherche de

58 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

grille (GS). 1l a été conclu que, selon les tests, toutes les techniques de réglage ont trouvé
de meilleures valeurs des parametres que les valeurs par défaut utilisées pour le SVM.
Cependant, aucune de ces techniques ne montre de meilleures performances en général;
par conséquent, "utilisation d’une technique simple peut, dans certains cas, étre un bon
compromis.

Dans (THARWAT, GABEL et HASSANIEN, 2017), les auteurs proposent une approche
basée sur I'algorithme Dragonfy (DA) (DA-SVM) qui permet d’optimiser les parametres du
SVM pour améliorer la précision de la classification. Différentes expériences ont été menées
pour comparer l'algorithme DA-SVM avec PSO+SVM, et GA+SVM appliquer sur de
nombreux ensemble de données de classification. Les résultats ont montré que 1’algorithme
DA-SVM a obtenu des résultats compétitifs.

Un nouvel algorithme d’optimisation (fourmilion chaotique optimisation) (CALO) a
été proposé par (THARWAT et HASSANIEN, 2018) pour optimiser les parametres du clas-
sificateur SVM, de sorte que l'erreur de classification puisse étre réduite. Pour évaluer
l'algorithme (CALO-SVM), I'expérience a adopté six ensembles de données. Pour la
vérification, les résultats de 1’algorithme CALO-SVM sont comparés a la recherche de grille,
optimisation de fourmilion (ALO-SVM)), et trois algorithmes d’optimisation bien connus :
I'algorithme génétique (GA), I'optimisation de 1’essaim de particules (PSO) et 1’algorithme
d’optimisation émotionnelle sociale (SEOA). Les résultats expérimentaux ont prouvé que
CALO est capable de trouver les valeurs optimales des parametres SVM et évite le probleme
des optima locaux. Les résultats ont également démontré des taux d’erreur de classification
inférieurs par rapport aux algorithmes : GA, PSO et SEOA.

Les travaux précédents ont proposé différentes techniques pour optimiser les para-
metres du SVM et effectuer la sélection des caractéristiques (attributs) simultanément.
L'une des premieres tentatives a été faite par Huang et Wang (HUANG et WANG, 2006a),
dans laquelle I'algorithme génétique GA a été appliqué a ce probléeme. Les comparaisons
avec l'algorithme conventionnel de recherche de grille testé sur différents ensembles
de données, ils ont montré que GA est capable d’optimiser le SVM pour atteindre une
meilleure précision avec un nombre réduit de caractéristiques (attributs).

Une approche similaire a été proposée par Lin et al. (LIN et al.,, 2008) ou l'algorithme
PSO a été utilisé au lieu de GA. Ils ont comparé leurs résultats a ceux obtenus par Huang et
Wang (HUANG et WANG, 2006a). Leurs résultats ont montré que PSO était tres compétitif
par rapport a GA et le surpassant dans six ensembles de données sur dix.

Dans (FARIS et al., 2018), Faris et al. ont proposé une approche robuste basée sur une
métaheuristique récente inspirée de la nature appelée "multi-verse optimizer" (MVO) pour
sélectionner les attributs optimals et optimiser les parametres de SVM simultanément. En
fait, I’algorithme MVO est utilisé pour optimiser les principaux parametres de SVM et pour
trouver I'ensemble optimal d’attributs pour ce classificateur. L’approche est mise en ceuvre
et testée sur deux architectures différentes. MVO est comparé a quatre algorithmes méta-
heuristiques classiques et récents sur dix ensembles de données binaires et multiclasses.
Les résultats expérimentaux démontrent que MVO peut réduire efficacement le nombre
d’attributs tout en maintenant une grande précision de prédiction.

Afin de classer les défauts électriques dans les systemes de distribution radiale, un
classificateur de machine a vecteurs de support (SVM) basé sur 1’optimisation des essaims
de particules (PSO) a été proposé par (CHO et HOANG, 2017). Le PSO est capable de

4.3. Métaheuristiques pour la sélection d’attributs 59

sélectionner les attributs appropriés et d’optimiser les parameétres SVM pour augmenter
la précision de la classification. La technique (PSO-SVM) a été testée sur un réseau de
distribution radiale typique pour identifier dix types de défauts différents. Le taux de
réussite du classificateur SVM est supérieur a 97%, a démontré l'efficacité et la grande
efficience de cette méthode.

4.3 Métaheuristiques pour la sélection d’attributs

4.3.1 Description du probléme

Il existe trois approches classiques pour réaliser la sélection des caractéristiques dans la
classification : approche filtre, approche d’enveloppe et approche embarquée.

Méthodes de filtres (filter methods)

Les modeles de filtres évaluent les attributs dans un ensemble de données sans utiliser
un algorithme de classification (THARWAT, MOEMEN et HASSANIEN, 2017). Un algorithme
de filtrage comprend deux étapes. Dans la premiére étape, il classe les attributs en fonction
de certains criteres. L'évaluation des attributs peut étre soit univariée, soit multivariée. Dans
le schéma univarié, chaque attribut est classé indépendamment de l'espace des attributs,
tandis que le schéma multivarié évalue les attributs par lots.

Les deux phases de la méthode de filtrage sont les suivantes (NDIAYE et al., 2014) :

1. La sélection des attributs a 1’aide de mesures telles que la distance, la dépendance ou
la cohérence; aucun classificateur n’est utilisé dans cette phase

2. Un classificateur est appris sur les données d’entrainement avec les attributs sélec-
tionnés et testé sur les données de test.

Méthodes enveloppes (wrapper methods)

Les modeles d’enveloppe utilisent un classificateur spécifique pour évaluer la qualité
d’attributs sélectionnés et offrent un moyen simple et puissant de résoudre le probleme
de la sélection des caractéristiques (THARWAT et GABEL, 2019). Un modele d’enveloppe se
compose de deux phases (DHAENENS, 2016) :

— Phase 1 : sélection du sous-ensemble d’attributs, qui sélectionne le meilleur sous-
ensemble en utilisant comme critére la précision du classificateur (sur les données
d’entrainement);

— Phase 2 : apprentissage et test, ot un classificateur est appris a partir des données
d’entrainement avec le meilleur sous-ensemble d’attributs et est testé sur les données
de test.

Etant donné un classificateur prédéfini, un modele d’enveloppe effectuera les étapes sui-
vantes :

1. Recherche d’un sous-ensemble d’attributs;

2. Evaluation du sous-ensemble d’attributs sélectionné en fonction des performances
du classificateur;

3. Répéter les étapes 1 et 2 jusqu’a ce que la qualité souhaitée soit atteinte.

Méthodes embarquées (embedded methods)

Les méthodes embarquées sont similaires aux méthodes d’enveloppe en ce sens que la
recherche d’un sous-ensemble optimal est effectuée pour un algorithme de classification

60 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

spécifique, mais elles sont caractérisées par une interaction plus profonde entre la sélection
d’attributs et la construction du classificateur. La différence entre Les méthodes embarquées
et Les méthodes d’enveloppe; avec les méthodes enveloppes 1’algorithme de classification
sert non seulement a évaluer un sous-ensemble candidats mais aussi a guider le mécanisme
de sélection (THARWAT, HASSANIEN et ELNAGHI, 2017).

4.3.2 Modele d’optimisation
Un probléme combinatoire

Le probleme de sélection d’attributs est facile a représenter comme un probleme d’opti-
misation combinatoire ot1 ’objectif est de sélectionner un sous-ensemble d’attributs pour le-
quel un critére d’évaluation du sous-ensemble d’attributs est optimisé. Les valeurs binaires
des variables x; sont utilisées pour indiquer la présence (x; = 1) ou l'absence (x; = 0) de
l'attribut i dans 1’ensemble d’attributs optimaux. Ensuite, le probleme est formulé comme
suit (DHAENENS, 2016) :

maxy =y, xyeqony F(x) (4.9)

Il a été démontré que le probleme de sélection de la fonction optimale est du type NP-hard
(THARWAT, HASSANIEN et ELNAGHI, 2017).

Représentation

La représentation la plus trouvée dans la littérature consiste en chaine de N bits, ot N est
le nombre d’attributs d’origine et chaque bit peut prendre la valeur 1 ou 0, indiquant si I’at-
tribut est sélectionné ou non. Cette représentation individuelle est simple et les opérateurs
peuvent étre facilement appliqués car la représentation binaire est tres classique pour les mé-
taheuristiques. Cependant, le principal inconvénient de cette représentation est qu’elle pour-
rait avoir un probléme d’évolutivité lorsque le nombre d’attributs augmente (DHAENENS,
2016).

Mesures de performance

Les mesures de qualité sont spécifiques a chaque type d’approche pour la sélection
d’attributs : filtre, enveloppe/embarquées.
Approches de filtres
Dans les approches par filtre, la mesure doit étre rapide a calculer. Les mesures de filtrage
les plus courantes pour les problemes de classification sont la corrélation et 1'information
mutuelle qui permettent de calculer la qualité d"une caractéristique (ou d'un ensemble de
caractéristiques) candidate. D’autres mesures courantes sont X — statistique, F — statistique,
critere de Fisher, mesure basée sur l'entropie, I'information mutuelle ponctuelle, distance
inter/intra-classe ou les scores des tests de signification pour chaque combinaison classe /
caractéristique (DHAENENS, 2016).
Approches d’enveloppes
Pour l'apprentissage supervisé, le principal objectif de la classification est de maximiser
I'exactitude prédictive (predictive accuracy); par conséquent, dans les approches enve-
loppes, l'exactitude prédictive est généralement acceptée et largement utilisée comme
mesure principale par les chercheurs et les praticiens (DHAENENS, 2016).
Pour les modéles d’enveloppe, la majorité des fonctions de fitness (fonctions objectives)
essaient de minimiser le taux d’erreur du classificateur utilisé. Le taux d’erreur peut
étre globalement calculé sur I'ensemble de test ou calculé en utilisant 1’exactitude de la
validation croisée. Pour la classification binaire, certaines mesures spécifiques comme la

4.3. Métaheuristiques pour la sélection d’attributs 61

sensibilité et la spécificité peuvent étre utilisées (DHAENENS, 2016).

Approches d’agrégation

Deux objectifs principaux sont souvent associés : la réduction du taux d’erreur et la réduc-
tion du nombre de caractéristiques (attributs) sélectionnées. Pour agréger les deux objectifs,
on utilise des parametres permettant de controler le compromis entre les préférences pour
chaque objectif (DHAENENS, 2016).

Diverses métaheuristiques ont été utilisées pour gérer la sélection d’attributs. telles que
I'optimisation des essaims de particules (PSO) (BOUBEZOUL et PARIS, 2012; CHUANG et al.,
2008; CHUANG, TSAI et YANG, 2011; UNLER, MURAT et CHINNAM, 2011), I'optimisation
des colonies de fourmis (ACO) (AGHDAM, GHASEM-AGHAEE et BASIRI, 2009; CHEN,
CHEN et CHEN, 2013; HUANG, 2009; HUANG et al., 2012; KABIR, SHAHJAHAN et MURASE,
2012), les algorithmes génétiques (GA) (CHATTERJEE et BHATTACHERJEE, 2011; DAS et al.,
2012; KABIR, SHAHJAHAN et MURASE, 2011; LI et al., 2011; OLIVEIRA et al., 2010; OZCIFT
et GULTEN, 2013; AL-ANI, ALSUKKER et KHUSHABA, 2013; SAHA, SARKAR et MITRA,
2009), la recherche d’harmonie (HS) (RAMOS et al., 2011) et I’évolution différentielle (DE)
(AL-ANI, ALSUKKER et KHUSHABA, 2013).

Dans (GHAEMI et FEIZI-DERAKHSHI, 2016) les auteurs proposent une approche basée
sur l'algorithme d’optimisation des foréts (FSFOA) afin de sélectionner les attributs. Le
FSFOA proposé est validé sur plusieurs ensembles de données du monde réel et il est
comparé avec d’autres méthodes, notamment HGAFS, PSO et SVM-FuzCoc. Les résultats
des expériences montrent que le FSFOA peut améliorer la précision de la classification
dans certains ensembles de données. Les auteurs également ont comparé la réduction de la
dimensionnalité du FSFOA par rapport aux autres méthodes disponibles.

Un systeme de sélection d’attributs basé sur l’algorithme sinus cosinus (SCA) est proposé
dans (HAFEZ et al., 2016). SCA est un nouvel algorithme de recherche stochastique pour
les problemes d’optimisation. La fonction de fitness proposée integre a la fois la précision
de la classification et la réduction de la taille d’attributs. Le systéme proposé a été testé sur
18 ensembles de données et montre une supériorité par rapport aux autres méthodes de
recherche comme l'optimisation des essaims de particules (PSO) et I'algorithme génétique
(GA).

Une nouvelle approche de sélection d’attributs est proposée dans (MAFARJA et MIRJALILI,
2018) basée sur l'algorithme d’optimisation des baleines (WOA). Deux variantes de 1’algo-
rithme WOA ont été proposées pour rechercher les sous-ensembles optimaux d’attributs.
Dans le premier, les auteurs avaient étudié l'influence de l'utilisation des mécanismes
de sélection du tournoi et de la roulette au lieu d’utiliser un opérateur aléatoire dans le
processus de recherche. Dans la seconde approche, des opérateurs de croisement et de
mutation ont été utilisés pour améliorer I’exploitation de 1’algorithme WOA. Ces méthodes
proposées sont comparées a trois algorithmes : 1’optimisation des essaims de particules
(PSO), I'algorithme génétique (GA), I'optimisation de fourmilion (ALO) et cinq méthodes
de sélection d’attributs de filtrage.

Dans (ZHANG et al., 2018b), Zhang et al. ont proposé une variante de 1'algorithme Fi-
refly (FA) pour la sélection d’attributs dans les modeles de classification et de régression.
29 ensembles de données de classification et 11 ensembles de données de régression ont été
utilisés pour évaluer l'efficacité du modele FA. Les résultats ont montré des améliorations
statistiquement significatives par rapport a d’autres variantes de FA et des méthodes de
recherche classiques pour divers problemes de sélection d’attributs. En bref, la variante FA
proposée offre une méthode efficace pour identifier les sous-ensembles de caractéristiques
(attributs) optimaux dans les modéles de classification et de régression.

62 Chapitre 4. Métaheuristiques pour la classification supervisée et la sélection d’attributs

Dans (GU, CHENG et JIN, 2018), Gu et al. ont proposé d’utiliser une variante tres ré-
cente du PSO, connue sous le nom d’optimiseur d’essaim compétitif (CSO), qui a été
consacrée a l'optimisation a grande échelle, pour résoudre les problemes de sélection
d’attributs dans les ensembles de données a haute dimension. De plus, le CSO, qui a été
développé a l'origine pour l'optimisation continue, est adapté pour effectuer une sélection
d’attributs qui peut étre considérée comme un probleme d’optimisation combinatoire.
Une technique d’archivage est également introduite pour réduire les cofits de calcul.
Des expériences menées sur six ensembles de données de référence ont démontré que le
CSO non seulement sélectionne un nombre beaucoup plus petit d’attributs mais entraine
également une meilleure performance de classification.

Dans (MAFARJA et MIRJALILI, 2017), deux modéles d’hybridation sont utilisés pour
concevoir différentes techniques de sélection d’attributs basées sur 1’algorithme d’optimi-
sation des baleines (WOA). Dans le premier modele, 1'algorithme de recuit simulé (SA)
est intégré dans l'algorithme WOA, tandis qu’il est utilisé pour améliorer la meilleure
solution trouvée apres chaque itération de 1’algorithme WOA. Dans le deuxieme modeéle,
L’objectif de l'utilisation du SA est d’améliorer I'exploitation en recherchant les régions
les plus prometteuses situées par 1’algorithme WOA. La performance de ces approches
est évaluée sur 18 ensembles de données de référence provenant d’'UCI et comparée a
trois méthodes d’enveloppe de sélection d’attributs bien connues dans la littérature. Les
résultats expérimentaux confirment 'efficacité de ces approches pour améliorer la précision
de la classification par rapport aux autres algorithmes a base d’enveloppe, ce qui garantit
la capacité de l'algorithme WOA a rechercher dans l'espace des caractéristiques et a
sélectionner les attributs les plus informatifs pour les taches de classification.

La tendance récente de la recherche est d’hybrider deux algorithmes métaheuristiques et
plus pour obtenir une solution supérieure dans le domaine des problemes d’optimisation.
Dans (SINDHU et al., 2019), les auteurs ont proposé une nouvelle méthode de sélection
des caractéristiques basées sur I’hybridation de 1’optimisation basée sur la biogéographie
(BBO) et de I'algorithme sinus-cosinus (SCA) nommé (IBBO) pour traiter les problemes de
sélection d’attributs. Les performances d’IBBO sont étudiées a 1’aide de quatorze ensembles
de données de référence. Les résultats expérimentaux de I'IBBO sont comparés a huit
algorithmes de recherche. Les résultats montrent que I'IBBO est capable de surpasser les
autres algorithmes dans la majorité des ensembles de données. En outre, la force de 'IBBO
est prouvée par diverses expériences numériques comme 1’analyse statistique, les courbes
de convergence, les méthodes de classement, et les fonctions de tests. Les résultats de la
simulation ont révélé que I'IBBO a produit des résultats tres compétitifs et prometteurs, par
rapport aux autres algorithmes de recherche.

Une méthode hybride de filtre-enveloppe est proposée dans (MOSLEHI et HAERI,
2020) pour la sélection d’attributs établie avec I'intégration d’algorithme génétique (GA) et
I'optimisation des essaims de particules (PSO) appelée smart HGP-FS. Cette méthode vise
principalement a réduire la complication du calcul et le temps de recherche nécessaire pour
obtenir une solution optimale au probleme de sélection d’attributs dans les ensembles de
données de grandes dimensions. Les méthodes de filtrage et d’enveloppe sont intégrées afin
de tirer parti de 1’accélération de la technique de filtrage et de la vigueur de la technique
d’enveloppe pour la sélection d’attributs. Certaines caractéristiques de l'ensemble de
données sont éliminées par la phase de filtrage, ce qui réduit les calculs complexes et
le temps de recherche dans la phase d’enveloppement. Des comparaisons ont été faites
pour vérifier l'efficacité de cet algorithme hybride avec 1'utilisation de trois méthodes de

4.4. Conclusion 63

filtre-enveloppe, deux algorithmes d’enveloppe, deux méthodes de filtrage et de deux
techniques d’enveloppe traditionnelles de sélection d’attributs. Les résultats obtenus sur
des ensembles de données du monde réel ont montré l'efficacité de ’algorithme HGP-FS.

Dans (JAYARAMAN et SULTANA, 2019), un algorithme de recherche du coucou gravi-
tationnel artificiel ainsi qu'un réseau de neurone a mémoire associative optimisé par les
abeilles sont introduits pour gérer les caractéristiques (attributs) présentes dans le systeme
de classification des maladies cardiaques. Initialement, les informations relatives aux ma-
ladies cardiaques sont collectées a partir du dépdt de données sur les maladies cardiaques
de I'UCI. Les informations collectées sont d’'une dimension énorme qui est difficile a traiter,
ce qui réduit l'efficacité du systéme d’identification des maladies cardiaques. Ainsi, la
dimensionnalité des attributs est réduite en fonction du comportement de 1’algorithme de
recherche du coucou gravitationnel. Ses caractéristiques sélectionnées sont traitées par le
classificateur de mémoire associative. Ensuite, 'efficacité du systeme est évaluée a l'aide de
résultats expérimentaux basés sur MATLAB.

Une méthode hybride de sélection d’attributs basés sur un algorithme de recherche
gravitationnelle binaire (BGSA) et I'information mutuelle (MI) est présentée dans (BOSTANI
et SHEIKHAN, 2017), pour améliorer 1'efficacité de la BGSA standard en tant qu’algorithme
de sélection d’attributs. Cette méthode, appelée MI-BGSA, utilise le BGSA comme méthode
de sélection de caractéristiques (attributs) basées sur l'enveloppe pour effectuer une
recherche globale. De plus, I'approche MI a été intégrée dans la BGSA, en tant que méthode
basée sur le filtre, pour calculer les informations mutuelles sur les caractéristiques et les
classes de caractéristiques dans le but d’élaguer le sous-ensemble de caractéristiques. Cette
stratégie a permis de trouver les attributs qui présentent le moins de redondance par
rapport aux attributs sélectionnés et qui sont les plus pertinents pour la classe cible. Une
fonction a deux objectifs basés sur la maximisation du taux de détection et la minimisation
du taux de faux positifs a été définie comme une fonction de fitness. Les résultats expéri-
mentaux sur 'ensemble de données NSL-KDD ont montré que cette méthode peut réduire
considérablement I’espace des caractéristiques. De plus, cet algorithme a permis de trouver
un meilleur sous-ensemble d’attributs et d’obtenir une précision et un taux de détection
plus élevés que certaines méthodes de sélection d’attributs standard basées sur I’enveloppe
et le filtre.

4.4 Conclusion

La classification supervisée a été largement utilisée dans la littérature et les métaheu-
ristiques contribuent a la proposition de modeéles et d’approches intéressants (DHAENENS,
2016).

Les métaheuristiques sont des méthodes génériques capables de traiter de nombreux pro-
blemes d’optimisation. Leur diversité et leur flexibilité rendent cette classe de méthodes tres
attractive pour s’attaquer aux probléemes complexes qui apparaissent dans 1’exploration de
données (datamining) (DHAENENS, 2016).

De nombreuses approches sont proposées dans ce chapitre pour optimiser les algorithmes
de classification et la sélection d’attributs utilisant les algorithmes métaheuristiques. De
nombreux auteurs notent que la performance de la sélection d’attributs dans les algorithmes
d’enveloppe (wrapper) dépend de 'algorithme de classification choisi, mais peut étre tres
cotiteuse, surtout lorsque le volume de données est trés important (DHAENENS, 2016).

Les fonctions objectives utilisées et leur nombre jouent également un role important dans la
qualité des résultats obtenus (DHAENENS, 2016).

65

Chapitre 5

Un nouvel algorithme basé sur
I’optimisation des chauves-souris avec
I’évolution différentielle
auto-adaptative pour I’entrainement
de réseaux de neurones a propagation
avant

5.1 Introduction

Avec I'explosion exponentielle de la quantité d’informations sur le web essentiellement,
et avec le big data et tous ses « V », un tas de connaissances emmagasiné doivent étre extraits
d’une fagcon automatique. La tache d’extraction des connaissances est devenue encore plus
délicate et complexe. L'un des problemes majeurs actuels est 1’acces au contenu de ces infor-
mations, cela requiert 1'utilisation d’outils plus spécifiques autrement dit I’acces au contenu
par des moyens rapides et efficaces est devenu une tache nécessaire.

La plupart des problémes d’extraction de connaissances sont des probléemes d’optimisation
combinatoire or, de nombreux problemes d’optimisation combinatoire sont NP-difficile et
ne pourront étre pas résolus de maniere exacte dans un temps raisonnable. Des méthodes
dédiées a ce genre de probléme, comme les métaheuristiques peuvent étre utilisées.

Les métaheuristiques sont des algorithmes trés puissants pour résoudre des problémes
d’optimisation complexes. Ces méthodes assurent un compromis entre la diversification et
l'intensification et ont pour objectif de trouver des solutions dont la qualité est au-dela de ce
qu’il aurait été possible de réaliser avec une simple heuristique (DHAENENS, 2016).

Dans les chapitres suivants, nous présentons nos approches proposées basées sur 1’hybri-
dation des métaheuristiques pour la sélection d’attributs et pour optimiser quelques algo-
rithmes de classification a savoir les réseaux de neurones et les machines a vecteurs de sup-
port (SVM) appliqué sur plusieurs domaines.

5.2 L’entrainement de réseaux de neurones a propagation avant

Le réseau de neurones artificiels (ANN) est l'une des techniques d’exploration de
données les plus importantes. Il a été appliqué avec succes a de nombreux domaines. Le
perceptron multicouche (MLP) est I'un des réseaux de neurones les plus connus. Le per-
ceptron multicouche (MLP) se compose de trois couches composées de neurones organisés
en couches d’entrée, sortie et cachées. La premiere couche recoit 1'entrée, la deuxieme

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
66 I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

couche est la couche cachée et la troisieme couche produit la sortie. Le succes d"un réseau
de neurones dépend généralement du processus de formation ou d’entrainement qui est
déterminé par les algorithmes de formation (entrainement). L'objectif des algorithmes d’en-
trainement est de trouver la meilleure connexion entre les poids et les biais qui minimisent
I'erreur de classification.

Les algorithmes de formation peuvent étre classés en deux catégories : les méthodes de
recherche basées sur les gradients et les méthodes de recherche stochastiques. La rétropro-
pagation (BP) et ses variantes sont des méthodes basées sur les gradients et sont considérées
comme des techniques les plus populaires utilisées pour entrainer le réseau neuronal
a propagation avant. Les méthodes basées sur les gradients présentent de nombreux
inconvénients, tels que la convergence lente, la forte dépendance a la valeur initiale des
poids et des biais et la tendance a étre piégé dans les minimums locaux (Zhang, Zhang, Lok,
& Lyu, 2007). Pour résoudre ces problemes, des méthodes de recherche stochastiques, telles
que les métaheuristiques, ont été proposées comme des méthodes alternatives pour la for-
mation du réseau de neurones. Les métaheuristiques présentent de nombreux avantages :
elles s’appliquent a tout type d’ANN avec toute fonction d’activation (KIRANYAZ et al.,
2009a), fournissent des solutions acceptables dans un délai raisonnable pour résoudre des
problemes complexes et difficiles (RAIDL, 2006), et sont particulierement utiles pour traiter
de grands problemes complexes qui géneérent de nombreux optima locaux (KENTER et al.,
2017).

Les métaheuristiques se sont avérées utiles dans la formation des réseaux de neurones a
propagation avant et plusieurs approches sont proposées dans la littérature pour améliorer
leur efficacité sous différents angles, en utilisant diverses mesures telles que 1'exactitude de
la classification et I’erreur d’entrainement.

Bien qu'une grande variété d’algorithmes évolutifs et basés sur des essaims soit étudiée et
déployée dans la littérature pour la formation des réseaux de neurones. La question qui se
pose ici est ce que de nouveaux algorithmes de formation devaient encore étre développés.
La réponse est oui, les problémes des minimums locaux restent disponibles. Le théoréeme
de no-free-lunch (NFL) stipule qu’il n'y a pas d’algorithme d’optimisation supérieur pour
résoudre tous les problemes d’optimisation. L'entrainement des réseaux de neurones est
également un probléme d’optimisation qui varie pour chaque ensemble de données (FARIS,
ALJARAH et MIRJALILI, 2016b).

Sur la base de ces raisons, On a proposé deux nouveaux algorithmes basés sur I'hybridation
des métaheuristiques pour entrainer les réseaux de neurones a propagation avant. Dans la
premiére approche, un nouvel algorithme basé sur I'optimisation des chauves-souris avec
I'évolution différentielle auto-adaptative, appelée BAT-SDE, est proposé pour former le
réseau de neurones a propagation avant. Huit ensembles de données ont été résolus par
I'entraineur proposé.

De plus, I'application de cet entraineur a été étudiée dans le domaine biomédical et dans
la détection des fraudes. La performance du BAT-SDE a été comparée a huit algorithmes
métaheuristiques bien connus utilisés pour entrainer les réseaux de neurones dans la
littérature : PSO (MENDES et al., 2002a), CS (YAO, 1993), BAT (NAWI, REHMAN et KHAN,
2014b), MFO (YAMANY et al., 2015), MVO (FARIS, ALJARAH et MIRJALILI, 2016b), GWO
(HASSANIN, SHOEB et HASSANIEN, 2016; FARIS, MIRJALILI et ALJARAH, 2019a), WOA
(MAFARJA et MIRJALILI, 2018), HACPSO (KHAN et al., 2019).

5.2. L’entrainement de réseaux de neurones a propagation avant 67

5.2.1 Réseaux de Neurones artificiels (ANNs)

Un réseau de neurones artificiels (ANN) est un modele de calcul basé sur la structure et
les fonctions du cerveau biologiques et du systéeme nerveux. Le réseau de neurones a propa-
gation avant (FFNN) est 1'un des types les plus populaires de réseau de neurones artificiels
(FARIS, ALJARAH et MIRJALILI, 2016b). Le FFNN comporte trois couches interconnectées.
La premiere couche est constituée de neurones d’entrée. Ces neurones envoient les données
a la deuxiéme couche, appelée couche cachée, qui envoie les neurones de sortie a la troi-
sieme couche. Dans FFNN, I'information voyage dans une direction, de la couche d’entrée
a la couche de sortie. Le nceud ou le neurone artificiel multiplie chacune de ces entrées par
le poids, comme indiqué en (5.1) :

n
Sj = Z wi,jL‘ + ,3]‘ (5.1)
i=1

Ou, 7 est le nombre total d’entrées neuronales, w;; est le poids de connexion reliant I;
au neurone j et /3]- est un poids de biais (FARIS, ALJARAH et MIRJALILI, 2016b). Ensuite, le
nceud ou le neurone artificiel ajoute les multiplications et envoie la somme a une fonction
de transfert, par exemple, la fonction sigmoide présentée en (5.2)

1

= — 5.2
) = 1o 52
La sortie du neurone j peut étre décrite comme suit (5.3) :
n
yj = f](z w;;1; + B;) (5.3)
i=1

Apres avoir construit le réseau de neurones, 'ensemble des poids du réseau sont ajustés
pour se rapprocher a des résultats souhaités. Ce processus est réalisé en appliquant un al-
gorithme d’entrainement pour adapter les poids jusqu’a ce que les criteres d’erreur soient
satisfaits (FARIS, ALJARAH et MIRJALILI, 2016b).

5.2.2 Laméthode proposée pour entrainer les réseaux de neurones a propagation
avant

Cette section présente l'approche proposée basée sur nos algorithmes décrivent ci-dessous

pour former le réseau de neurones a perceptron multicouche (MLP). Deux points importants
sont pris en considération : la fonction de fitness (la fonction objective) et la représentation
des solutions.
Dans ce travail, nos algorithmes ont été appliqué pour entrainer le réseau MLP avec une
seule couche cachée et chaque solution (poids et biais) a été formée par trois parties : les
poids de connexion entre la couche d’entrée et la couche cachée, les poids entre la couche
cachée et la couche de sortie, et les poids de biais. La longueur de chaque vecteur de solution
est donnée par 1’'équation (5.4), ot n est le nombre de caractéristiques d’entrée (attributs) et
m est le nombre de neurones dans la couche cachée (FARIS, ALJARAH et MIRJALILI, 2016b),
comme suit :

L=(Nxm)+(2xm)+1 (5.4)

Les solutions (poids et biais) sont implémentées en tant que vecteurs de nombres réels
lorsque chaque vecteur appartient a l'intervalle [—1,1], comme illustré sur la figure 5.1.
L'erreur quadratique moyenne (MSE) a été utilisée pour mesurer la valeur de fitness des
solutions. MSE a été calculé sur la base de la différence entre les valeurs estimées et réelles

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
68 I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

Wi1 [Wig | [Wam | @1 | | O ﬁl RS ﬁm+1

Poids entre les L. -
couches entrées et les Poids entre les entrées Pondération des biais

couches cachés et les cachés

FIGURE 5.1 — Représentation de la structure de solution

FIGURE 5.2 — Affectation du vecteur de solution au MLP

du réseau neuronal a I’aide des ensembles de données d’apprentissage, comme indiqué dans
I’équation (5.5), ot 1 est le nombre d’échantillons dans I'ensemble de données d’entraine-
ment y et J sont respectivement les valeurs réelles et prédites :

MSE = 2 Y (y— gy 55)

ni3

Dispositif expérimental

Les algorithmes proposés et les autres algorithmes ont été mis en ceuvre avec le langage

Python et un ordinateur personnel avec un processeur Intel (R) Core (TM) 1,60 GHz 2,30
GHz, un systeme d’exploitation Windows 7 64 bits et 4 Go (RAM). Les métaheuristiques
sont sensibles aux valeurs de leurs parametres, ce qui nécessite une initialisation soigneuse.
Par conséquent, les parametres de contrdle recommandés dans la littérature ont été utilisés
(MENDES et al., 2002a; NAWI, REHMAN et KHAN, 2014a; FARIS, ALJARAH et MIRJALILI,
2016b; MAFARJA et MIRJALILI, 2018 ; FARIS, MIRJALILI et ALJARAH, 2019b) et résumés dans
le tableau 5.1. Tous les ensembles de données ont été divisés en 66% pour l'apprentissage et
34% pour le test (la méthode Holdout). De plus, tous les attributs ont été mappées a 'inter-
valle [0, 1] pour éliminer 'effet des attributs qui ont des échelles différentes.
Dans la littérature, il n'y a pas de méthode standard pour sélectionner le nombre de neu-
rones cachés. Dans ce travail, la méthode proposée dans (MIRJALILI, MIRJALILI et LEWIS,
2014b; MIRJALILI, 2015; FARIS, ALJARAH et MIRJALILI, 2016b) a été utilisée; le nombre de
neurones dans la couche caché est égal 4 2N + 1, Ou, N est le nombre d’attributs dans I’en-
semble de données.

5.2. L’entrainement de réseaux de neurones a propagation avant 69

TABLE 5.1 — Parametres initiaux des algorithmes d’optimisation

Parametre Définition Valeur
Fréquence minimale 0
Fréquence maximale 1

BAT Intensité d’émission 0.5
fréquence du pouls 0.5

DE Facteur de pondération (F) 0.5
Probabilité de croisement (CR) 0.9
Constantes d’accélération [2.1,2.1]

PSO Poids d’inertie [0.9,0.6]
Nombre de particules 50

MVO Trou de ver mini‘mum 0.2
Trou de ver maximum 1
Taille de la population 50
Nombre de générations 200
Nombre d’agents de recherche 50

MFO b 1
t [-1,1]
Taille de la population 200
Nombre de générations 200
r [0,1]

WOA Taille de la population 50

HACPSO B 05
Taille de la population 50
Nombre de générations 200

5.2.3 BAT-SDE pour I’entrainement du réseau de neurones a propagation avant

Un nouvel algorithme basé sur I'optimisation des chauves-souris avec I'évolution diffé-
rentielle auto-adaptative, appelée BAT-SDE, est proposé pour former le réseau de neurones
a propagation avant. L'application de cet entraineur a été étudiée dans le domaine biomé-
dical et dans la détection des fraudes. La performance du BAT-SDE a été comparée a huit
algorithmes métaheuristiques bien connus utilisés pour entrainer les réseaux de neurones
dans la littérature : PSO (MENDES et al., 2002a), MFO (YAMANY et al., 2015), MVO (FARIS,
ALJARAH et MIRJALILI, 2016b), WOA (MAFARJA et MIRJALILI, 2018), HACPSO (KHAN et
al., 2019).

L’'algorithme des chauves-souris (Bat algorithm)

L’algorithme des chauves-souris (Bat algorithm) est un algorithme métaheuristique d’op-
timisation globale développé par Xin-She Yang en 2010 (YANG, 2010). L'algorithme est basé
sur le comportement d’écholocation chez les chauves-souris, chaque mouvement virtuel des
chauves-souris est mis a jour en fonction de la fréquence f;, de la vitesse v; et de la position x;
de chaque chauve-souris pour trouver une proie. Lorsqu'une nouvelle solution est acceptée,
I'intensité sonore A; et la fréquence du pouls r; sont mises a jour (YANG, 2010). La posi-
tion, la vitesse et la fréquence des chauves-souris sont mises a jour sur la base des équations
suivantes :

ﬂ:fmin+<fmax_fmin)ﬁ (5-6)

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
70 I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

of = 0i 4 (! — Xgpest) fi (5.7)
R R (5.8)

Ou, B € [0,1] est un nombre aléatoire tiré d’une distribution uniforme (YANG, 2011). La
meilleure solution actuelle est modifiée selon 1’équation suivante :

Xnew = Xold + Al@ (5.9)

O, € est le facteur d’échelle. Lorsqu'une chauve-souris trouve une proie, la sonie dimi-
nue et le taux d’émission des impulsions augmente (YANG, 2011) selon les équations sui-
vantes :

AT = aA] (5.10)

it =191 — exp(—e)] (5.11)

Ou, « et v sont des constantes.

L’évolution différentielle

L’évolution différentielle (DE) (STORN et PRICE, 1997a) est un algorithme métaheuris-

tique évolutif pour I'optimisation globale développé par Storn et Price en 1997. DE optimise
un probleme en maintenant une population de solutions candidates. Il crée de nouvelles
solutions candidates en combinant les solutions existantes, puis conserve la solution candi-
date qui a le meilleur score ou la meilleure adéquation a I’optimisation.
DE soutient une mutation différentielle, un croisement différentiel et une sélection diffé-
rentielle. En particulier, la mutation différentielle sélectionne au hasard trois solutions et
ajoute le vecteur de différence pondérée entre ces deux solutions a une troisieme solution.
Cette mutation peut étre exprimée par 1’'équation suivante (ZANCHETTIN, LUDERMIR et
ALMEIDA, 2011) :

u® = xﬁ(t)) +F- (xf? - xﬁ?),izlnNP (5.12)

1

Ou, F € [0;2]désigne le facteur d’échelle qui échelonne le taux de modification et 70,71 et
r2 sont des vecteurs choisis au hasard dans l'intervalle 1..NP. Le croisement uniforme est
utilisé comme un croisement différentiel par le DE (ZANCHETTIN, LUDERMIR et ALMEIDA,
2011) Ce processus peut étre mathématiquement exprimé comme suit :

" (5.13)

i otherwise

(t) .
{ui,j , rand; < CRVj =]r,md}
]
x
Ou, le parametre CR € [0; 1] représente le taux de croisement. La sélection différentielle peut
étre exprimée comme suit :

xl(t), otherwise

0 {z}”, fZ) < f (xE”>} (5.14)

5.2. L’entrainement de réseaux de neurones a propagation avant 71

Auto-Adaptatif hybride BAT

(FISTER JR, FISTER et YANG, 2013) ont montré que 1’algorithme de chauve-souris obtient
un bon résultat avec les problemes de faible dimension, mais peut devenir une probléma-
tique pour les problemes de plus grandes dimensions car il a tendance a converger trés
rapidement au départ. Par conséquent, I’hybridation entre la chauve-souris et I’algorithme
d’évolution différentielle proposé par (FISTER JR, FISTER et YANG, 2013) permet de résoudre
ce probleme et d’améliorer le comportement de 1’algorithme de chauve-souris.

Dans notre approche, I’algorithme de chauve-souris a été hybridé avec un algorithme d’évo-
lution différentielle auto-adaptatif (DE) ot la solution est modifiée en utilisant la stratégie
DE / best / 1 / bin; o1 best indique que le vecteur de base est actuellement le meilleur vec-
teur de la population, 1 une différence de vecteur y est ajoutée et le nombre de parametres
modifiés dans le vecteur de mutation suit la distribution binomiale.

Pour chaque vecteur, les parameétres de contrdle F et CR ont été auto-ajustés au cours de
I’analyse selon les équations (5.15), (5.16).

Les parametres F et CR auto-adaptatifs : algorithme jDE modifié

Brest et coll. (BREST et al., 2006) ont proposé un mécanisme de contrdle auto-adaptatif,
dans lequel chaque vecteur de la population a été étendu avec ses propres valeurs F et CR.
Les nouveaux parameétres de contrdle F et CR ont été auto-ajustés pendant I’exécution avec
les équations suivantes :

’ _ [F+4randy «F,, if rand, <1
Fign = { Fi g, otherwise (515)
‘ _ [rands, if randy < &
CRig = { CR;c, otherwise (5.16)

Ou, randj, j € 1,2,3,4 sont des nombres aléatoires uniformes dans l'intervalle [0,1]; 7y et
indiquent les probabilités d’ajustement des parametres de controle F et CR. Pour note étude
expérimentale, 7 = 7, = 0.1, F; = 0.2 et, F, = 0.9 ont les mémes valeurs que dans (BREST
et al., 2006).

Dans notre approche, I’algorithme jDE a été modifié. F; o1 Et CR; g1 ont été calculés comme
suit :

' _ |F +randy x F,, if rand, <7
Figr = { 0.001, otherwise (5.17)
‘ _ [rands, if randy < &
CRiG+1 = { 0.9, otherwise (5.18)

Il est important de noter que DE / best / 1 / bin a été utilisé pendant la phase d’expé-
rimentation; ot best indique que le vecteur de base est actuellement le meilleur vecteur de
la population 1, une différence de vecteur y est ajoutée et le nombre de parametres modifiés
dans le vecteur de mutation suit la distribution binomiale (DAS et SUGANTHAN, 2010).
(Remarque : cette hybridation est de type hybridation relais de bas niveau (JOURDAN, 2003))

Les étapes du BAT-SDE pour la formation du réseau de neurones (MLP) peuvent étre
démontrées comme suit :

1. Initialisation : initialisation de la population de chauves-souris, de la fréquence, de
l'intensité sonore et du pouls;

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
72 I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

Algorithm 8 BAT-SDE

Fonction objectif f(x),x = (x1,...,x4)7
Initialiser la population de chauves-souris x; et v; fori = 1..n
Définir la fréquence d'impulsion Q; €[Qyin, Qmax]
Initialiser les fréquences d’impulsions r; et I'intensité A;
while (f < Tyyx) do
Générez de nouvelles solutions en ajustant la fréquence et
mise a jour des vitesses et des positions / solutions
if (rand(0,1) > r;) then
Modifiez la solution a ’aide de "DE /best/1/bin”
Générer aléatoirement deux nombres entiers
1,712 € [1,N], ou rq 7é) 75 i

forj=1to D do
v(j)j = best + F.(w;, — wy,)
Générer aléatoirement un nombre réel
rand j € [0;1]

if randj < CR then
then u;j := v;j
end if
end for
Générer une nouvelle solution en volant aléatoirement
if (rand(0,1) < A;) and (f(x;) < f(x) then
Acceptez les nouvelles solutions
Incrémenter r; et réduire A;
end if
end if
classer les chauves-souris et trouver la meilleure solution courante
end while
Résultats et visualisation

2. Evaluer les solutions aléatoires initiales par la fonction de fitness : affectation les vec-
teurs de solutions initiales (poids et biais) au réseau MLP et chaque réseau est évalué
par la fonction de fitness MSE ;

3. Générer de nouvelles solutions : génération de nouvelles solutions en ajustant la fré-
quence, la position et la distance;

4. Modification de la solution : si, la solution est modifiée en utilisant DE / best / 1 /
bin et en auto-adaptant les parametres de controle F et CR (équations (5.15), (5.16));

5. Evaluer les solutions : évaluation du réseau MLP a ’aide de MSE;

6. Trouvez la meilleure solution actuelle : classez les chauves-souris et trouvez la solu-
tion actuelle.

7. Les étapes 3 a 6 ont été répétées jusqu’a ce que le nombre maximum d’itérations soit
atteint.

La figure 5.3 représente les étapes de I’approche BAT-SDE-MLP.

5.2. L’entrainement de réseaux de neurones a propagation avant

73

Imitialiser la population de chauves-souris, la
fréquence, le volume, etle taux de pulsation

¥

Evaluer la solution aléatoire

BAT- SDE-MIP

Données
d'apprentissage

initiale par la fonetion de

NON
t = Itérations maximales

oul

Générez de nouvelles solutions en ajustant
la fréquence, la position et la distance

X oul

Auto-adaptation F et CR
Modifiez la solution &
TI'aide de "DE/best/1/bin™

Attribuer des solutions de

chauvesouris anx MLFP

¥

Evaluerla solution parla fonction Fitness

Evaluer le réseau
MLP en utilisant le
MSE

Fonction de fitness

*

NON

(Rand< Ai) et
(f(xi) < fix))
oUl

Renvovez le
meilleur résean
MLP avec le
minimum M5E

| Acceptez les nouvelles solutions |

| Aungmenter ri gf réduire Ai |
Py

Classez les chauves-souris et

trouvez les meilleures

FIGURE 5.3 — Etapes générales de I’approche BAT-SDE-MLP

Expérimentation et résultats

Cette section présente 1’évaluation du notre algorithme BAT-SDE pour la formation des
réseaux de neurones a propagation avant sur cinq ensembles de données bien connus, qui
ont été sélectionnés a partir des dépdts d’ensembles de données (UCI) ! et Kaggle?. Le ta-
bleau 5.2 montre la classification de ces ensembles de données en termes de nombre d’at-
tributs, nombre classes, nombre d’instances dans 1’ensemble d’entrainement et du test. La
comparaison du BAT-SDE a été effectuée avec huit approches utilisées pour former les ré-
seaux neuronaux a propagation avant dans la littérature : PSO (MENDES et al., 2002a), MFO
(YAMANY et al., 2015), MVO (FARIS, ALJARAH et MIRJALILI, 2016b), WOA (MAFARJA et
MIRJALILL, 2018), HACPSO (KHAN et al., 2019). En outre, I'algorithme proposé a été com-
paré a la rétropropagation avec moment et le taux d’apprentissage adaptatif, qui est un
algorithme basés sur le gradient.

1. http ://archive.ics.uci.edu/ml/
2. https ://www.kaggle.com/datasets/

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
74 I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

TABLE 5.2 — Les ensembles de données de classification

Datasets Attributs Ensemble d’apprentissage Ensemble de test
Blood 4 493 255

Breast cancer 8 461 238

Diabetes 8 506 262

Vertebral 6 204 106

Liver 6 79 41

Parkinson 22 128 67

Hepatitis 10 102 53

Vue d’ensemble

Cinq fonctions de test (FISTER JR, FISTER et YANG, 2013) ont été sélectionnées (tableau
5.3) pour évaluer la performance de 1'algorithme BAT-SDE proposé. BAT-SDE a été com-
paré a BAT (YANG, 2010), DE (STORN et PRICE, 1997a) et Hybrid (HBA) (FISTER JR, FISTER
et YANG, 2013) pour vérifier les résultats.

TABLE 5.3 — Les fonctions de test

Fonctions Fmin
Griewangk f1(x) = 4000 Zz T g cos(x7) 0
Rosenbrock fo(x) = [100(x1+1 —x2)?+ (v —1)%) 0
Sphere f3(x) =y, x2 0
Rastrigin fa(x) =Y, [xz — 10cos(27x;) + 10] 0

Ackley fs(x) = —20exp(—0.24/ 1 Y0 | x2) —exp(L YL, cos(2mtx;)) +20+¢ O

Tous les algorithmes ont été testés 30 fois avec la valeur de dimension D=10 pour chaque
fonction de test. Le nombre de générations a été fixé a 1000 (FISTER JR, FISTER et YANG,
2013). Le tableau 5.1 résume les parametres des algorithmes qui ont été utilisés dans les
travaux précédents (STORN et PRICE, 1997a; FISTER JR, FISTER et YANG, 2013).

5.2. L’entrainement de réseaux de neurones a propagation avant 75
TABLE 5.4 — Résultats de I'exactitude de la classification
Algorithmes/fonctions fi f2 f3 fa fs
BAT-SDE Avg 6.40E-01 4.59E+00 6.26E-01 3.65E+01 3.69E+01
STD 3.07E-01 791E-01 7.31E-01 8.07E+00 7.04E+00
Best 2.15E-01 2.79E+00 1.47E-01 1.54E+01 2.13E+01
Worst 1.17E+00 5.90E+00 3.96E+00 4.78E+01 5.50E+01
BAT Avg 253E+00 4.40E+00 2.39E+01 3.88E+01 4.00E+01
STD 6.34E-01 8.62E-01 8.93E+00 8.03E+00 6.58E+00
Best 1.68E+00 2.78E+00 1.01E+01 2.02E+01 2.92E+01
Worst 4.03E+00 5.99E+00 4.52E+01 5.91E+01 5.93E+01
HBA Avg 2.89E+00 4.58E+00 1.86E+01 4.08E+01 3.61E+01
STD 532E-01 1.01E+00 5.06E+00 8.29E+00 1.02E+01
Best 1.97E+00 2.53E+00 1.10E+01 2.57E+01 1.44E+01
Worst 4.09E+00 6.62E+00 3.18E+01 5.36E+01 5.68E+01
DE Avg 122E+00 1.91E+05 2.93E+00 6.75E+01 1.18E+01
STD 820E-02 1.51E+05 9.82E-01 7.08E+00 1.31E+00
Best 1.08E+00 1.26E+04 1.10E+00 4.18E+01 8.93E+00
Worst 1.37E+00 6.12E+05 5.64E+00 5.52E+01 1.37E+01

Le tableau 5.4 indique clairement que BAT-SDE surpasse les trois autres algorithmes
dans trois fonctions de test f ,f3 ,fs . Lorsque les résultats de BAT-SDE sont comparés aux
BAT et DE, on peut observer que le BAT-SDE fonctionne mieux que Bat dans les fonctions
f1, f3, fa,f5 et surpasse le DE dans les fonctions fi, f», f3,fs . Les faibles valeurs d’écart-type
de BAT-SDE prouvent l'efficacité et la robustesse de cet algorithme.

Résultats

Chaque ensemble de données a été divisé en deux parties pour évaluer le MLP, 66% pour
I'ensemble d’apprentissage et 34% pour I’ensemble de test. Tous les algorithmes ont été tes-
tés dix fois pour chaque ensemble de données et les performances du MLP ont été évaluées
en fonction des valeurs de meilleure, pire, moyenne et écart-type de l'exactitude de la clas-
sification et du MSE. La taille de la population et le nombre maximum de générations ont

été fixés respectivement a 50 et 200.

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
76 I'évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

TABLE 5.5 — Résultats de ’exactitude de la classification

BAT-SDE BAT PSO CS MFO MVO GWO WOA HACPSO BP
B.cancer Avg 0961 0.813 0.959 0.959 0.958 0.958 0.653 0.956 0959 0.744
STD 0.001 0.254 0.003 0.004 0.002 0.002 0.000 0.006 0.004 0.254
Best 0963 0960 0.960 0.960 0.963 0960 0.653 0.963 0965 0.945
Worst 0958 0.188 0.953 0.952 0.954 0.954 0.653 0.947 0.952 0.680
Blood Avg 0.765 0.407 0.762 0.761 0.763 0.765 0.653 0.762 0.760 0.744
STD 0.002 0.193 0.002 0.006 0.005 0.009 0.041 0.004 0.003 0.254
Best 0.767 0.760 0.765 0.776 0.765 0.784 0.760 0.774 0.760 0.945
Worst 0.762 0239 0.760 0.751 0.760 0.760 0.623 0.758 0.758 0.680
Diabetes Avg 0.782 0.520 0.780 0.704 0.724 0.792 0.340 0.720 0.768 0.619
STD 0.015 0.178 0.011 0.007 0.008 0.006 0.000 0.028 0.006 0.08
Best 0792 0.814 0.796 0.731 0.735 0.802 0.340 0.750 0774 0.690
Worst 0732 0339 0.758 0.669 0.709 0.782 0.340 0.657 0.764 0.601
Liver Avg 0.751 0.586 0.722 0.689 0.722 0.737 0.419 0.665 0.679 0.519
STD 0.002 0.129 0.017 0.017 0.010 0.006 0.000 0.030 0.020 0.055
Best 0784 0.735 0.748 0.713 0.744 0.744 0.633 0.700 0.709 0.586
Worst 0.722 0.418 0.700 0.669 0.709 0.726 0.564 0.603 0.669 0.495
Vertebral Avg 0.837 0.707 0.836 0.819 0.836 0.837 0.778 0.774 0.817 0.651
STD 0.007 0178 0.012 0.017 0.007 0.005 0.056 0.052 0.015 0.170
Best 0.843 0.838 0.848 0.848 0.843 0.838 0.866 0.862 0.833 0.866
Worst 0.828 0.338 0.808 0.799 0.82 0.828 0.732 0.676 0794 0.627
Parkinson Avg 0.841 0.704 0.836 0.841 0.802 0.802 0.750 0.842 0.876 0.750
STD 0.027 0.224 0.040 0.041 0.022 0.046 0.000 0.016 0.013 0.199
Best 0.882 0.890 0.898 0.859 0.828 0.867 0.750 0.852 0905 0.849
Worst 0.789 0.203 0.773 0.804 0.773 0.695 0.750 0.800 0.863 0.623
Hepatitis Avg 0915 0.773 0914 0.888 0.866 0.867 0.860 0.791 0.854 0.758
STD 0.018 0.275 0.017 0.015 0.016 0.014 0.014 0.063 0.015 0.155
Best 0963 0947 0947 095 0.894 0.894 0.874 0.867 0.875 0.865
Worst 0.873 0.221 0.884 0.863 0.842 0.842 0.842 0.695 0.828 0.669

Le tableau 5.5 présent les résultats statistiques : moyenne, meilleure, pire et écart type de
la I'exactitude de la classification (accuracy). Les résultats de BAT-SDE ont surpassé d’autres
approches dans Breast cancer, Blood, Liver, Vertebral and Hepatitis avec une exactitude
moyenne de 0,961, 0,765, 0,751, 0,837, 0,915. En outre, Bat-SDE était classé deuxiéme dans les
ensembles de données : Diabetes et Parkinson avec une exactitude moyenne de 0,782, 0,841
respectivement. De plus, on peut également voir que le BAT-SDE a un écart type plus petit
qui indique que le BAT-SDE est stable.

5.2. L’entrainement de réseaux de neurones a propagation avant 77

TABLE 5.6 — Résultats de MSE

BAT-SDE BAT PSO CS MFO MVO GWO WOA HACPSO BP

B.cancer Avg 0.032 0.053 0.032 0.040 0.033 0.032 0.048 0.047 0.040 0.049
STD 0.001 0.020 0.001 0.005 0.001 0.002 0.007 0.004 0.001 0.015

Best 0.030 0.037 0.030 0.039 0.310 0.030 0.042 0.043 0.038 0.030

Worst 0.033 0.121 0.326 0.041 0.036 0.032 0.056 0.058 0.041 0.050

Blood Avg 0.169 0193 0.178 0.175 0.176 0.170 0.178 0.180 0169 0.174
STD 0.005 0.028 0.003 0.005 0.005 0.008 0.007 0.004 0.003 0.009

Best 0.160 0.177 0.182 0.177 0.174 0.155 0.174 0.174 0.162 0.172

Worst 0.174 0.261 0.172 0.182 0.177 0.181 0.181 0.187 0.175 0.175

Diabetes Avg 0.151 0.193 0.155 0.175 0.171 0.147 0.166 0.186 0.163 0.179
STD 0.002 0.028 0.004 0.002 0.005 0.001 0.005 0.013 0.002 0.066

Best 0.149 0.158 0.157 0.160 0.165 0.149 0.166 0.168 0.160 0.168

Worst 0.153 0.261 0.151 0.171 0.175 0.145 0.176 0.213 0.166 0.180

Liver Avg 0.176 0.224 0.191 0.210 0.193 0.186 0.225 0.220 0.212 0.210
STD 0.004 0.027 0.003 0.002 0.002 0.004 0.004 0.007 0.002 0.003

Best 0.170 0.196 0.185 0.208 0.189 0.179 0.218 0.210 0.208 0.190

Worst 0.180 0.245 0.195 0.211 0.194 0.194 0.233 0.233 0.215 0.220

Vertebral Avg 0.130 0.154 0.134 0.143 0.136 0.133 0.162 0.163 0.146 0.168
STD 0.006 0.032 0.002 0.003 0.002 0.002 0.008 0.018 0.002 0.0015

Best 0.120 0.136 0.132 0.141 0.135 0.130 0.153 0.137 0.142 0.160

Worst 0.138 0.182 0.135 0.146 0.137 0.134 0.166 0.202 0.147 0.172

Parkinson Avg 0.134 0.164 0.141 0.128 0.158 0.147 0.123 0.165 0.119 0.158
STD 0.014 0.114 0.023 0.006 0.019 0.020 0.006 0.030 0.005 0.018

Best 0.119 0.090 0.099 0.102 0.135 0.125 0.117 0.127 0.112 0.137

Worst 0.157 0.137 0.182 0.139 0.203 0.197 0.137 0.228 0.130 0.203

Hepatitis Avg 0.092 0.097 0.089 0.098 0.119 0.116 0.117 0.143 0.090 0.168
STD 0.016 0.058 0.016 0.003 0.011 0.010 0.006 0.020 0.003 0.015

Best 0.070 0.054 0.056 0.093 0.100 0.102 0.106 0.109 0.084 0.159

Worst 0.119 0.202 0.117 0.102 0.138 0.130 0.125 0.176 0.094 0.173

Le tableau 5.6 montre la moyenne, la meilleure et la pire MSE avec 1'écart type, obtenue
pour chaque algorithme. En conséquence, on peut noter que le BAT-SDE surpasse les autres
techniques dans quatre ensembles de données : Breast cancer, Blood, Liver et Vertebral avec
une MSE moyenne de 0,032, 0,169, 0,176, 0,130, respectivement. De plus, on peut également
remarquer que le BAT-SDE a une faible valeur d’écart type pour tous les jeux de données,
ce qui prouve l'efficacité et la robustesse de cet algorithme.

/0 eVolution diirerentuelle auto-addptative pour 1 €Irdineinerit de resedux de neurones
a propagation avant

PSO PSO
— MVO — W0
—— MFO — MFO
—cs —cs
— GWO — GWO
—— BAT S
WOA WOA
—— HACPSO 9 —— HACPSO
—— BAT-SDE 2 —— BAT-SDE
50 100 150 200) 100 150
Iterations Iterations
FIGURE 5.4 — Courbe de convergence basé sur le MSE pour Hepatitis et
Vertebral, respectivement
PSO PsO
0.35) —mo — Mvo
— MFO — MFO
-0 ——(CS
— GWO — Gwo
—— BAT — BAT
WOA WOA
—— HACPSO u — HACPSO
—— BAT-SDE = —— BAT-SDE
50 100 150 50 100 150 200
Iterations Iterations
PSO Pso
0.24] — Mvo — MVO
— MFO — MFO
—cs ——G
022 — =Tk o e
\ —— BAT BAT
T WOA WOA
W gl | —— HACPSO —— HACPSO
8 o |
2 \ —— BAT-SDE —— BAT-SDE
0.18
= —
016 = —
0.1 -
50 100 150 200 50 100 150 200
Iterations Iterations

PSO
— MVO
—— MFO
=5
— GWO
—— BAT

~——— HACPSO
—— BAT-SDE

50 100 150 200

Iterations

FIGURE 5.5 — Courbe de convergence basé sur le MSE pour blood, breast
cancer, diabetes, hepatitis

5.2. L’entrainement de réseaux de neurones a propagation avant 79

Les figures 5.4 et 5.5 montrent les courbes de convergence de tous les algorithmes d’en-
trainement basés sur les valeurs moyennes de MSE. Les courbes de convergence montrent
que BAT-SDE a la valeur la plus basse de MSE pour quatre ensembles de données : Breast
cancer, Blood, Liver et Vertebral. De plus, le BAT-SDE a la vitesse de convergence la plus
rapide dans les ensembles de données Liver, Vertebral, Blood et European. Pour I'ensemble
de données Diabete, BAT-SDE fournit des performances trés proches par rapport a l'algo-
rithme MVO. Ces résultats montrent que le BAT-SDE a une convergence plus rapide et une
meilleure optimisation par rapport aux autres algorithmes métaheuristiques.

Classification de ’ensemble de données européen

L’ensemble de données européen, extrait du répertoire de données Kaggle (2016), contient
les transactions par carte de crédit effectuées par les détenteurs de cartes européens en sep-
tembre 2013. Il a été collecté et analysé dans le cadre d’une collaboration de recherche entre
Worldline et le groupe d’apprentissage automatique de 1'Université Libre de Bruxelles pour
I'exploration des données et la détection des fraudes (Groupe d’apprentissage automatique,
2018). L'ensemble des données est tres déséquilibré; la classe positive (fraudes) représente
0,172 % de toutes les transactions avec 492 fraudes sur 284 807 transactions (STORN et PRICE,
1997b).

La méthode combinée SMOTE + ENN a été utilisée pour résoudre ce probleme en tant que
technique de prétraitement utilisée pour traiter des ensembles de données déséquilibrées et
I'élimination récursive des caractéristiques avec validation croisée comme méthode de sé-
lection d’attributs. Il est important de noter que pour I'ensemble des données européen, la
taille de la population et le nombre maximum de générations sont fixés a 50 et 50 respecti-
vement.

Toutes les techniques de prétraitement et d’évaluation utilisées avec cet ensemble de don-
nées sont définies comme suit :

— Eliminations récursives des caractéristiques avec validation croisée : une élimination

récursive des caractéristiques avec réglage automatique du nombre de caractéris-
tiques sélectionnées avec validation croisée (GUYON et al., 2002).

Ensemble de données déséquilibré

Dans de nombreuses applications d’apprentissage supervisé, il existe une différence

entre les probabilités antérieures des différentes classes. Cette situation est connue sous le
nom de probléme du déséquilibre entre les classes.
De nombreux groupes de recherche ont découvert quun ensemble de données déséquilibré
pouvait étre I'un des problemes fondamentaux de 1’apprentissage automatique (MURPHEY
et al., 2007; BREST et al., 2006; ZHOU et L1U, 2005) et il est commun dans de nombreux
probléemes réels des télécommunications, du web, de 1'écologie, du monde de la finance, la
médecine, la biologie, etc. Pendant le processus d’apprentissage dans les algorithmes d’ap-
prentissage automatique, si le rapport entre les classes minoritaires et les classes majori-
taires est significativement différent, le ML tend a étre dominé par les classes majoritaires.
En conséquence, le classificateur tend a favoriser la classe majoritaire (appelée classe "néga-
tive") et I’exactitude de classification de la classe minoritaire (appelée classe "positive") peut
étre faible par rapport a 'exactitude de classification de la classe majoritaire. Une étude de
Murphey et al. (MURPHEY et al., 2007 ; YANG et WU, 2006) a montré que le réseau neuronal a
propagation avant a des difficultés a apprendre a partir des ensembles de données déséqui-
librés en raison des instances d’entrainement écrasantes de la classe majoritaire. Le réseau a
tendance a ignorer la classe minoritaire et la traite comme du bruit (SEXTON et al., 1998).

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
80 [I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

Prétraitement dans les ensembles de données déséquilibrés

De nombreuses solutions ont été proposées pour résoudre ce probleme. En général, elles
peuvent étre classées en deux catégories : 'approche au niveau des données et 'approche
algorithmique. L’approche au niveau des données vise a modifier les instances de formation
pour produire une distribution de classe plus ou moins équilibrée, c’est-a-dire rééquilibrer
la distribution de classe avant la classification. L’approche au niveau de 1'algorithme vise
a modifier le classificateur en ajustant les algorithmes pour reconnaitre les classes mino-
ritaires (MURPHEY et al., 2007). Pour 'ensemble de données européen, des techniques de
rééchantillonnage, ont été utilisées et elles sont définies comme suit :

— Technique de sur-échantillonnage des minorités synthétiques (Synthetic Minority

Oversampling Technique) (SMOTE)

L’approche SMOTE est une technique qui peut générer des individus artificiels dans

la classe minoritaire. Pour chaque individu de la classe minoritaire, on calcule ses k

plus proches voisins de la méme classe. Ensuite, un certain nombre de voisins sont

sélectionnés (les voisins des k plus proches voisins sont choisis au hasard). Des in-

dividus artificiels sont ensuite répartis de maniere aléatoire le long de la ligne entre

I'individu de la classe minoritaire et ses voisins sélectionnés (CHAWLA et al., 2002).
— Propriétés asymptotiques des regles du plus proche voisin a 'aide de données

éditées (ENN)

ENN tend a supprimer tout exemple qui est mal classé par ses k plus proches voisins,

c’est-a-dire (dont la classe differe de la majorité de ses KNN) (HE et GARCIA, 2009).
— SMOTE + ENN

Tout d’abord, la technique SMOTE est appliquée a I'ensemble de données d’origine

et ensuite, la méthode ENN est appliqué (HE et GARCIA, 2009).

Evaluation dans des domaines déséquilibrés

Les mesures de performances les plus utilisées avec les jeux de données déséquilibrés
sont Le coefficient de corrélation de Matthews (MCC) (Equation 4.7) etla G-Moyenne (Equa-
tion 4.8).

TABLE 5.7 — Comparaison des algorithmes en terme de F-mesure, MCC,
GMEAN, ENTROPIE et MSE

DataSets/Algorithmes BAT-DE BAT PSO CS MFO MVO GWO BP

PRECISION 0.94 093 090 0.84 0.82 0.86 0.86 0.79
RAPPEL 0.94 092 090 0.82 079 0.83 0.85 0.77
F-mesure 0.94 092 090 092 0.78 0.82 0.84 0.77
ENTROPIE 0.08 0.09 013 021 023 0.18 0.18 0.26
MCC 0.87 0.84 079 0.65 0.60 0.68 0.70 0.56
G-MOYENNE 0.94 092 090 0.82 0.87 0.85 0.84 0.79
MSE 0.07 012 028 029 031 024 0.30 0.34

Sur la base des résultats obtenus, le tableau 5.7 indique que le BAT-SDE est plus
performant que les autres approches dans toutes les méthodes d’évaluation. Une différence
importante peut étre observée en termes de F-mesure, MCC et MSE. Alors que 1'algorithme
de rétropropagation a le moins F-mesure, G-MOYENNE, MCC et le plus grand MSE, on
peut également noter que 1'approche proposée converge avec un MSE plus petit de 0,06
parmi les autres algorithmes.

5.3. Conclusion de I'approche 81

10 20 30 40 50

Iterations

FIGURE 5.6 — Courbe de convergence basée sur le MSE pour Européen dataset

Les résultats obtenus par BAT-SDE sur la base de l'exactitude moyenne et du MSE

montrent que cet algorithme peut trouver le meilleur ensemble de poids et de biais et
empécher une convergence prématurée vers I’'optimum local.
En outre, le test statistique de Friedman a été utilisé pour évaluer les performances de
BAT-SDE par rapport aux autres algorithmes de formation dans chaque exécution indépen-
dante et confirmer la signification des résultats. Cette statistique a été réalisée en classant
les différentes techniques (BAT-SDE, PSO, MVO, CS, BAT, MFO, WOA, HACPSO et BP) en
fonction des valeurs d’exactitude moyennes pour chaque ensemble de données.

TABLE 5.8 — Classements moyens des algorithmes (le test de Friedman)

Algorithmes Classement
BAT-SDE 1.35

BAT 9.14
PSO 3.28
CS 4.5

MVO 3.42
MFO 4.5

GWO 8.64
WOA 5.78
HACPSO 6.21
BP 8.14

Le tableau 5.8 montre les classements moyens obtenus par chaque technique d’optimisa-
tion dans le test de Friedman (le plus bas est le meilleur). L’étude comparative montre que
I'algorithme d’entrainement proposé surpasse les autres algorithmes.

5.3 Conclusion de I’approche

Une nouvelle approche de formation basée sur 1’optimisation des chauves-souris avec
une évolution différentielle auto-adaptative pour former le réseau de neurones a propaga-
tion avant (FFNN) a été proposée. La méthode de formation a pris en compte les capacités
de BAT-SDE en termes d’exploration et d’exploitation élevées pour localiser les valeurs op-
timales pour les poids et les biais de FFNN.

Chapitre 5. Un nouvel algorithme basé sur I'optimisation des chauves-souris avec
82 [I’évolution différentielle auto-adaptative pour I'entrainement de réseaux de neurones a
propagation avant

L’approche a été comparée et évaluée a 1’aide de cinq ensembles de données biomédicales
standard et d"un grand ensemble de données de détection de fraude. De plus, les méthodes
de prétraitement SMOTE + ENN ont été utilisées pour traiter le probleme fondamental du
déséquilibre de classe. Comme le jeu de données européen est tres bruyant, la sélection
d’attributs a également été utilisée avec I'élimination récursive des caractéristiques et la va-
lidation croisée.

La comparaison entre l’algorithme proposé et PSO, CS, MFO, GWO, MVO, WOA, HACPSO
et BP montre la supériorité de ’algorithme proposé avec une grande exactitude et une petite
MSE dans la plupart des ensembles de données par rapport a autres algorithmes de forma-
tion.

De plus, la faible valeur de ’écart type montre que I’algorithme proposé est robuste et stable.
Les résultats obtenus par BAT-SDE sur la base de I'exactitude moyenne et du MSE prouvent
que cet algorithme peut trouver le meilleur ensemble de poids et de biais et empécher une
convergence prématurée vers des optima locaux. Les résultats ont été confirmés en utilisant
le test de Friedman et comparés avec PSO, CS, MFO, GWO, MVO, WOA, HACPSO et BP le
BAT-SDE a le rang le plus élevé parmi toutes les autres méthodes de formation.

Enfin, sur la base de ces expériences, on peut conclure que BAT-SDE a fourni de bons résul-
tats et peut-étre considérée comme une alternative aux autres méthodes de formation pour
les petits et grands ensembles de données.

83

Chapitre 6

Sélection automatique des neurones
cachés et des poids dans les réseaux de
neurones pour la classification des
données a I’aide de 'optimisation
hybride des essaims de particules et
I’optimisation multi-verse basée sur le
vol de Lévy

6.1 Introduction

Plusieurs regles sont proposées dans la littérature pour définir le nombre de neurones
cachés en fonction des propriétés des données telles que le nombre de classes et le nombre de
variables (MIRJALILI, MIRJALILI et LEWIS, 2014b). Comme ce nombre dépend de la nature
et de la complexité des données, aucune regle n’a été retenue jusqu’a présent comme étant
la meilleure pour définir ce nombre (FARIS, MIRJALILI et ALJARAH, 2019a). Certains cher-
cheurs ont proposé 1'utilisation des algorithmes métaheuristiques pour optimiser la struc-
ture et la connexion des poids du réseau de neurones simultanément. Par exemple, dans
(YU, X1 et WANG, 2007), un PSO améliorée a été proposée pour I'optimisation simultanée de
la structure et des poids d"un réseau neurones a trois couches. Chaque particule a une struc-
ture hiérarchique composée de dimensions a plusieurs niveaux. L'approche a été comparée
aux autres algorithmes de classification basée sur huit ensembles de données. Les résul-
tats obtenus ont montré que cet algorithme surpassait les autres algorithmes. Dans (ZHAO
et QIAN, 2011) les auteurs ont proposés 1’optimisation de la structure et de la connexion
des poids du réseau de neurones simultanément en utilisant un algorithme PSO coopératif
binaire-réel. La structure est optimisée a I’aide du PSO binaire, tandis que 1'optimisation du
poids est attribuée au PSO réel.

L'optimisation multi-verse proposée par Mirjalili en 2015 (MIRJALILI, MIRJALILI et
HATAMLOU, 2016) est influencée par les idées de trous blancs, de trous noirs et de trous de
ver en multivers. La fonction de fitness est indiquée par le taux d’inflation pour chaque agent
de recherche. Chaque univers de I’agent de recherche représente une solution candidate et
chaque objet de 1'univers représente une variable dans la solution candidate (MIRJALILI,
MIRJALILI et HATAMLOU, 2016). Les trous noirs ont un taux d’inflation plus faible et les
trous blancs ont un taux d’inflation plus élevé. Toute la matiére dans 1'univers se déplacera
aléatoirement a travers le trou de ver pour atteindre I'emplacement optimal de 1'univers.

Plusieurs études utilisent I’algorithme MVO dans la littérature. Faris et al. (FARIS, ALJARAH

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
84neurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

et MIRJALILI, 2016a) ont résolu le probleme de I’entrainement du réseau neurones a propa-
gation avant en utilisant I’algorithme MVO. Dans (SINGH, MEHTA et PRASHAR, 2016), I’al-
gorithme MVO a été proposé pour résoudre le probleme de 1'ordonnancement économique
de la charge (ELD). Faris et al. (FARIS et al., 2018) ont proposé le MVO pour la sélection d’at-
tributs et 'optimisation des parametres du SVM. Bien que MVO soit plus performant que
les autres algorithmes, il n’y a pas d’échange d’informations entre ses particules, il n’a donc
pas éliminé les problemes de vitesse de convergence lente, de faible exactitude et de chute
facile dans 1'optimum local. Le vol de Lévy est une sorte de marche aléatoire, suivant les
regles de la multiplicité des puissances. De temps en temps, des pas importants aident 1’al-
gorithme a effectuer une recherche globale. Le vol de Lévy permet de trouver un meilleur
équilibre entre 'exploration et 1’exploitation des algorithmes, qui a I'avantage d’éviter les
optima locaux. Pour cette raison nous avons utilisé dans cette approche une version amélio-
rée de MVO basée sur le vol de Lévy, appelé LMVO (J1A et al., 2019), qui vise a améliorer
I'exactitude et la vitesse de convergence de MVO traditionnel.

L’optimisation des essaims de particules est une méthode inspirée par le déplacement d'un
groupe d’oiseaux ou un groupe de poissons (KENNEDY et EBERHART, 1995a). Dans le PSO,
I'individu est un poisson ou un oiseau qui a une position et une vitesse dans 1’espace de re-
cherche. Les particules essaient de suivre leurs meilleures positions locales avant de recher-
cher la meilleure position globale (KENNEDY et EBERHART, 1995b). Cette approche présente
un nouvel algorithme basé sur I'optimisation des essaims de particules (PSO) avec 'optimi-
sation Multi-Verse (MVO) basé sur le vol de Lévy, appelé PLMVO.

Pour évaluer la qualité de I'algorithme proposé, nous avons utilisé trois séries expérimen-
tales. Dans la premiere, 1'algorithme PLMVO est comparé aux algorithmes MVO et PSO
pour résoudre un ensemble de 15 fonctions de référence afin de trouver la solution globale.
Dans la deuxieme expérience, 'algorithme proposé est utilisé pour optimiser le nombre
de neurones cachés et les poids de connexion simultanément dans le réseau de neurones
a propagation avant (FFNN). Neuf ensembles de données ont été résolus par ’entraineur
proposé. De plus, 'application de l'entraineur a été étudiée dans le domaine biomédical.
Les performances du PLMVO ont été comparées a celles de cinq algorithmes métaheuris-
tiques d’entrainement bien connus dans la littérature : PSO (MENDES et al., 2002b), MFO
(FARIS, ALJARAH et MIRJALILI, 2017), MVO (FARIS, ALJARAH et MIRJALILI, 2016a), WOA
(ALJARAH, FARIS et MIRJALILI, 2018b), HACPSO (KHAN et al., 2019). Dans la troisieme
expérience, le PLMVO-MLP proposé est utilisé pour prédire les fichiers exécutables mal-
veillants de Linux. Les performances du PLMVO-MLP ont été comparées a celles de deux
travaux précédents qui utilisaient des réseaux de neurones pour prédire les fichiers de logi-
ciels malveillants.

Optimisation des essaims de particules (PSO)

En 1995, Russell Eberhart et James Kennedy ont inventé I'optimisation des essaims de
particules, une technique d’optimisation stochastique basée sur la population inspirée par
les oiseaux qui affluent autour des sources de nourriture. Comme les autres algorithmes de
calcul évolutifs. Dans PSO, chaque individu est un oiseau dans 'espace de recherche. Nous
I'appelons une particule. Toutes les particules ont des valeurs de fitness qui sont évaluées
par la fonction de fitness (fonction objectif a optimiser) et volent dans I’espace avec une vi-
tesse qui est ajustée dynamiquement en fonction de sa propre expérience de vol (KENNEDY
et EBERHART, 1995a).

VI = V}w + C1Ry (Phest' — X') + CoRo(Gbest! — X') 6.1)

X =xt 4+ vl i =1,2..NP)And(j = 1,2..NG) (6.2)

6.1. Introduction 85

O, Pbest et Gbest désignent la meilleure position de particule et la meilleure position

(w™ax —w™in) xiteration
maxiteration

positives r1,r, sont des nombres aléatoires dans l'intervalle de [0, 1], Vit;rl est la vitesse de

de groupe et w est le poids d’inertie, w = w™** — (), C1,C2 deux constantes

jin membre de la particule iy, au nombre d’itérations (t) et (t + 1) . Les nouvelles valeurs
de position X!*! sont obtenues en ajoutant les mises a jour de la vitesse déterminées par la

formule donnée dans 1’'équation (6.1).
Les étapes du PSO sont données dans l’algorithme 9.

Algorithm 9 L'algorithme PSO

Initialiser la population
Répéter
for I =1 to la taille de la population do
Calculez la valeur de la fonction objective.
if la valeur de fitness est meilleure que la meilleure valeur (Pbest) then
Définir la valeur actuelle comme la nouvelle Pbest.
Choisissez la particule avec la meilleure valeur de fitness de toutes les particules
comme Gbest.
Calculer une nouvelle vitesse selon I'équation (6.1).
Mettre a jour la position de la particule conformément a 1’équation (6.2)
end if
end for

Optimiseur multi-vers (MVO)

Optimiseur multi-vers (MIRJALILI, MIRJALILI et HATAMLOU, 2016) est un algorithme

basé sur la population proposé par (MIRJALILI, MIRJALILI et HATAMLOU, 2016) en 2015.
MVO s’inspire des interactions entre univers via trois concepts : les trous noirs, les trous
blancs et les trous de ver dans les théories de la multi-verse et du big bang.
Dans cet algorithme, les modéles de ces trois concepts sont développés pour effectuer 1'ex-
ploration et I'exploitation et la recherche locale. La fonction de fitness pour chaque agent de
recherche est indiquée par le taux d’inflation, et chaque objet et chaque univers dans I’agent
de recherche représentent une solution candidate et une variable dans la solution candidate.
Dans cet algorithme, les grands univers ont tendance a envoyer des objets a des univers plus
petits. Un grand univers est défini sur la base du taux d’inflation dans la théorie multi-verse.
Les regles suivantes sont appliquées aux univers du MVO :

— Sile taux d’inflation est plus élevé, la probabilité d’avoir un trou blanc est plus élevée.

— Si le taux d’inflation est plus élevé, la probabilité d’avoir des trous noirs est plus

faible.

— Les univers ayant un taux d’inflation plus élevé envoient les objets a travers des trous

blancs.

— Les univers ayant un taux d’inflation plus faible ont tendance a recevoir plus d’objets

a travers les trous noirs.
— Les objets de tous les univers peuvent étre remplacés par les objets de l'univers avec
le taux d’inflation le plus élevé.
Il'y a deux coefficients principaux dans MVO qui doivent étre déterminés en premier pour
mettre a jour les solutions. Le taux de distance de déplacement (TDR) et la probabilité
d’existence d'un trou de ver (WEP). Ces coefficients déterminent dans quelle mesure les
solutions sont modifiées pendant 1’optimisation. Les formules adaptatives pour les deux

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
8@eurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

parameétres sont définies comme suit :

WEP = min + t x (M) (6.3)
1
tr

TDR=1- - (6.4)
Tr

Ou t est I'itération actuelle, T représente le nombre maximum d’itérations, min indique le
minimum (0,2 dans ce document), et max indique le maximum (1 dans ce document).

Ot p est la précision d’exploitation (6 dans ce document).

La position des solutions MVO peut étre mise a jour a l'aide des équations suivantes :

xj + TDR + ((ub; — Ibj)) * r4 + 1bj,if r3 < 0.5

xl,if rp > WEP

i r, < WEP
if r2 6.5)

Ou, x;j indique la jy, variable dans le meilleur univers, [b; indique la limite inférieure de
la jy, variable, ub; montre la limite supérieure de la j;, variable, r; ,r3 , 74 sont des nombres
aléatoires dans l'intervalle [0,1], TDP/WEP sont des coefficients modifiés pour chaque

solution et x| indique le jy, parametre dans I'univers. Les étapes générales de l'algorithme
MVO sont présentées dans 1’ Algorithme 10.

Dans l'algorithme MVO, le processus d’optimisation commence par la génération d'un
ensemble de solutions aléatoires et le calcul de leurs objectifs correspondants (MIRJALILI,
MIRJALILI et HATAMLOU, 2016).

6.1. Introduction

87

Algorithm 10 L'algorithme MVO

SU= Univers stockés (Stored universes)
Normaliser le taux d’inflation (fitness)
for chaque objet indexé par i do
Black — hole — index = i;
for chaque objet indexé par j do
ri=random][0,1]
ifr; < NI(U{) then
White — hole — index=RouletteWheel Selection(—NT)
U(Black — hole — index, j)=SU (white — hole — index, j)
end if
end for
end for
for chaque objet indexé par i do
for chaque objet indexé par j do
ro=random][0,1]
if ro < Wormhole — existance — probability then
rs=random][0,1];
rq=random][0,1];
if r3 < 0.5 then

U(i, j)=Best — universe(j) + Travelling — distance — rate x ((ub;, 1b;)) x r4 + Ib;

else

U(i, j)=Best — universe(j) — Travelling — distance — rate x ((ub;, 1b;)) » r4 + Ib;

end if
end if
end for
end for

Vol de Lévy

Le vol de Lévy introduit par le mathématicien Paul Levy en 1937. Le vol de Lévy est une
sorte de marche aléatoire qui se caractérise par une grande taille de pas et un petit nombre
de pas (J1A et al., 2019). Le vol de Lévy a une grande longueur de pas et un grand avantage
dans l’exploration de l'espace de recherche inconnu et a grande échelle par rapport aux
autres types de marche aléatoire. La définition du vol de Lévy est dérivée de la théorie du
chaos qui est utile dans la simulation et la mesure stochastique (JIA et al., 2019). Le vol de

Lévy peut étre mathématiquement défini comme :

Leoy(A) = 0.01 x 127

v]?

Ou u et v sont tirés de la distribution normale, A = 4 1.

W~ N(O,02),v ~ N(O,Jf)

Avec

1

T (14B) xsin "L B

=\ gt) =1
[(=F)xpx22

(6.6)

(6.7)

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
8&eurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

La longueur de I’étape s peut étre représentée par

s = |P|‘}3 6.9)
v

Ou B est une constante. § = 1.5

Optimisation multi-verse basée sur le vol de Lévy (LMVO)

L’algorithme d’optimisation multi-verse peut résoudre 1'optimisation dimensionnelle

d’un seul mode (JIA et al., 2019). Mais, la solution obtenue par MVO n’est pas tres satis-
faisante lorsqu’il s’agit de problemes d’optimisation multimodale de grandes dimensions
(J1A et al., 2019).
Dans 1'algorithme MVO, si le trou noir et le trou blanc sont générés autour de la solution
optimale actuelle, c’est probablement de faire tomber l'algorithme dans un optimum local
(J1A et al., 2019). A ces fins, I'algorithme sera optimisé dans 1'univers le plus large et sortira
de I'optimisation locale si le trou noir / blanc est reformé a distance par le vol de Lévy (J1A
etal., 2019). Le trou de ver aide I'optimisation multi-verse (MVO) pour développer 1'espace
de recherche sous l'action du vol de Lévy et le trou blanc / trou noir explore 1'espace de
recherche a travers MVO (J1A et al., 2019).

‘ {xj+TDR+((”bj—lbj)) * Levy(A) +1bj,if r3 < 0.5
I = { \xj— TDR + ((ub; — b)) * Levy(A) + Ibj, if r3 > 0.5

if rp < WEP
X
xl,if rp > WEP

(6.10)

1

Tous les parametres sont les mémes que 1’algorithme traditionnel sauf Levy(A). En théorie,
le MVO avec le vol de Lévy peut trouver une meilleure solution que 1'algorithme MVO
traditionnel.

Hybride PSO-LMVO (PLMVO)

Le PSO-LMVO est une combinaison séquentielle de PSO et de LMVO (PLMVO) (YANG,
2011). L’algorithme fusionne la meilleure force de PSO en exploitation et de LMVO en ex-
ploration vers la solution optimale lorsque la valeur universelle de LMVO remplace le Pbest
de PSO (YANG, 2011 ; SAGARIKA et JYOTHSNA, 2015; KARTHIKEYAN et DHAL, 2015).
(Remarque : cette hybridation est de type relais de haut niveau (JOURDAN, 2003)).

Dans cette approche, nous proposons un nouvel algorithme d’apprentissage basé sur cet
algorithme pour la premiere fois dans la section suivante. L'équation peut s’écrire comme
suit :

Vl’f;rl = VZ-Z-W + C1Rq (Universes' — X') + CaRa(Gbest' — X*) (6.11)

Les étapes du PLMVO peuvent étre démontrées comme suit :

1. Etape 1: initialiser les valeurs de LMVO

Etape 2 : évaluer le taux d’inflation de 'univers (fonction de fitness)
Etape 3 : mettre a jour la position des univers

Etape 4 : si le critére de convergence est atteint; obtenir les résultats

AR I N

Etape 5 : si le critere de convergence n’est pas atteint; continuez le processus a partir
de I'étape 2-5.

6. Etape 6 : utiliser les solutions optimales de LMVO comme des limites a I’algorithme
PSO

6.1. Introduction 89

7. Etape 7 : initialiser les valeurs de PSO
8. Etape 8 : évaluer la fonction de fitness de chaque particule
9. Etape 9 : déterminer Gbest a partir de la valeur de Pbest

10. Etape 10: mise a jour des valeurs de vitesse et de position de chaque particule lorsque
la valeur de l'univers de LMVO remplace la valeur Pbest de PSO.

11. Etape 11 : vérifier la solution si elle est faisable ou non

12. Ftape 12 : les étapes 8 a 12 ont été répétées jusqu’a ce que le nombre maximum d’ité-
rations soit atteint.

PLMVO pour la formation du MLP

Cette section présente 1’approche proposée basée sur le PLMVO pour optimiser la struc-
ture et le réseau de neurones a propagation avant nommé PLMVO. Deux points impor-
tants sont pris en considération : la fonction de fitness et la représentation des solutions de
PLMVO qui impliquent la représentation de la population et 'encodage des individus. Dans
notre travail, nous avons utilisé la méme représentation de la solution que celle utilisée dans
(FARIS, MIRJALILI et ALJARAH, 2019b).

L’encodage des individus : Chaque individu est constitué de deux parties principales : une
partie de la structure de contrdle et la partie des poids. Ce schéma d’encodage est illustré
dans la figure 6.1.

Drapeaux d'existence de

neurones
Poids et biais de connexion

——
....... | Enl Bo ‘ B, ‘ ‘ Bon

Wiy | Whz| == Wnim

W, ‘ W,

FIGURE 6.1 — Le schéma de codage utilisé pour représenter PLMVO pour la
formation du MLP

La premiere partie est un vecteur de drapeau binaire dans lequel chaque drapeau est res-
ponsable de l'existence de son neurone correspondant. La longueur maximale de ce vecteur
est égale au nombre maximal possible de neurones dans la couche cachée (FARIS, MIRJALILI
et ALJARAH, 2019b). Par conséquent, le neurone existe si un drapeau Fi donné est activé;
sinon, il est supprimé. Pour illustrer cette idée, trois exemples de vecteurs de controdle aléa-
toire et leurs réseaux respectifs sont donnés dans la figure 6.2. Dans ce travail, ’algorithme
PLMVO a été appliqué pour optimiser les poids et le nombre de neurones avec une seule
couche cachée, la deuxieme partie des solutions représente les parametres d’apprentissage
(poids et biais) qui ont été formé de trois parties : les poids de connexion entre la couche
d’entrée et la couche cachée, les poids entre la couche cachée et la couche de sortie, et les
poids de biais (FARIS, ALJARAH et MIRJALILI, 2016b ; FARIS, MIRJALILI et ALJARAH, 2019b).

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
9theurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

Partie de controle

FIGURE 6.2 — Le schéma de codage utilisé pour représenter PLMVO pour la
formation du MLP

La longueur de chaque vecteur de solution est donnée par 1’équation (6.12), ot N est le
nombre d’entités d’entrée et m est le nombre maximum de neurones dans la couche cachée
(FARIS, MIRJALILI et ALJARAH, 2019b). Dans cette approche, m est égal a 2N 4 1 (FARIS,
ALJARAH et MIRJALILI, 2016b).

Selon l'équation (6.12), pour représenter les drapeaux de controle correspondant aux neu-
rones cachés nous avons besoin de m bits, les poids cachés entre la couche d’entrée et la
couche cachée représentent par N x m bits, pour représenter les poids entre la couche ca-
chée et la couche de sortie nous avons utilisé m bits, les termes de polarisation des neurones
dans la couche cachée et la couche de sortie sont représentés par m + 1 bits (FARIS, MIRJALILI
et ALJARAH, 2019Db).

Encodage de la population : indiqué dans 1’Eq. (6.14), la population est définie comme
une matrice R de taille N x L, ot N est le nombre d’individus dans la population (FARIS,
MIRJALILI et ALJARAH, 2019b). La population a un nombre fixe d’individus o1 chacun d’eux
forme une solution candidate (FARIS, MIRJALILI et ALJARAH, 2019b).

Mappage : chaque solution candidate est mappée a un réseau dans ce processus (FARIS,
MIRJALILI et ALJARAH, 2019b).

La solution est divisée en ses parties principales : la partie poids et biais de connexion et
la partie contrdle. La partie controle est mappée en représentation binaire pour former les
drapeaux chargés de déterminer les neurones actifs (FARIS, MIRJALILI et ALJARAH, 2019b).
Ce mappage a été fait comme indiqué dans I'équation (6.15), ot E; est I'ieme élément de
I'individu et 1 < i < m (m est le nombre maximum de neurones cachés autorisés).

L=(Nxm)+B3xm)+1 (6.12)

Les solutions PLMVO sont implémentées sous forme de vecteurs de nombres réels lorsque
chaque vecteur appartient a l'intervalle [—1, 1] (FARIS, ALJARAH et MIRJALILI, 2016b). L'er-
reur quadratique moyenne (MSE) a été utilisée pour mesurer la valeur de fitness des so-
lutions PLMVO (FARIS, ALJARAH et MIRJALILI, 2016b). La MSE a été calculée sur la base
de la différence entre les valeurs estimées et réelles du réseau de neurones a l'aide des
ensembles de données d’apprentissage, comme indiqué dans 1’équation (6.13), ou n est le
nombre d’échantillons dans I’ensemble de données d’apprentissage y et i sont respective-
ment les valeurs réelles et prédites :

1)
MSE =} (y -) (6.13)
i=1

6.1. Introduction 91
Fii---Fu1 Bor - Bm win1 - Wamt
Fip---Fn 02 Pm2 Wiz Wam
p=1| - " ﬁ_ ﬁ’”) " (6.14)
Fin---Fun PonN- - BmN WIN - WumN
[0 E<0
F = {1 F o (6.15)

La figure 6.3 représente les étapes de I’approche PLMVO-MLP.

- <
/| Divize lez sobutions en deux parties : la partie
"controles" et la partie "poids et biais",

R T

Affecter les solutions PLMVO
aux réseaux MLP

Poidsz
& biaiz

| Initializer les valeurs du LMV O | PLMVO-MLP
I : =
Mettre i Evaluer le taux d'inflation |
jour le E
nombre L]
d'itérations | Mettre a jour la position d es univers
| NON
Verifier si les critéres
sont satisfaits
oul
Utilisez les solutions optimales de
LMV O comme limite & PSO
L]
Initializer les valeurs du P50
>
Evaluerla fonctionde fitness de
chague particule | ;
+ |
Déterminer Ghest depuis la v aleur Phest 1
: i
Mise a jour de la vitesse et de la position !
lorsque [Tnivers remplace Pbesrt i
’ i
Verifier la solution i
Mettre i !
jour le s i
bre Verifier =i les criteres 1
Il.]'?m 3 sont satisfaits i
d'itérations i

Evaluer le réseau MLP en utilizant le

Impression du résultat

MSE

& Fonction de fitness Py

FIGURE 6.3 — Les étapes générales de 'approche P

Expérimentation et résultats

LMVO-MLP

Dans cette section, nous utilisons trois expériences pour évaluer la qualité de 1'algo-
rithme proposé. Le premier utilise des fonctions de test et nous comparons les résultats

aux algorithmes standards PSO et MVO. La deuxieme présente

I’évaluation de I'algorithme

PLMVO proposé pour la formation des réseaux MLP sur neuf ensembles de données, qui ont

été sélectionnés a partir des dépodts d’ensembles de données (U

CI). Le tableau 6.1 montre la

classification de ces ensembles de données en termes de nombre d’attributs, nombre classes,

nombre d’instances dans 1’ensemble d’apprentissage et du test.

La comparaison du PLMVO

a été effectuée avec cinq approches utilisées pour former le réseau neurones a propagation
avant dans la littérature : PSO (MENDES et al., 2002b), MFO (FARIS, ALJARAH et MIRJALILI,

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
9neurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

2017), MVO (FARIS, ALJARAH et MIRJALILI, 2016a), WOA (ALJARAH, FARIS et MIRJALILI,
2018b), De plus, I’algorithme proposé a été comparé a la rétropropagation avec moment et le
taux d’apprentissage adaptatif, le PLMVO-MLP proposé est utilisé pour prédire les fichiers
exécutables malveillants de Linux. Les performances du PLMVO-MLP ont été comparées a
celles de deux travaux antérieurs qui utilisaient des réseaux de neurones pour prédire les
fichiers Linux exécutables malveillants.

TABLE 6.1 — Résumé des ensembles de données de classification

Datasets Attributs Ensemble d’apprentissage Ensemble de test
Blood 4 493 255

Breast cancer 8 461 238

Diabetes 8 506 262

Vertebral 6 204 106

Liver 6 79 41

Parkinson 22 128 67

Hepatitis 10 102 53

Heart (Statlog) 13 179 91

BreastEW 31 178973 93986

Dispositif expérimental

Le formateur proposé et d’autres algorithmes ont été mis en ceuvre avec le langage Py-
thon et un ordinateur personnel équipé d’un processeur Intel(R) Core(TM) 1,60 GHz 2,30
GHz, d’un systeme d’exploitation Windows 10 64 bits et de 4 Go (RAM). Les métaheu-
ristiques sont sensibles a la valeur de leurs parametres, ce qui nécessite une initialisation
soigneuse. Par conséquent, les paramétres de controle recommandés dans la littérature ont
été utilisés (MENDES et al., 2002b ; FARIS, ALJARAH et MIRJALILI, 2016b; ALJARAH, FARIS et
MIRJALILI, 2018b) et résumés dans le tableau 5.1. Tous les ensembles de données ont été di-
visés en 66% pour I'apprentissage et 34% pour le test (FARIS, MIRJALILI et ALJARAH, 2019b).
De plus, toutes les caractéristiques ont été mises en correspondance avec l'intervalle [0, 1]
pour éliminer 'effet des caractéristiques qui ont des échelles différentes (FARIS, ALJARAH
et MIRJALILI, 2016b). La normalisation min-max est appliquée pour effectuer une trans-
formation linéaire sur les données originales (KIRANYAZ et al., 2009b), ot v’ est la valeur
normalisée de v dans l'intervalle [min 4, max 4] comme indiqué dans (6.16).

, v — ming

o=+ A (6.16)
max, — ming

Série d’expériences 1 : fonctions de test

Quinze fonctions de référence ont été sélectionnées dans le tableau 6.2 pour évaluer la
performance de 1'algorithme PLMVO proposé (IBRAHIM et al., 2019). Pour vérifier les résul-
tats, PLMVO a été comparé a PSO (MENDES et al., 2002b) et MVO (MIRJALILI, MIRJALILI et
HATAMLOU, 2016). Tous les algorithmes ont été testés 30 fois avec la valeur de dimension
D=30 pour chaque fonction de test. Le nombre de générations a été fixé a 1000 et les per-
formances de 1’algorithme PLMVO ont été évaluées en fonction de la meilleure, la pire, la
moyenne et 1’écart-type de la fonction objective.

6.1. Introduction

TABLE 6.2 — Les fonctions d’optimisation

1D Equation Lower Upper Dim Type
F1 f(x)=Y",x* -100 100 30 Unimodal
F2 flx) = |x| + -10 10 30 Unimodal
i1 |xil
F3 flx) = -100 100 30 Unimodal
(T xi)?
F4 f(x) = -100 100 30 Unimodal
max; [|x;|,lin |
F5 f(x) = -30 30 30 Unimodal
Y [100(xipq — x2)2 + (x; — 1)])
Fé6 f (x) = -100 100 30 Unimodal
Y1 ([xi +05])?
F7 f(x) = -128 1.28 30 Unimodal
Ying ixj* +
random|0, 1]
E8 f (x) = -500 500 30 Multimodal
Yiq —xisin(y/|xi])
F9 f(x) = -5.12 5.12 30 Multimodal
Y [x7 — 10cos(27x;) + 10]
F10 f(x) = -32 32 30 Multimodal
—20exp(—0.24/L ¥ | x?) —
exp(L T, cos(2m)) +
20+e
F11 f (x) = -600 600 30 Multimodal
1 ym 2 _
4000 Li-1 A
* . cos(ﬁ) +1
F12 f(x) = -50 50 30 Multimodal
% 108 (reyn) + X0 (s — 1)2 [1+ 1082 (yin)] + (g — 1]
+Y",u(x;,10,100,4) wu(x;ja,k,m) =
k(x; —a)™, xXi>a
0, —axjak(—x; —a)™", x; < —a
F13 £(x) =
0.1 [sin®(37x1) + i (x; — 1)? [1 4 sin?(Brmx; +1)] + (x5 — 1)? [1 4 sin®(27mx,)] |
+ 3 u(x;, 5,100,450 50 30 Multimodal
F14 fx) = (s + -65.536 65.536 2 Multimodal
25 1 _
L5 T (rma)
1
F15 f(x) = 5 5 4 Multimodal

11
i=1ai -
x1 (D3 4bix2)]2
b2+bix3+x4

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
94neurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

TABLE 6.3 — Les résultats statistiques des algorithmes PLMVO et MVO avec
15 fonctions de test

FNo PLMVO MVO

Avg STD Best Worst Avg STD Best Worst
F1 0.125 0.039 0.063 0.249 0.192 0.052 0.099 0.310
F2 0.208 0.042 0.131 0.289 0.302 0.072 0.199 0.444
F3 19.494 8.127 8.673 48.637 19.008 8.376 7.577 48.430
F4 0.656 0.269 0.303 1.486 0.579 0.210 0.309 1.0946
F5 169.209 546.494 9.783 3097.027 435.494 791.939 27.920 2648.715
Fé6 0.117 0.030 0.0451 0.1770 0.180 0.054 0.090 0.293
F7 0.012 0.004 0.002 0.022 0.013 0.006 0.003 0.024
F8 -8063.907 613.740 -9338.537 -6425.713 -4945.161 1550.403 -3002.279 -6883.158
Fo 86.200 30.477 38.809 180.299 107.478 28.311 47.845 162.282
F10 0.711 0.707 0.078 2.605 0.722 0.646 0.080 1.966
F11 0.011 0.012 1.58E-10 0.049 0.414 0.081 0.258 0.530
F12 1342 0.716 0.226 3.316 1.706 1.001 0.2104 3.857
F13 0.004 0.009 3.967E-11 0.043 0.020 0.011 0.006 0.046
F14 0.998 0.000 0.998 0.998 0.998 0.000 0.998 0.999
F15 0.002 0.005 0.0003 0.0203 0.003 0.007 0.0003 0.0203

TABLE 6.4 — Les résultats statistiques des algorithmes PLMVO et PSO avec 15
fonctions de test

ENo PLMVO PSO

Avg STD Best Worst Avg STD Best Worst
F1 0.125 0.039 0.063 0.249 0.192 0.000 9.75E-10 4.652E-07
F2 0.208 0.042 0.131 0.289 5.333 6.700 1.34E-05 20.00
F3 19.494 8.127 8.673 48.637 14.641 6.261 6.253 32.793
F4 0.656 0.269 0.303 1.486 0.593 0.125 0.362 0.831
F5 169.209 546.494 9.783 3097.027 291.711 430.043 27.110 1671.129
Fé6 0.117 0.030 0.0451 0.1770 0.000 0.000 1.56E-07 4.46E-07
F7 0.012 0.004 0.002 0.022 3.447 3.976 0.024 16.148
F8 -8063.907 613.740 -9338.537 -6425.713 -7631.743 528.781 -8606.851 -6830.447
Fo 86.200 30477 38.809 180.299 95.358 27.714 49911 186.758
F10 0.711 0.707 0.078 2.605 0.000 0.000 2.23E-05 0.0006
F11 0.011 0.012 1.58E-10 0.049 0.318 0.076 0.1504 0.532
F12 1342 0.716 0.226 3.316 0.031 0.047 3.55E-11 0.103
F13 0.004 0.009 3.967E-11 0.043 0.032 0.012 0.008 0.058
F14 0.998 0.000 0.998 0.998 2.119 1.683 0.998 6.903
F15 0.002 0.005 0.0003 0.0203 0.003 0.007 0.0003 0.020

Les tableaux 6.3 et 6.4 indiquent que l'algorithme PLMVO a surpassé les deux autres
algorithmes. Plus précisément, ’algorithme PLMVO a les valeurs les plus faibles dans la
mesure moyenne en F2, F5, F7, F8, F9, F11, F13, et F15. En ce qui concerne le meilleur, 'al-
gorithme proposé a dépassé les autres algorithmes dans 7/15 fonctions : F4, F5, F7, F8, F9,
F11, et F13. En termes de pire, le PLMVO a obtenu de meilleurs résultats que le PSO et le
MVO dans 4/15 fonctions : F2, F7, F11, et F13. En outre, on peut également constater que le
PLMVO a une petite valeur d’écart-type qui prouve l'efficacité de cet algorithme. D’apres

6.1. Introduction 95

les résultats, il est clair que I’hybridation entre le PSO et le LMVO donne de meilleurs résul-
tats par rapport aux PSO et LMVO. Ceci est di a la combinaison de PSO en exploitation et
de LMVO en exploration, qui a crée un bon équilibre entre 1’exploitation et 'exploration, et
permet d’éviter les minima locaux.

Série d’expériences 2 : I’entrainement du réseau de neurones a propagation avant

Dans cette section, nous présentons I'évaluation de l’algorithme proposé pour la for-
mation des réseaux MLP sur neuf ensembles de données bien connus. Chaque ensemble
de données a été divisé en deux parties pour évaluer le MLP, 66% pour 'apprentissage,
et 34% pour le test. Tous les algorithmes ont été testés dix fois pour chaque ensemble de
données et les performances du MLP ont été évaluées en fonction des valeurs meilleures,
pires, moyennes et I’écart-type de 1'exactitude de la classification et de la MSE. La taille de
la population et le nombre maximum de générations ont été fixés a 50 et 200, respectivement.

Le tableau 6.5 présente les résultats statistiques : moyenne, meilleure, pire et écart type de
I'exactitude de la classification. Les résultats du PLMVO ont surpassé les autres approches
pour Breast cancer, Blood, Liver, Vertebral, Parkinson, Hepatitis, Diabetes, et Heart avec
une exactitude moyenne de 0,963, 0,769, 0,739, 0,839, 0,921, 0,975, 0,790 et 0,757. En outre,
le PLMVO a donné les mémes résultats que le MVO dans I"ensemble de données BreastEW
avec une exactitude moyenne de 1,00. En outre, on peut également constater que le PLMVO
a un écart type plus petit qui indique que le PLMVO est robuste et stable.

En termes de meilleure exactitude, PLMVO-MLP a donné de meilleurs résultats dans 3/9
ensembles de données : Parkinson, Hepatitis, BreastEW avec une meilleure exactitude de
0,927, 0,989 et 0,867, respectivement. Pour BreastEW et Breast cancer, PLMVO-MLP offre les
mémes meilleures performances que MVO et HACPSO. Pour la pire exactitude de classifi-
cation, notre algorithme a surpassé les autres algorithmes pour Breast cancer, Parkinson, et
Hepatitis avec des valeurs de 0,958, 0,882 et 0,898, respectivement.

(FARIS, ALJARAH et MIRJALILI, 2016b).

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
9eurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

TABLE 6.5 — Résultats de ’exactitude de la classification

PLMVO PSO MFO MVO WOA HACPSO BP
B.cancer Avg 0.963 0959 0958 0.958 0.956 0.959 0.744
STD 0.001 0.003 0.002 0.002 0.006 0.004 0.254
Best 0.965 0960 0963 0.960 0.963 0.965 0.945
Worst 0.958 0953 0954 0.954 0.947 0.952 0.680
CPU time (s) 3605.50 2114.57 2120.06 2333.28 34195.09 3933.65 1335.83
Blood Avg 0.769 0762 0.763 0.764 0.762 0.760 0.744
STD 0.009 0.002 0.005 0.009 0.004 0.003 0.254
Best 0.788 0.765 0.765 0.784 0.774 0.760 0.945
Worst 0.760 0760 0.760 0.760 0.758 0.758 0.680
CPU time (s) 3331.40 2524.05 2173.41 2147.15 18643.37 49112 1234.44
Diabetes Avg 0.790 0780 0.724 0.788 0.720 0.768 0.619
STD 0.004 0.011 0.008 0.006 0.028 0.006 0.080
Best 0.795 0796 0.735 0.802 0.750 0.774 0.690
Worst 0.738 0758 0.709 0.782 0.657 0.764 0.601
CPU time (s) 3398.15 2369.64 1992.49 2096.46 81951.03 3954.74 1259.18
Liver Avg 0.739 0722 0722 0.737 0.665 0.679 0.519
STD 0.006 0.017 0.010 0.008 0.030 0.020 0.055
Best 0.746 0748 0744 0.732 0.700 0.709 0.586
Worst 0.726 0.700 0.709 0.709 0.603 0.669 0.495
CPU time (s) 1923.27 1141.52 928.99 1000.76 7723.80 2497.16 712.66
Vertebral Avg 0.839 0836 0.836 0.836 0.774 0.817 0.651
STD 0.004 0.012 0.007 0.005 0.052 0.015 0.170
Best 0.843 0.848 0.843 0.838 0.862 0.833 0.866
Worst 0.823 0.808 0.820 0.828 0.676 0.794 0.627
CPU time (s) 1870.43 1015.52 1118.60 1019.84 9623.48 2640.55 693.08
Parkinson Avg 0.921 0.836 0.802 0.890 0.824 0.876 0.750
STD 0.013 0.040 0.022 0.046 0.016 0.013 0.199
Best 0.927 0.898 0.828 0.906 0.852 0.905 0.849
Worst 0.882 0773 0773 0.835 0.800 0.863 0.623
CPU time (s) 2002.64 1488.58 1033.22 1042.92 9228.47 2640.55 742.07
Hepatitis Avg 0.975 0914 0866 0.867 0.791 0.854 0.758
STD 0.013 0.017 0.016 0.014 0.063 0.015 0.155
Best 0.989 0947 0894 0.894 0.867 0.875 0.865
Worst 0.947 0.884 0.842 0.842 0.695 0.828 0.669
CPU time (s) 1729.04 1124.42 1054.07 1030.06 9128.25 1218.35 640.69
Heart Avg 0.757 0704 0.733 0.741 0.703 0.738 0.651
STD 0.063 0.019 0.044 0.039 0.064 0.020 0.020
Best 0.867 0722 0.816 0.827 0.822 0.761 0.704
Worst 0.660 0.665 0.700 0.700 0.577 0.705 0.577
CPU time (s) 2089.19 1115.34 1076.17 1199.61 35288.82 2353.68 774.14
BreastEW Avg 1.000 0966 0.993 1.00 0.973 0.994 0.865
STD 0.000 0.014 0.006 0.000 0.026 0.006 0.080
Best 1.000 0994 1.000 1.000 0.994 1.000 0.892
Worst 1.000 0955 0978 1.000 0.907 0.981 0.884
CPU time (s) 5609.38 2114.57 2858.62 3089.03 20421.69 3503.72 2078.53

6.1. Introduction 97

TABLE 6.6 — Résultats de MSE

PLMVO PSO MFO MVO WOA HACPSO BP

B.cancer Avg 0.030 0.038 0.033 0.032 0.047 0.040 0.049
STD 0.001 0.003 0.001 0.002 0.004 0.001 0.015
Best 0.029 0.044 0.310 0.030 0.043 0.038 0.030
Worst 0.0326 0.032 0.036 0.032 0.058 0.041 0.050
Blood Avg 0.165 0.178 0.172 0.170 0.180 0.169 0.174
STD 0.007 0.003 0.005 0.008 0.004 0.003 0.009
Best 0.160 0.182 0.174 0.170 0.174 0.162 0.172
Worst 0.174 0.182 0.177 0.181 0.187 0.175 0.175
Diabetes Avg 0.149 0.155 0.171 0.149 0.186 0.163 0.179
STD 0.001 0.004 0.005 0.001 0.013 0.002 0.066
Best 0.147 0.151 0.165 0.145 0.168 0.160 0.168
Worst 0.151 0.157 0.175 0.151 0.213 0.166 0.180
Liver Avg 0.186 0.191 0.193 0.188 0.220 0.212 0.210
STD 0.001 0.003 0.002 0.004 0.007 0.002 0.003
Best 0.183 0.185 0.189 0.179 0.210 0.208 0.190
Worst 0.188 0.195 0.194 0.194 0.233 0.215 0.220
Vertebral Avg 0.125 0.130 0.128 0.127 0.163 0.146 0.168
STD 0.002 0.002 0.002 0.001 0.018 0.002 0.015
Best 0.124 0.125 0.125 0.125 0.137 0.142 0.160
Worst 0.130 0.130 0.132 0.129 0.202 0.147 0.172
Parkinson Avg 0.078 0.141 0.094 0.085 0.165 0.119 0.158
STD 0.014 0.023 0.005 0.003 0.030 0.005 0.018
Best 0.080 0.099 0.101 0.0873 0.127 0.112 0.137
Worst 0.089 0.182 0.084 0.081 0.228 0.130 0.203
Hepatitis Avg 0.036 0.097 0.075 0.042 0.129 0.106 0.168
STD 0.010 0.032 0.011 0.008 0.022 0.004 0.015
Best 0.018 0.034 0.100 0.027 0.098 0.100 0.159
Worst 0.056 0.157 0.109 0.051 0.173 0.114 0.173
Heart Avg 0.169 0.198 0.178 0.178 0.203 0.191 0.205
STD 0.034 0.009 0.022 0.021 0.030 0.005 0.050
Best 0.113 0.189 0.133 0.152 0.133 0.182 0.194
Worst 0.194 0.208 0.196 0.198 0.243 0.199 0.243
BreastEW Avg 0.001 0.040 0.017 0.005 0.041 0.017 0.060
STD 0.000 0.009 0.005 0.001 0.024 0.004 0.015
Best 0.0008 0.054 0.008 0.004 0.010 0.009 0.040
Worst 0.0017 0.022 0.023 0.006 0.070 0.024 0.075

Le tableau 6.6 montre la moyenne, la meilleure et la pire MSE avec 1’écart type, obte-
nue pour chaque algorithme. D’apres le résultat, on peut noter que le PLMVO a surpassé
les autres techniques dans : Breast cancer, Blood, Liver, Vertebral, Parkinson, Heart ,Hepa-
titis et BreastEW avec une MSE moyenne de 0,030, 0, 165, 0,186, 0,126, 0,078, 0,169, 0,036
et 0,001 respectivement. En outre, on peut également remarquer que PLMVO a une petite
valeur d’écart type pour tous les jeux de données, ce qui prouve la robustesse et l'efficacité
de cet algorithme. En termes de meilleur MSE, il a donné de meilleurs résultats pour 4/9
ensembles de données : Blood, Liver, Heart, et BreastEW avec des valeurs de 0,174, 0,184,
0,194 et 0,0017, respectivement, et il a donné les mémes résultats que MVO pour 1’ensemble

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
9&eurones pour la classification des données a I’aide de I’'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

de données Diabetes. Pour le pire MSE, le PLMVO-MLP a mieux performé que les autres

techniques pour Breast cancer, Blood, Vertebral, Parkinson, Heart et BreastEw. En outre, il
est classé le deuxieme pour les autres.

06 P50 Ps0
| —mo 03] WO
— o — MFO 024

— HACPSO
— o 03 — o 02

150 50 100 150

Iterations Iterations Iterations

FIGURE 6.4 — Courbe de convergence basée sur le MSE pour Breast cancer,
Blood et Diabete datasets, respectivement

50 100 150

Iterations Iterations

Iterations

FIGURE 6.5 — Courbe de convergence basée sur le MSE pour Liver, Vertebral
et Parkinson datasets, respectivement

6.1. Introduction 99

PSO SO

— W0 — W0

ol o} 015 .
021 — MFO 035 — MO

— HACPSO0
“) — o
\

Iterations Iterations

FIGURE 6.6 — Courbe de convergence basée sur le MSE pour Hepatitis, Heart
et BrestEW datasets, respectivement

Les figures 6.4, 6.5, 6.6 montrent les courbes de convergence de tous les algorithmes mé-
taheuristiques basés sur les valeurs moyennes de MSE. Les courbes de convergence montrent
que le PLMVO a la valeur la plus basse de MSE pour huit ensembles de données : Breast
cancer, Blood, Liver, Vertebral, Parkinson, Hepatitis, Heart et BreastEW.

Les chiffres montrent que le PLMVO a la vitesse de convergence la plus rapide dans : Breast
cancer, Diabetes, Liver, Vertebral and Hepatitis.

PMVO PSO MFO Mo WOA HACPSO PLWVO PSO MFO Mo HACPSO PLMVO PSO MFO Mo WOA HACPSO

FIGURE 6.7 — Boxplot basé sur le MSE pour Breast cancer, Blood et Diabetes
datasets, respectivement

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
1(feurones pour la classification des données a I’aide de I'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

HACPSO PMVO PSO MFO Mo WOA HACPSO

FIGURE 6.8 — Boxplot basé sur le MSE pour Liver, Vertebral et Parkinson da-
tasets, respectivement

PLMVO PsO MFO wo WOA HACPSO PLMVO PsO MFO wo WOA HACPSO PMVO Pso MFO wo WOA HACPSO

FIGURE 6.9 — Boxplot basé sur le MSE pour Hepatitis, Heart et BrestEW data-
sets, respectivement

Les figures 6.7, 6.8, 6.9 illustrent le diagramme en boite (boxplot) relative a 10 exécutions
de PLMVO, MVO, PSO, MFO, WOA, HACPSO, et BP. Les diagrammes en boite sont utili-
sés pour analyser la variabilité des optimiseurs de MLP pour obtenir les valeurs MSE dans
toutes les exécutions. Dans ce graphe, la boite fait référence a l'intervalle interquartile, les
moustaches sont la MSE la plus éloignée, la barre dans la boite est la médiane et les valeurs
aberrantes sont représentées par un petit cercle. Les diagrammes en boite montrent et justi-
fient la meilleure optimisation de PLMVO dans la formation de MLP.

Les résultats obtenus par PLMVO sur la base de I'exactitude moyenne et du MSE prouvent
que cet algorithme peut trouver les valeurs optimales des structures et des poids de connexion
et éviter une convergence prématurée vers des optima locaux. En outre, le test statistique de
Friedman a été utilisé pour évaluer les performances de PLMVO par rapport aux autres
algorithmes d’entrainement dans chaque exécution indépendante et confirmer la significa-
tion des résultats. Cette statistique a été réalisée en classant différentes techniques (PLMVO,
PSO, MFO, MVO, WOA, HACPSO et BP) en fonction des valeurs de 1’exactitude moyennes
pour chaque ensemble de données.

6.1. Introduction 101

TABLE 6.7 — Classement moyen des algorithmes en fonction de I'exactitude
moyenne (test de Friedman)

Algorithmes Classement

PLMVO 1.10
PSO 3.72
MFO 4.11
MVO 2.38
WOA 5.61
HACPSO 4.05
BP 7.00

TABLE 6.8 — Classement moyen des algorithmes en fonction de de la meilleure
exactitude (test de Friedman)

Algorithmes Classement

PLMVO 2.40
PSO 3.49
MFO 3.55
MVO 3.49
WOA 4.09
HACPSO 4.64
BP 5.84

TABLE 6.9 — Classement moyen des algorithmes en fonction de de la plus
mauvaise exactitude (test de Friedman)

Algorithmes Classement

PLMVO 1.04
PSO 4.47
MFO 4.15
MVO 2.18
WOA 5.67
HACPSO 4.20
BP 5.78

Les tableau 6.7, 6.8 et 6.9 montrent les classements obtenus par chaque technique d’opti-
misation dans le test de Friedman (le plus bas est le meilleur). L’étude comparative montre
que l'algorithme d’entrainement proposé a dépassé les autres algorithmes. D’apres les résul-
tats, nous pouvons voir que le schéma de codage hybride utilisé dans cette approche pour
optimiser les valeurs optimales des structures et des poids de connexion facilite le proces-
sus d’optimisation pour toutes les métaheuristiques car la méthode permet aux algorithmes
métaheuristiques d’atteindre une faible MSE avec une exactitude de classification élevée.
Les algorithmes d’intelligence en essaim tels que le PSO bénéficient d"un bon taux de conver-
gence et d'une bonne exploitation mais peuvent étre bloqués dans un optimum local (KENNEDY
et EBERHART, 1995b). La combinaison de PSO et de LMVO a donné de meilleurs résultats
pour la plupart des ensembles de données par rapport aux autres algorithmes car le PLMVO
peut créer un bon compromis entre I'exploration et I’exploitation. Apreés les expériences, il
est clair que le PLMVO surpasse d’autres algorithmes bien considérés dans la littérature.

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
102eurones pour la classification des données a I’aide de I'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

L’hybridation entre PSO et LMVO a un impact majeur sur la recherche globale.

Dans certaines situations, la PSO peut étre piégée dans un optimum local, ce qui entraine
une précision et une exactitude inférieures (KENNEDY et EBERHART, 1995b). En outre, la
combinaison de PSO en exploitation avec LMVO en exploration donne de meilleurs résul-
tats grace a I'exploration supérieure de l'algorithme LMVO; les trous noirs et blancs per-
mettent aux objets de se déplacer entre les univers pour faciliter I'exploration et empécher
les optima locaux. Les changements dans les univers brusques sont utiles pour faire stag-
ner 1'optimum local (MIRJALILI, MIRJALILI et HATAMLOU, 2016). De plus, si le trou noir /
trou blanc est modifié par le vol de Lévy, I’algorithme sera optimisé dans le grand univers et
sortira de I'optimum local. La trajectoire du vol Lévy permet de parvenir a un meilleur équi-
libre entre I’exploitation et ’exploitation dans le MVO (J1A et al., 2019). On peut conclure que
le LMVO peut contribuer a I’exploration et le PSO a I’exploitation. Une bonne exploitation
implique une vitesse de convergence et une bonne exploration empéche la stagnation des
optima locaux.

Série d’expériences 3 : classification et détection des logiciels malveillants

Un logiciel malveillant peut étre décrit comme tout type de code malveillant suscep-
tible d’endommager un ordinateur ou un réseau. Chaque année, le volume de logiciels mal-
veillants augmente plus rapidement et constitue une menace sérieuse pour la sécurité mon-
diale. La détection des logiciels malveillants est devenue par la suite un sujet crucial de la
sécurité informatique. Avec la variété croissante des menaces, les solutions de protection
actuelles ne sont plus en mesure de faire leur travail correctement. Les programmes anti-
virus classiques utilisent des signatures statiques pour détecter les logiciels malveillants.
Malgré 1'utilisation étendue de cet outil, les logiciels malveillants ne peuvent étre identifiés
qu’apres que le dommage a déja été causé par 1’exécutable malveillant et a condition que le
logiciel malveillant soit correctement enregistré. Cette technique atteint ses limites face a des
logiciels malveillants évolutifs et polymorphes. Ces dernieres années, des algorithmes d’ap-
prentissage automatique sont utilisés pour effectuer une analyse efficace des logiciels mal-
veillants. Schultz et ses collaborateurs (SCHULTZ et al., 2000) ont été les premiers a appliquer
des modeles d’exploration de données et des algorithmes d’apprentissage automatique pour
détecter les programmes malveillants sur la base de leurs codes binaires respectifs. En par-
ticulier, ils ont appliqué des classificateurs multiples a trois approches d’extraction de fonc-
tions : les fonctions de chaine, les en-tétes de programme et les fonctionnalités de séquence
d’octets. Perdisci et coll. (PERDISCI, LANZI et LEE, 2008) ont suggéré leur premiere méthode
basée sur 1’extraction de caractéristiques de I'exécutable portable (PE) et la classification a
l'aide d’algorithmes d’apprentissage machine, par exemple, J48, MLP, et Naive Bayes. Un
systéme de classification des logiciels malveillants développé avec un réseau de neurones a
deux couches cachées a été proposé par Saxe et Berlin (SAXE et BERLIN, 2015). Ils utilisent
des caractéristiques statiques, notamment l’entropie, I'importation PE, les métadonnées et
I'histogramme 2D de chaine. Les deux couches cachées étaient composées de 1024 unités
linéaires rectifiées paramétriques (PReLu), tandis que leur couche de sortie était un neurone
sigmoide qui classait 'instance comme bénigne ou malveillante. En menant une expérience
sur un ensemble de données de 400 000 échantillons, ils ont obtenu un taux de détection
de 95 avec un taux de faux positifs de 0.1. Les universitaires et 'industrie antivirus se sont
concentrés sur le développement des applications et des méthodes utilisées pour analyser
et détecter les logiciels malveillants de Windows. Cela est probablement d a la popularité
et a la part de marché du systeme d’exploitation Windows (PANDIT, 2019). La croissance ra-
pide de I'Internet des objets fait évoluer la détection des malwares vers des systemes basés
sur Linux. Comme la plupart de ces périphériques embarqués sont capables d’interagir les
uns avec les autres en fonction du systéme d’exploitation Linux. Asmitha et coll. (ASMITHA

6.1. Introduction 103

et VINOD, 2014) ont proposé une nouvelle approche utilisant des algorithmes d’apprentis-
sage automatique : Naive bayes, J48, Adaboost, IBK et les foréts aléatoires pour identifier
les fichiers exécutables linux malveillants. Les auteurs ont établi la meilleure combinaison
d’échantillons bénins et malveillants pour créer un modele de classification capable de clas-
ser les logiciels bénins et malveillants. L'expérimentation montre des résultats prometteurs
avec une exactitude de classification de 97%.

Dans notre approche, nous avons utilisé les données comportementales de Cozzi et al.
(Cozzi et al., 2018). extraite lors de I'exécution d’échantillons dans un pipeline d’analyse, et
nous testons la capacité de notre algorithme PLMVO-MLP a prédire si un exécutable Linux
est malveillant ou non. Les principales contributions de cette approche sont :

1. Démontrer que notre réseau de neurones PLMVO-MLP peut prédire les fichiers Li-
nux exécutables malveillants en utilisant les données d’activité de la machine avec la
meilleure exactitude, Fmesure, précision et, rappel.

2. Démontrer que la sélection d’attributs a ’aide de I'algorithme PSO peut améliorer les
résultats.

3. Démontrer que 'exécutable Linux peut étre prédit comme étant malveillant ou non
avec un haut niveau d’exactitude en utilisant I’algorithme PLMVO-MLP.

Ensemble de données :

Dans notre approche, nous avons utilisé les ensembles de données de Cozzi et al. (COZZI

et al., 2018) le fichier csv est créé par (PANDIT, 2019) contient des valeurs importantes issues
de I'analyse des échantillons de Linux.
Shivam et al (PANDIT, 2019) ont utilisé une analyse ELF multi-architecture en ligne appelée
Padawan (PADAWAN, 2018). La plate-forme avait déja des rapports d’analyse de plusieurs
échantillons Linux. Ces rapports étaient disponibles au format JSON. La bibliotheque py-
thon a été utilisée pour la conversion de JSON en csv, et plusieurs fichiers csv ont été créés.
L’ensemble de données pour les logiciels malveillants de Linux a été créé. L'ensemble de
données final contient 58 attributs et 10548 échantillons. Pour I’apprentissage automatique,
des échantillons malveillants et bénins sont nécessaires. Afin d’obtenir des échantillons bé-
nins, les auteurs ont utilisé la valeur vt.positives. (Si vt.positives = 1, cette étiquette est bé-
nigne). L'ensemble de données final contenait 2513 échantillons, 1978 malveillants et 535
bénins, comme indiqué dans le tableau 6.10.

TABLE 6.10 — L'ensemble de données utilisé pour la prédiction des logiciels
malveillants pour Linux

N ° d’échantillons

Bénigne 535
Malicieux 1978
Totale 2513

L’approche proposée pour détecter les malwares Linux

Dans cette section, nous représentons notre approche pour détecter les logiciels mal-
veillants de Linux. Les principales contributions de cette approche sont :
— La sélection du meilleur ensemble d’attributs a partir de 'ensemble de données d’ori-
gine en utilisant ’algorithme PSO.
— L'utilisation de l’algorithme que nous proposons, PLMVO-MLP, pour prédire et dé-
tecter les logiciels malveillants pour Linux.

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
1(deurones pour la classification des données a I’aide de I'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

La sélection d’attributs (FS) couramment utilisé pour réduire les problemes liés a un jeu
de données a grande dimension (IBRAHIM et al., 2019) . Cette tache permet d’extraire les in-
formations les plus représentatives a partir de données de grande taille, ce qui réduit 1'effort
de calcul dans d’autres taches telles que la classification (IBRAHIM et al., 2019). L'utilisation
de la sélection d’attributs présente quatre avantages réels :

1. Améliorer la précision : améliorer les performances des algorithmes d’apprentissage
automatique si les bons attributs sont choisis (IBRAHIM et al., 2019).

2. Réduit le temps d’apprentissage : rendre les algorithmes d’apprentissage automa-
tique capables de s’entrainer plus rapidement (IBRAHIM et al., 2019).

3. Réduire la complexité de I'algorithme : réduit la complexité du modele d’apprentis-
sage automatique et facilite son interprétation (IBRAHIM et al., 2019).

4. Réduit le sur-ajustement : les décisions sont plus robustes car moins de données re-
dondantes impliquent moins de bruit (IBRAHIM et al., 2019).

Ces dernieres années, un grand nombre de méthodes d’optimisation basées sur les méta-
heuristiques ont été proposées pour la sélection des caractéristiques (attributs). Dans ce tra-
vail, I'ensemble de données contient 57 caractéristiques donc, pour améliorer la précision
et I'exactitude de notre modele et pour rendre la classification plus rapide, nous avons uti-
lisé I'optimisation de 1'essaim de particules (PSO) (KENNEDY et EBERHART, 1995b) pour
sélectionner le meilleur ensemble de caractéristiques en fonction de la fonction objective qui
représente la valeur de I'exactitude de MLP.

Il y a deux clés importantes qui doivent étre abordées dans la mise en ceuvre de PSO pour
la sélection d’attributs : le schéma de codage et la fonction de fitness (fonction objectif).

Ces clés sont décrites comme suit :

— Schéma d’encodage : les individus PSO sont représentés sous forme de vecteurs
de nombres réels (KENNEDY et EBERHART, 1995b). Dans chaque vecteur, le nombre
d’éléments est égal au nombre d’attributs dans I'ensemble de données (FARIS et al.,
2018). Chaque élément est un nombre aléatoire généré dans l'intervalle [0, 1]. Les élé-
ments représentant des attributs sont arrondis : si I’élément est supérieur ou égal a
0,5, la valeur doit étre arrondie a 1 et I’attribut est choisi, sinon la valeur est arrondie
a 0 et I'attribut n’est pas choisi (FARIS et al., 2018) comme indique la figure 6.10.

Attributs

L o.8s I 0.25 0.45 0.57 |

Arrondi

[T

FIGURE 6.10 — Schéma de codage des individus PSO pour la sélection d’attri-
buts (FARIS, MIRJALILI et ALJARAH, 2019b)

— Fonction de fitness : la fonction objective était I'exactitude du modele MLP. Sur la
base de la matrice de confusion présentée dans le tableau 6.11, I'exactitude de la clas-
sification est calculée comme indiquée dans 1’équation 6.17.

6.1. Introduction 105

TP+ T
Exactitude(Accuracy) = TP+ FN—’—; FI;+ N (6.17)

TABLE 6.11 — La matrice de confusion

Classe réelle Classe réelle
Positive Négative
Classe prédite Positive Vrai Positif (TP) Faux Positif (FP)

Classe prédite Négative Faux Négative (FN) Vrai Négative (TN)

Expériences et résultats

Dans cette section, nous représentons 1'évaluation de l’algorithme proposé PLMVO-
MLP pour détecter les logiciels malveillants de Linux. L'algorithme MLP a été appliqué
avec une seule couche cachée. Le PLMVO a été utilisé pour optimiser les poids et le nombre
de neurones dans la couche cachée selon 1’approche présentée dans la figure 6.3. Les pa-
rametres initiaux de 1"utilisation de PSO pour la sélection d’attributs et de PLMVO pour la
prédiction des logiciels malveillants de Linux sont présentés dans le tableau 5.1 (FARIS et al.,
2018). Pour la sélection d’attributs, la taille de la population et le nombre de générations ont
été fixés a 20 et 50, respectivement. Dans chaque vecteur, le nombre d’éléments est égal au
nombre d’attributs dans I’ensemble de données (FARIS et al., 2018). Pour le PLMVO, la taille
de la population et le nombre maximum d’itérations ont été fixés a 50 et 200, respectivement.
La performance du PLMVO-MLP a été évaluée selon I’exactitude moyenne, F-mesure, préci-
sion, et rappel pour 10 exécutions. Pour vérifier les résultats, le PLMVO-MLP a été comparé
par rapport aux deux approches utilisées pour détecter les logiciels malveillants dans la lit-
térature : RNN (RHODE, BURNAP et JONES, 2018), et MLP (RAD, NEJAD et SHAHPASAND,
2018). L'ensemble de données a été divisé en plusieurs parties, 66% pour I'apprentissage et
34% pour le test.

TABLE 6.12 — Comparaison des résultats des algorithmes d’apprentissage au-
tomatique sans la sélection d’attributs

PLMVO-MLP MLP RNN

Avant la sélection d’attributs Exactitude 0.967 0.896 0.911
F-mesure 0.970 0934 0.946
Précision 0.970 0.907 0.935
Rappel 0.970 0.963 0.957

Le tableau 6.12 présente les résultats statistiques : I’exactitude, F-mesure, précision et
rappel de la classification de 1’ensemble de données original avant la sélection d’attributs.
Sur la base du tableau ci-dessus, on peut constater que le PLMVO-MLP a surpassé les autres
approches dans toutes les mesures avec une exactitude moyenne de 0,958, une F-mesure
moyenne de 0,96, une précision et un rappel de 0,96 qui indiquent que sur 1000 fichiers, 960
d’entre eux sont correctement classés comme malveillants. En outre, on peut également no-
ter que l'algorithme RNN (RHODE, BURNAP et JONES, 2018) a mieux performé par rapport
a MLP (RAD, NEJAD et SHAHPASAND, 2018) avec une exactitude moyenne de 0,911.

Chapitre 6. Sélection automatique des neurones cachés et des poids dans les réseaux de
1Q¢eurones pour la classification des données a I’aide de I'optimisation hybride des essaims
de particules et I'optimisation multi-verse basée sur le vol de Lévy

TABLE 6.13 — Comparaison des résultats des algorithmes d’apprentissage au-
tomatique avec la sélection d’attributs

PLMVO-MLP MLP RNN

Apres la sélection d’attributs Exactitude 1.0 0.928 0.949
F-mesure 1.00 0.957 0.973
Précision 1.00 0.978 0.965
Rappel 1.00 0.936 0.981

Le tableau 6.13 présente les résultats de la classification apres la sélection d’attributs en
utilisant I'algorithme PSO. Apres la sélection d’attributs, 11 caractéristiques ont été utilisées
pour la création des modeles d’apprentissage automatique. D’apres les résultats, on peut no-
ter que la sélection d’attributs améliore les résultats de la classification. On peut également
noter que le PLMVO-MLP a surpassé les autres techniques et a donné les meilleurs résultats
avec une tres haute exactitude, une meilleur F-mesure , une meilleur précision et un meilleur
rappel de 1,00 qui indiquent que tous les fichiers ont été correctement classés. Sur la base
des résultats ci-dessus, on peut observer que le modele dépasse les travaux précédents qui
utilisaient des réseaux de neurones, comme le RNN utilisé par Rhode et al. (SCHULTZ et al,,
2000) qui n’a pas obtenu une trés grande exactitude, cela est peut-étre dii au petit ensemble
de données que nous avons utilisé et a I’absence de données chronologiques séquentielles.

6.2 Conclusion de 1’approche

Dans cette approche, nous avons proposé une nouvelle approche basée sur 'optimi-
sation de l'essaim de particules, I'optimisation multi-verse basée sur le vol de Lévy pour
optimiser simultanément la structure, les poids de connexion et les biais du réseau de neu-
rones a propagation avant (FFNN). De nombreux chercheurs ont étudié le probléeme de la
recherche de valeurs optimales pour les poids de connexion et les biais. Cependant, la litté-
rature contient peu de recherches sur 1’optimisation de la structure et les poids / biais simul-
tanément. Dans notre étude, nous avons utilisé le méme schéma de codage hybride proposé
par (FARIS, MIRJALILI et ALJARAH, 2019b) pour représenter les solutions de PLMVO pour
la formation de MLP qui comprend le nombre de nceuds cachés, les poids de connexion
et les biais. La méthode de formation a pris en compte les capacités du PLMVO en termes
d’exploration et d’exploitation élevées pour localiser les valeurs optimales pour la structure,
les poids et les biais de FFNN. L'approche est proposée afin de minimiser 1’erreur de forma-
tion et d’augmenter 1'exactitude de la classification. L'algorithme est comparé et évalué a
l'aide de quinze fonctions de référence, neuf ensembles de données biomédicales. Les résul-
tats indiquent que le schéma de codage hybride utilisé pour optimiser le nombre de noeuds
cachés, les poids de connexion et les biais facilitent le processus d’optimisation des méta-
heuristiques. L’approche a permis aux algorithmes d’obtenir une tres grande exactitude de
classification sur tous les ensembles de données. La comparaison entre 1’algorithme proposé
et les autres algorithmes : PSO, MFO, MVO, WOA, HACPSO et BP montre la supériorité de
l'algorithme PLMVO avec une haute exactitude, une petit MSE et une convergence rapide
dans la plupart des ensembles de données par rapport aux autres algorithmes de formation.
De plus, la faible valeur de 1’écart type a prouvé que le PLMVO peut atteindre les mémes
résultats lors de différentes exécutions, ce qui confirme que notre entraineur est robuste et
stable. Pour confirmer les résultats, nous avons utilisé le PLMVO-MLP pour détecter les
logiciels malveillants de Linux. Le PLMVO-MLP a été comparé a deux approches utilisées
pour détecter les logiciels malveillants dans la littérature : RNN (RHODE, BURNAP et JONES,
2018) et MLP (RAD, NEJAD et SHAHPASAND, 2018). Sur la base des résultats, il peut noter

6.2. Conclusion de I'approche 107

que le modele dépasse les travaux précédents avec une trés grande exactitude, une meilleure
F-mesure, une meilleure précision et un meilleur rappel de 1,00. Enfin, a partir de 1'expé-
rience, nous pouvons conclure que PLMVO peut donner de bons résultats et peut étre une
alternative aux autres méthodes de formation. Dans les travaux futurs, nous nous concen-
trons sur la fagon d’étendre ce travail pour explorer des moyens plus efficaces de résoudre
des problemes complexes et I’application de cet algorithme aux données IoT. De plus, amé-
liorez 1’algorithme proposé pour résoudre le probleme d’optimisation du Big Data.

109

Chapitre 7

L'hybridation entre I’optimiseur de
loup gris et I’'optimiseur de multi-vers
(MVGWO) pour les problemes
d’optimisation globale a grande
dimension

Ces dernieres années, plusieurs techniques d’optimisation métaheuristiques ont été dé-
veloppées et utilisées pour résoudre des problemes complexes en raison de leur flexi-
bilité, simplicité, leur forte capacité et de leur capacité a éviter les optima locaux. Il
s’agit notamment de 1’algorithme génétique (GA) (HOLLAND, 1992), I'optimisation de 1'es-
saim de particules (PSO) (KENNEDY et EBERHART, 1995b), la colonie d’abeilles artificielle
(ABC) (KARABOGA et BASTURK, 2008), l'algorithme de recherche gravitationnelle (GSA)
(RASHEDI, NEZAMABADI-POUR et SARYAZDI, 2009), I’évolution différentielle (DE) (STORN
et PRICE, 1997b), I'optimisation multi-verse (MVO) (MIRJALILI, MIRJALILI et HATAMLOU,
2016), l'algorithme d’optimisation de la baleine (WOA) (MIRJALILI et LEWIS, 2016) et de
I'optimiseur du loup gris (GWO) (MIRJALILI, MIRJALILI et LEWIS, 2014a).

L’objectif principal de ces algorithmes inspirés de la nature est de trouver la meilleure so-
lution et les meilleures performances de convergence. Pour ce faire, I’exploration et 1'ex-
ploitation doivent étre équipées par ces algorithmes métaheuristiques pour s’assurer que
I'optimum global est trouvé. L'exploitation est la recherche des voisins de la région promet-
teuse tandis que I’exploration est la recherche d’une zone inexplorée de la région réalisable.
L'efficacité de l'algorithme métaheuristique dépend fortement de la fagon dont ces deux
comportements de recherche sont équilibrés pour trouver la solution optimale globale dans
I'espace de recherche.

Les problemes d’optimisation sont devenus plus complexes au cours des deux derniéres
décennies. Ce qui nécessite la meilleure méthode d’optimisation pour étre résolu. Les al-
gorithmes d’optimisation existants, tels que les métaheuristiques, sont trés puissants pour
résoudre de nombreux tests et problemes d’optimisation de la vie réelle, mais le théoreme
"no free lunch" (NFL) indique qu’il n’existe pas de méthode d’optimisation supérieure pour
résoudre tous les types de probléemes d’optimisation (FARIS, ALJARAH et MIRJALILI, 2016a).
L’optimiseur de loup gris (GWO) (MIRJALILI, MIRJALILI et LEWIS, 2014a) est une nouvelle
métaheuristique développée et inspirée par le mécanisme de la chasse et la hiérarchie de
leadership des loups gris; alpha, béta, delta et oméga. Les performances de cet algorithme
sont évaluées et comparées sur vingt- neuf fonctions de test. La comparaison avec 1’opti-
misation de 'essaim de particules (PSO) (KENNEDY et EBERHART, 1995b), I’algorithme de
recherche gravitationnelle (GSA) (RASHEDI, NEZAMABADI-POUR et SARYAZDI, 2009), 1’évo-
lution différentielle (DE) (STORN et PRICE, 1997b), la programmation évolutive (EP) (BACK,

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

10 (MVGWO) pour les problémes d’optimisation globale a grande dimension

RUDOLPH et SCHWEFEL, 1993) et la stratégie d’évolution (ES) (BEYER, 2001) démontre que
I'algorithme GWO peut fournir des résultats compétitifs par rapport a ces algorithmes mé-
taheuristiques bien connus, en termes de vitesse de convergence et de précision de la so-
lution. En raison de ses avantages, 1’algorithme GWO a été appliqué dans de nombreux
domaines tels que la sélection d’attributs (EMARY et al., 2015), les problemes d’ordonnan-
cement de type "flow shop" (KOMAKI et KAYVANFAR, 2015), la prévision de séries chrono-
logiques (STUTZLE et HOOS, 2000), etc. L’algorithme GWO présente certains inconvénients
dans le compromis entre 1’exploitation et 1’exploration (MITTAL, SINGH et SOHI, 2016; YUE,
ZHANG et XIAO, 2020) et a également des probléemes pour résoudre des problemes d’op-
timisation sans contrainte et des systemes d’équations non linéaires (TAWHID et IBRAHIM,
2020; YUE, ZHANG et XI1AO, 2020) .
Plusieurs recherches ont été développées pour améliorer la capacité de l'algorithme GWO
en termes de performance de convergence, telles que le GWO binaire (EMARY, ZAWBAA
et HASSANIEN, 2016), le GWO parallélisé (PAN, DAO, CHU et al., 2015), le GWO modifié
(MITTAL, SINGH et SOHI, 2016), I'hybride DE avec GWO (TAWHID et IBRAHIM, 2020), I'inté-
gration de DE avec GWO (ZHU et al., 2015), I'hybridation entre ’essaim de particules avec
I'optimiseur de loup gris (SINGH et SINGH, 2017b), I'hybridation entre I'optimiseur de ba-
leine avec l'optimiseur de loup gris (YUE, ZHANG et XIAO, 2020), l'optimiseur hybride de
loup gris avec l'algorithme sinus-cosinus (SINGH et SINGH, 2017a) et I'optimiseur hybride
de loup gris avec I'algorithme des feux d’artifice (BARRAZA et al., 2018).
La métaheuristique simple présente souvent certains inconvénients lors de la recherche de
la valeur optimale dans un espace de grandes dimensions, comme la faible capacité de géné-
ralisation, la faible précision et I'incapacité a éviter les optima locaux. L’algorithme hybride
tire parti de deux algorithmes d’optimisation, combine leurs avantages et compense leurs
défauts pour améliorer les performances globales lors de la résolution de problemes d’opti-
misations complexes (YUE, ZHANG et XIAO, 2020).
Pour surmonter les limites de GWO mentionnées ci-dessus, et pour améliorer ses perfor-
mances dans les problémes d’optimisation a grande dimension, un nouvel algorithme hy-
bride basé sur I'optimiseur de loup gris (GWO) et I'optimisation multi-verse (MVO) appelé
MVGWO est proposée. MVGWO est une combinaison de I'optimiseur de Loup Gris utilisé
pour l'exploitation et I'optimisation multi-verse utilisé pour 1’exploration. Deux séries d’ex-
périences ont été utilisées pour évaluer la qualité de I’algorithme MVGWO proposé. Dans la
premiere expérience, I’algorithme MVGWO proposé est comparé aux algorithmes GWO et
MVO pour résoudre un ensemble de vingt-deux fonctions de référence afin de trouver la so-
lution globale en utilisant différents types et dimensions. Dans la deuxiéme expérience, 1'al-
gorithme MVGWO est utilisé pour la sélection d’attributs et I’optimisation des parametres
du SVM simultanément afin d’améliorer la précision du SVM. Quinze jeux de données ont
été résolus par le MVGWO-SVM proposé. Le MVGWO-SVM est appliqué a 1'aide de deux
architectures systeme (HUANG et WANG, 2006a; LIN et al., 2008 ; FARIS et al., 2018). De plus,
les performances de MVGWO ont été comparées a celles de quatre algorithmes métaheu-
ristiques bien connus : GWO (MIRJALILI, MIRJALILI et LEWIS, 2014a), MVO (MIRJALILI,
MIRJALILI et HATAMLOU, 2016), WOA (MIRJALILI et LEWIS, 2016) et BAT (YANG, 2010).
Les principales contributions de cette approche sont :
— Un nouvel algorithme appelé MVGWO est proposé basé sur GWO et MVO.
— Un nouvel optimiseur de loup gris amélioré avec un poids d’inertie adaptatif a été
proposé.
— Vingt-deux fonctions de test ont été testées et évaluées par 1’algorithme proposé en
utilisant différents types et dimensions.
— Le MVGWO est utilisé pour la sélection d’attributs et 1'optimisation des parameétres
du SVM.

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers 111
(MVGWO) pour les problemes d’optimisation globale a grande dimension

7.0.1 Etat de I'art sur 'optimisation des loups gris

Différentes modifications et hybridations ont été proposées par la recherche pour amé-
liorer I’algorithme GWO. Le tableau 7.1 et le tableau 7.2 résument respectivement les modi-
fications et les hybridations de 1’algorithme GWO.

11fhapitre 7. L’hybridation entre I'optimiseur de loup gris et I'optimiseur de multi-vers (MVGWO) pour les problemes
d’optimisation globale a grande dimension

TABLE 7.1 — Les modifications de 'algorithme GWO

Modifications du GWO

REF

Objectif

Conclusion

GWO chaotique (Chao-
tic GWO)

(KOHLI et ARORA, 2018)

Différentes méthodes
chaotiques ont été
ajoutées afin d’aug-
menter la vitesse de
convergence de GWO

Les expériences ont
montré que le CGWO
proposé surpasse les
autres algorithmes
et améliore le GWO
standard

GWO modifié (Modi-
fied GWO)

(RASHID, ABBAS et TUREL, 2019)

MGWO a été pro-
posé pour optimiser
les parametres du
réseau de neurones
récurrent (RNN) et
MGWO-RNN a été
utilisé pour classer
les performances des
étudiants

Les résultats ont mon-
tré que MGWO amé-
liore les résultats du
RNN et peut trouver la
meilleure solution par
rapport aux autres al-
gorithmes

GWO binaire (Binary
GWO)

(EMARY, ZAWBAA et HASSANIEN, 2016)

Le BGWO a été pro-
posé pour résoudre le
probléme de l'engage-
ment unitaire a grande
échelle

L’algorithme BGWO
a été comparé a une
variété d’algorithmes
binaires et au GWO
standard. Les résultats
indiquent que l’algo-
rithme BGWO est plus
performant que les
autres algorithmes.

GWO de powell
(Powell GWO)

(ZHANG et ZHOU, 2015)

Le GWO basé sur 'op-
timisation locale de po-
well a été utilisé pour
résoudre I'optimisation
complexe

Neuf jeux de données
utilisés pour le cluste-
ring et sept fonctions
de référence ont été
utilisés pour tester
PGWO. Les résultats
obtenus montrent que
PGWO a obtenu de
bons résultats par rap-
port aux algorithmes
les plus récents

GWO intelligent (Intel-
ligent GWO)

(SAXENA et al., 2018)

IGWO a été proposé
pour résoudre diffé-
rents problemes dans
les entreprises qui
vendent de 1’éner-
gie sur le marché de
I'énergie

Vingt-deux fonctions
de test ont été utilisés
pour tester IGWO.
IGWO a été comparé
a GWO oppositionnel,
PSO et GWO. Les
résultats montrent
que I'IGWO est plus
performant que les
autres algorithmes

Chapitre 7. L’hybridation entre I'optimiseur de loup gris et I'optimiseur de multi-vers (MVGWO) pour les prob]émei1 3
d’optimisation globale a grande dimension

TABLE 7.2 — Les hybridations de I'algorithme GWO

Hybridizations du GWO

REF

Objectif

Conclusion

Algorithme du feu d’arti-
fice (FWA)

(BARRAZA et al., 2018)

L’optimiseur de loup gris
et l'algorithme Firework
ont été hybridés afin
d’améliorer la faiblesse
des deux algorithmes

Vingt-deux fonctions de
référence ont été utilisées
pour tester le FWA-GWO
et cet algorithme a été
comparé a GWO et FWA.
Les résultats ont montré
la supériorité de FWA-
GWO

Algorithme du Libellule
(Dragonfly (DA))

(SHILAJA et ARUNPRASATH, 2019)

L’optimiseur de loup gris
et Dragonfly ont été hy-
bridés afin de résoudre
les problémes des sys-
temes d’énergie renouve-
lable

Le systeme de bus IEEE
30 a été utilisé pour tester
l'algorithme proposé. Les
résultats ont montré que
cet algorithme était plus
rapide

Algorithme du Pollinisa-
tion des fleurs (Flower

(PAN, DAO, CHU et al., 2017)

Pour résoudre les pro-
blemes du monde réel,

Les performances de cet
algorithme ont été véri-

pollination (FPA)) I'optimiseur de loup gris fiées a 1’aide de six fonc-
et la pollinisation des tions de référence et com-
fleurs ont été hybridés parées a PSO, FPA et
GWO. Les résultats ont
montré la supériorité de

cet algorithme
Algorithme sinus- (SINGH et SINGH, 2017a) Pour améliorer I'optimi- Le GWO-SCA a été com-
cosinus (Sine Cosine seur de loup gris, 'hybri- paré aux SCA, GWO,
algorithm (SCA)) dation entre l'algorithme WOA, PSO et ALO. Les

d’optimisation de loup
gris et le sinus cosinus
(SCA) a été proposée

résultats ont montré que
GWO-SCA a réussi a ré-
soudre des problemes du
monde réel et des fonc-
tions de test

Algorithme d’optimisa-
tion de la baleine (Whale
optimization algorithm
(WOA))

(MOHAMMED et RASHID, 2020)

L’optimiseur de loup gris
a été hybridé avec l'al-
gorithme d’optimisation
de baleine pour l'opti-
misation numérique glo-
bale et la résolution de la
conception des appareils
sous pression

Vingt-trois fonctions de
test, 25 fonctions CEC
2005 et 10 fonctions
CFC 2019 ont été utilisés
pour vérifier les résultats
de WOAGWOA. Les
résultats ont montré que
WOAGWO peut obtenir
une solution optimale et
peut obtenir de meilleurs
résultats que WOA et
FDO

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

14 (MVGWO) pour les problémes d’optimisation globale a grande dimension

7.0.2 Optimiseur de loup gris (GWO)

L'optimiseur de loup gris (GWO) (MIRJALILI, MIRJALILI et LEWIS, 2014a) est un algo-
rithme métaheuristique d’intelligence en essaim introduit et inspiré par la hiérarchie de
leadership et le mécanisme de chasse des loups gris. Comme tous les autres algorithmes
d’intelligence en essaim, le GWO est considéré comme un algorithme tres utile pour trouver
une solution optimale globale en raison de sa simplicité et de sa vitesse de convergence la
plus rapide (MIRJALILI, MIRJALILI et LEWIS, 2014a).

Dans l'algorithme GWO, les loups gris sont divisés en quatre catégories : Alpha («), Beta (B),
delta (0) et omega (w). Alpha («) est la premiere meilleure solution, Beta (p) est la deuxieme,
ensuite la troisiéme est delta (5), la solution restante est nommée omega (w).

— L’encerclement de la proie :

Les loups gris essaient d’encercler la proie pendant la chasse. La position des loups
gris est modifiée par les équations suivantes :

D= T X0 - X) (7.1)

= - =
X(t+1)=X,()— A-D 7.2)
Ou t désigne l'itération courante, X, est le vecteur de position de la proie et X in-
%
dique le vecteur de position d"un loup gris, A et C sont des vecteurs de coefficients.
%
AetC peuvent étre calculés comme suit :

%
A=2-7 -7 -7d (7.3)

S

—=2.
(7.4)

Ou 1, rp sont des vecteurs aléatoires dans [0,1] et 7 peut étre diminué linéairement
de 2 a 0 au cours des itérations.

— Le processus de la chasse :
Les loups gris peuvent facilement encercler la proie avec la capacité de reconnaitre
son emplacement. L'ensemble du processus de chasse est généralement dirigé par
l'alpha (x). Cependant, dans un espace de recherche complexe, il est impossible
d’obtenir I'emplacement de la proie au début. Par conséquent, GWO consideére que
les trois premieres meilleures solutions, alpha, béta et delta, ont plus d’informations
sur I'emplacement de la proie. Ensuite, les autres loups mettent a jour leurs positions
en fonction de ces trois positions (MIRJALILI, MIRJALILI et LEWIS, 2014a).
Les équations mathématiques de cette phase sont les suivantes :

= | = = = = = = =
D z‘cl'xa—?,Dﬁz‘CQ-Xﬁ—Y,D(s: cg-x5—?\ (7.5)
e e e S T
X1 = Xy — A1+ (Du), X2 = Xg — Az (Dg), X3 = X5 — Az - (Ds) (7.6)
e
X+ X+ X
X(t+1) = 1+32+ ’ 7.7)

= = = . : == LA o
Oou X,, X, X5 sont la position de «, B et J respectivement; C;, C; et C3 sont définis

- = =
aléatoirement; Y est la position de la solution courante; A;, Ay, A3 représentent des

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 15

vecteurs aléatoires.

— L’attaque de la proie (exploitation) :
Un loup gris peut chasser en attaquant sa proie lorsqu’elle cesse de bouger. Ce mé-
canisme se fait en diminuant la valeur de 4. A est une valeur aléatoire dans [—a2, a2].

_>
Notez que la valeur de A est également diminuée de la valeur a. La prochaine po-
sition du loup peut étre n‘importe quelle position entre la position de la proie et sa

position actuelle. Lorsque les valeurs aléatoires de A sont dans l'intervalle [—1,1].
L'attaque de la proie peut étre faite si la valeur de |A| < 1.
Le GWO souffre de la stagnation des optima locaux et les chercheurs essaient de
découvrir divers mécanismes pour résoudre ce probleme (MIRJALILI, MIRJALILI et
LEwWIS, 2014a).

— Recherche de la proie (exploration) :
L'exploration se produit si [A| > 1 ou |A| < —1et|C| < 1. Sila valeur de |A| est
dans l'intervalle [—1, 1] les loups sont forcés de s’écarter de la proie.
Si |A| > 1, le loup essaie de trouver de meilleures proies (MIRJALILI, MIRJALILI et
LEwIs, 2014a).

7.0.3 L’algorithme MVGWO proposé

L’algorithme GWO a une bonne capacité d’exploitation mais peut s’empiler dans 1'op-
timum local, et dans certains cas, il converge prématurément. D'un autre c6té, le MVO a
une forte capacité d’exploration. Pour obtenir une meilleure optimisation globale, 1'algo-
rithme MVGWO est proposé pour fusionner 1'algorithme GWO en exploitation et 1’algo-
rithme MVO en exploration.

Dans cette section, nous proposons un nouvel algorithme hybride basé sur I'optimiseur de
loup gris (GWO) et I'optimiseur multi-vers (MVO) qui est appelé MVGWO afin d’améliorer
la performance du GWO en phase d’exploration pour obtenir de meilleurs résultats.
Premiérement, un coefficient adaptatif est proposé pour équilibrer I'exploitation et I'explora-
tion. Deuxiemement, un poids d’inertie est proposé pour améliorer la précision et la vitesse
de convergence de 'algorithme GWO et pour éviter qu’il tombe dans I'optimum local.

Coefficient d’équilibre adaptatif

Inspiré par (YUE, ZHANG et XIAO, 2020), dans cette approche, un coefficient adaptatif
(p) est proposé pour équilibrer 1’exploration et 1’exploitation.
Le coefficient sera mis a jour pour ajuster la stratégie de recherche lorsque la position actuelle
est proche de la solution optimale, comme le montre 1’équation (7.8).

7T t
=0.9 1-— —
p=09x (1=cos(y - o))

(7.8)

Ou Maxj,, représente le nombre maximal d’itérations, t est I'itération actuelle et p indique
le coefficient d’équilibre adaptatif.

Pour la comparaison avec le coefficient d’équilibre adaptatif, nous avons utilisé une valeur
aléatoire € [0, 1].

Sir < p,l'algorithme GWO est exécuté dans l'itération suivante; sinon, le GWO-MVO est
utilisé.

Apres une itération de l'algorithme GWO-MVO, dans certains cas, I’algorithme MVGWO
peut passer a l'itération suivante de GWO-MVO sans autre exploitation, lui permettant de
quitter ’espace optimal local actuel et de sauter la solution optimale globale. Pour éviter ces
situations, I’algorithme MVGWO exécute 1'algorithme GWO au moins T itérations avant de
passer a l’algorithme GWO-MVO suivant.

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

116 (MVGWO) pour les problémes d’optimisation globale a grande dimension

T est fixé a 10 dans cette approche, la variable K est utilisée pour compter le nombre d’itéra-
tions de GWO apres la derniére itération de GWO-MVO.

Au début de MVGWO, K est initialisé. K augmente de un apres chaque itération de GWO.
GWO-MVO sera utilisé pour effectuer l'itération si K > T et 7 > p. K sera mis a 0 a la fin de
ces itérations.

L'hybridation entre l'optimiseur de loup gris et ’'optimiseur de multi-vers (GWO-MVO)

Dans cet algorithme, la position, la précision de convergence et la vitesse des loups gris
(Alpha («), Beta (B), Delta (6)) ont été améliorées en utilisant la mise a jour de position de
I'algorithme MVO en utilisant 'Equation (6.10) afin d’étendre la convergence et d’atteindre
un meilleur équilibre entre 1’exploitation et 1’exploration.

La différence entre MVGWO et GWO se trouve dans 1’équation (7.5). Les autres équations
de GWO sont les mémes. Le mécanisme d’apprentissage de 1’optimiseur de loup gris est
amélioré a 'aide de 1’équation suivante :

%

Dy, =)?a—i—TDR—I—((ub—lb)) xrand + b,

%

Dg =)?5+TDR+((ub—lb))*mnd+lb / (7.9)
%

Ds = ??5 + TDR + ((ub — Ib)) * rand + b

(Remarque : cette hybridation est de type hybridation relais de bas niveau (JOURDAN,
2003))

7.0.4 Lacomplexité de MVGWO

La complexité temporelle de 1'algorithme MVGWO est affectée par le nombre maxi-
mal d’itérations ¢, la taille de la population n et les dimensions de la solution d.
O(MVGWO)=0O(initialisation de la population)+O(calcul de la valeur de fitness de la po-
pulation entiere)+O(mise a jour de la position de la population).

La complexité temporelle de l'initialisation de la population est O(n x d), la complexité
temporelle du calcul de la valeur de fitness de la population entiere est O(f x n x d).
La complexité temporelle de la solution de mise a jour est égale a : O = O(mise a
jour de la position de GWO)+(mise a jour de la position de GWO-MVO) équivalent a
O(10/11 xtxnxd+1/11 xtxnxd) =0(t xn xd).

En conséquence, la complexité temporelle de 1’algorithme MVGWO est O(n x d +t X n x
d+txnxd)=0((2t+1) x n x d). En comparant, la complexité temporelle du GWO qui
est O((2t +1) x n x d) avec la complexité temporelle du MVGWO. Le MVGWO a la méme
complexité temporelle que le GWO.

7.0.5 Expériences et résultats

Nous utilisons deux expériences pour évaluer la performance de 1’algorithme proposé
(MVGWO). Dans la premiere expérience, nous utilisons vingt-deux fonctions de référence
(benchmarks) bien connues pour tester 1'optimisation globale et nous comparons les ré-
sultats a : MVO (FARIS, ALJARAH et MIRJALILI, 2016a) et GWO (MIRJALILI, MIRJALILI et
LEWIS, 2014a). Dans la deuxieme expérience, nous proposons notre algorithme pour la sé-
lection des caractéristiques et 1’optimisation des parametres des SVM en utilisant quinze
jeux de données sélectionnés & partir du dépot d’apprentissage machine de 1'université de
Californie a Irvine (UCI). La comparaison de notre algorithme (MVGWO) a été effectuée
avec quatre algorithmes métaheuristiques : MVO (FARIS, ALJARAH et MIRJALILI, 2016a),

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 117

GWO (MIRJALILI, MIRJALILI et HATAMLOU, 2016), WOA (MIRJALILI et LEWIS, 2016) et BAT
(YANG, 2010).

7.0.6 Configuration de I’expérience

Dans ce travail, les expériences ont été menées sur un ordinateur personnel avec In-

tel ® core ™ CPU (1,60) GHz, 64 bits, systeme d’exploitation Windows 10 et 4 Go (RAM),
lI'algorithme proposé et les autres algorithmes ont été mis en ceuvre avec l’environnement
MATLAB R2019a, et la bibliotheque LIBSVM est utilisée pour le classificateur SVM.
Les métaheuristiques sont tres sensibles a leurs parametres qui nécessitent une initialisation
minutieuse. Ainsi, les parameétres initiaux recommandés dans la littérature de MVO (FARIS,
ALJARAH et MIRJALILI, 2016a), GWO (MIRJALILI, MIRJALILI et HATAMLOU, 2016), WOA
(MIRJALILI et LEWIS, 2016) et BAT (YANG, 2010) ont été utilisés et listés dans le tableau 5.1.
En outre, toutes les caractéristiques dans tous les ensembles de données ont été mappées a
[0,1] pour éliminer l'influence de la caractéristique qui a une échelle différente.

7.0.7 Série d’expériences 1: l’optimisation globale

Pour évaluer la performance de l'algorithme MVGWO, vingt-deux fonctions de test ont
été sélectionnées dans les Figures (7.1), (7.2) et (7.3). L'algorithme proposé MVGWO a été
comparé a MVO et GWO. Le nombre d’itérations a été fixé a 1000 et tous les algorithmes
ont été testés 30 fois. La performance de MVGWO a été évaluée en fonction du meilleur, la
moyenne, le pire et de I'écart type de la fonction de fitness (la fonction objective).

Résultats et discussions

Dans cette section, les performances et I’efficacité de notre algorithme dans la résolution
des problemes d’optimisation ont été vérifiées a ’aide de vingt-deux fonctions de test. Ces
fonctions de test ont été répertoriées dans les figures (7.1), (7.2) et (7.3) et peuvent étre
divisées en fonctions unimodales et multimodales (FAN et al., 2020).

Funection Dim Range -'flmin
i . ‘; 5 =
F\(x) = E 2 3100500/ 1000 [—100,100] 0
=1
X - = 30/100/300/ 1000 — 10,10 0
Fy) = ¥ || - IT x| i
=1 =1
a i 2 30/100/3500/ 1000 [— 100,100] 0
Fs9 =% (Z)
=1 \ -l
Fy(x) = max,{|x|. 1 i <n} 30/100/500/1000 [— 100,100] 0
s ; a2 3 100500/ 1000 [—30,30] 0
Fi)= ¥ [11}1}[.r,+l —2) 4 (x—1) l
=1
LI 5 ‘; 5 =
Felx) = E “-’-'r 5 U.SH_ 100500/ 1000 [—100,100] 0
=1
30/100/500/ 1000 [—1.28,1.28] 0

Fy(x) = ¥ ix' + random[0, 1]

FIGURE 7.1 — Description des fonctions de test unimodales (FAN et al., 2020)

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

118 . Lo, X .)
(MVGWO) pour les problemes d’optimisation globale a grande dimension
Function Dim Range SFmin
2 e B 30/100/500/1000 [—500.500] -418.9829
Fe(x)= ;I —x, sin (Jx, |) % Dim

Fy0 = 3 [- 10c0s (265) + 10] 30/100/500/1000 [-5.12,5.12] 0

i=

1

30/100/500/1000 [-32.32] 0
Fiy(x) = =20exp| =02 ; X

—cxp(rll Zw\{hrx} +20+e

e = x 30/100/500/1000 [-600,600] O
P..(t}—ﬁéxf—ﬂlcus(j)+l [0
n_1 30100/500/1000 [—50.50] 0
Fig(i}— 10sin (my, }+E (v - 1) [1+ 10 sin” +|}] \ —-1)
=

+ u[.tg, 10, 100, 4)

k(x, —a)m,.r,- >a
w=1+ ,_:_1" (xg,ﬂ, B m} =10,—a<x<a
k(-x,—a)".x,<a

= a - 30/100/500/1000 [—50.50] 0
Fis(x)=0.1 sin® {3er,] + Z (x, — 1}_[1 + sin? (_’nr.t, + 1}] + {x" — 1}_[1 + sin? {Zxx"}]

i=1
+ Z u(x,5.100.4)

=1

FIGURE 7.2 — Description des fonctions de test multimodales (FAN et al., 2020)

Function Dim Range Jmin
, L J -1 2 [—65.65] 1
Fx=l -+ ——
M= 6t Z)
. 1 N(B+h) 12 4 [-5.5] 0.00030
Fis = % [a, - 352
Fx)= rlx?‘ -2 Ix'l' + lx']' +x,.\’1 - 4.\'% + 4.1'; 2 [-5.5] — 10316
= A
Fiy(x) = (n -2 2, —6) + 1n(| - i) cosx, + 10 “ =55 s
Fglx)= [1 + (g +0+ 1}2{19— l4x, + 3.r] — 14x; + 6xp0n + 'hg)] 2 [=2.2] 3
x [30 + (20 — 3)" x (18 — 324, + 124 + 48x, — 36,2, + 27;@}]

4 3 3 3 [1,3] —3.86
Fig(x}=— ZI ciexp| — X ay(x—py)

= =1

4 L] 3 [[0.1] —332
Foglx)=— EI eexpl| — z:ay (% —py)

i= =

3 =1 4 [0,10] —10.1532
Fyxy=-% [—ﬂj}r+c;]

=1

? -1 4 [0,10] —10.4028
Fpxy=-%|([- .r:,}‘Ir + c;]

i=1

10 -1 4 [0,10] —10.5363
Fa(x) = — [—(J,}T+c£]

FIGURE 7.3 — Description des fonctions de test multimodales & dimension fixe
(FAN et al., 2020)

Les fonctions de test unimodales (F1-F7) ont une seule solution (un optimum global),

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 119

elles conviennent donc pour évaluer la capacité d’exploration de 1’algorithme proposé. Ce-
pendant, les fonctions de référence multimodales (F8-F23) ont plusieurs optimums locaux et
un optimum global, elles sont donc utiles pour évaluer la capacité d’exploitation de notre al-
gorithme. Parmi les fonctions multimodales (F14-F23) on trouve les fonctions fixes de faible
dimension, qui seront appliquées pour tester la capacité d’équilibrer 1’exploitation et 1’ex-
ploration des algorithmes.

Parametres initiaux

Le nombre maximum d’itérations T et les individus N de 1’algorithme sont fixés respec-
tivement a 1000 et 30. Les poids d’inertie initiaux dans MVGWO sont fixés & w.x = 0,9 et
Wmin = 0,2. La valeur moyenne (AVG) et I’écart type (STD) des résultats sur différentes di-
mensions obtenus en exécutant chaque algorithme 30 fois, et sont indiqués dans les tableaux
(7.3),(7.4),(7.5),(7.6),(7.7),(7.8),(7.9), (7.10), et (7.11).

Analyse statistique

TABLE 7.3 — Résultats des fonctions de test unimodales a 30 dimensions (F1-

F7)

ENo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F1 0.0/0.0 2.4781E-70/6.8439E-70 0.1841/0.0716
F2 1.0E-32/0.0 5.9784E-41/1.0325E-40 0.2932/0.0738
E3 0.0/0.0 3.4677E-19/1.3935E-18 20.7219/7.2441
F4 1.3895E-314/0.0 2.4862E-17/4.8193E-17 0.6451/0.2453
F5 27.544/0.3991 26.5444/0.8508 149.0924/248.4989
F6 2.1486/0.2297 0.3301/0.2797 0.1855/0.0481

F7 2.1523E-05/2.3303E-05 4.725E-04/2.4135E-04 0.0145/0.0055

Le tableau (7.3) montre les résultats de la comparaison entre MVGWO, MVO et
GWO dans les fonctions unimodales de 30 dimensions. Ces fonctions de référence sont
faciles a analyser la capacité d’exploitation des algorithmes d’optimisation puisqu’elles ne
contiennent qu’une seule valeur optimale globale. Nous observons que MVGWO obtient
de meilleurs résultats que GWO sur les fonctions unimodales, sauf pour F2 et F5. En
particulier, MVGWO peut atteindre la valeur optimale théorique sur les fonctions F1, F3,
F4 et F7, mais GWO ne peut pas, ce qui souligne que MVGWO a une meilleure précision et
stabilité de recherche.

Les fonctions de test multimodaux comprennent de nombreuses optimisations locales
et globales, ils sont utiles pour évaluer la capacité d’exploration des algorithmes d’optimi-
sation. Les résultats des tests des fonctions multimodales a 30 dimensions sont énumérés
dans le tableau (7.4).

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

120 (MVGWO) pour les problémes d’optimisation globale a grande dimension

TABLE 7.4 — Résultats des fonctions de test multimodales a 30 dimensions

(F8-F13)

FNo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F8 -3.0801E+03/400.9843 -6.3058E+03/566.9973 -7.7073E+03/776.2942
F9 0.0/0.0 0.4164/1.2302 110.7968/29.2215
F10 4.0856E-15/1.0840E-15 1.2967E-14/3.3118E-15 0.7882/0.8124
F11 0.0/0.0 0.0015/0.0040 0.4367/0.0981
F12 0.1591/0.0236 0.0255/0.0155 1.0587/0.8646
F13 1.3782/0.1671 0.2609/0.1745 0.0390/0.0198

A partir du tableau (7.4), on peut noter que la performance de 'algorithme MVGWO

proposé est meilleure que les autres algorithmes dans F9, F10 et F11. Cela montre que
I'algorithme hybride peut améliorer la capacité de 1’algorithme GWO dans la résolution des
problemes multimodaux.
Pour tester la performance de MVGWO dans le traitement des problemes d’optimisation
a plus grande dimension. Les fonctions évolutives (F1-F3) sont étendues a 100, 500 et
1000 dimensions avec des parameétres inchangés. Les algorithmes sont ensuite réexécutés
indépendamment 30 fois dans MATLAB 2019a. Les résultats expérimentaux sont présentés
dans les tableaux (7.5), (7.6), (7.7), (7.8), (7.9), et (7.10).

TABLE 7.5 — Résultats des fonctions de test unimodales a 100 dimensions (F1-

F7)
FNo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F1 0.0/0.0 2.0722E-34/3.5627E-34 22.4033/3.8315
F2 1.1840E-314/0.0 7.4046E-21/3.8423E-21 2.7976E+18,/1.3085E+19
F3 0.0/0.0 0.1029/0.2777 3.1607E+04/3.7046E+03
F4 4.2935E-293/0.0 2.4782E-04/6.6822E-04 41.9082/8.0965
F5 98.0970/0.4150 97.2646,/0.8976 1.1480E+03/570.8081
F6 16.7699/0.4561 7.533/0.7490 23.0017/2.9315
F7 3.0802E-05/3.1034E-05 0.0015/6.8114E-04 0.2395/0.0452

TABLE 7.6 — Résultats des fonctions de test multimodales a 100 dimensions

(F8-F13)
ENo MVGWO GWO MVO
AVG/STD AVG/STD AVG/STD
F8 -5.4243E+03/683.2958 -1.7007E+04/1.5321E+03 -2.440E+04/1.2312E+03
F9 0.0/0.0 0.9318/2.664 622.3446/93.704
F10 4.4409E-15/0.0 6.8863E-14/5.6547E-15 5.6960/5.6617
F11 0.0/0.0 7.1547E-04,/0.0028 1.2035/0.0238
F12 0.5737/0.0421 0.1998/0.0636 9.1719/2.4152

F13 8.8630/0.1673 5.4718/0.3361 82.54/32.7562

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension

121

TABLE 7.7 — Résultats des fonctions de test unimodales de 500 dimensions

(F1-F7)

ENo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F1 0.0/0.0 2.4519E-14/1.0484E-14 1.5845E+04/1.1162E+03
F2 4.9286E-298/0.0 5.3588E-09/1.2259E-09 1.6308E+202/Inf
F3 0.0/0.0 8.8359E+04/9.5536E+04 1.4264E+06/9.7324E+04
F4 9.4303E-262/0.0 52.66590/6.9409 91.6941/1.5146
F5 498.3681/0.1831 497.4259/0.3758 4.4948E+06/6.6081E+05
F6 113.9463/0.9456 88.2003/2.0312 1.6085E+04/936.3921
F7 2.2499E-05/1.9279E-05 0.0068/0.0018 51.3149/7.6690

TABLE 7.8 — Résultats des fonctions de test multimodales de 500 dimensions

(F8-F13)

ENo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F8 -1.1956E+04/1.2465E+03 -6.555E+04/4.1359E+03 -9.3055E+04/3.6829E+03
F9 0.0/0.0 2.6270/4.4834 5.5422E+03,/202.3015
F10 4.4409E-15/0.0 7.037E-09/2.0274E-09 20.7208/0.0646
F11 0.0/0.0 0.0025/0.0075 145.8283/13.1024
F12 0.9939/0.0155 0.6892/0.0264 2.8988E+05/2.1615E+05
F13 49.4510/0.0674 45.1045/0.6016 3.4288E+06/9.2258E+05

Comme on peut le voir dans les tableaux (7.5), (7.6), (7.7),et (7.8), les résultats de GWO
et MVO augmentent avec la dimension croissante de toutes les fonctions et seul MVGWO
peut toujours atteindre la solution optimale globale. Nous pouvons également noter que
I'algorithme proposé surpasse les autres algorithmes dans F1, F2, F3, F4, et F6, on peut donc
conclure que l'algorithme MVGWO proposé a la supériorité dans la capacité d’exploitation
et I'efficacité dans la recherche de I’optimum global pour les fonctions unimodales.

TABLE 7.9 — Résultats des fonctions de test unimodales de 1000 dimensions

(F1-F7)
FNo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F1 0.0/0.0 5.617E-10/2.3221E-10 2.3885E+05/1.6136E+04
F2 4.7262E-294/0.0 3.9858E-05/9.3187E-05 1.3942E+258/inf
F3 0.0/0.0 5.6516E+05/1.4034E+05 5.6111E+06/4.2299E+05
F4 6.0707E-249/0.0 70.9899/4.8047 97.0079/0.7748
F5 998.4177/0.1159 996.9766,/0.0983 3.4068E+08/2.8758E+07
F6 238.2598/0.9990 203.0186/2.4183 2.3965E+04/1.3729E+04
F7 3.8702E-05/3.1765E-05 0.0126/0.0035 4.7109E+03/522.441

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

122 (MVGWO) pour les problémes d’optimisation globale a grande dimension

TABLE 7.10 — Résultats des fonctions de test multimodales de 1000 dimensions

(F8-F13)
FNo MVGWO GWO MVO
AVG/STD AVG/STD AVG/STD
F8 -16676E+04/1.7657E+03 -10590E+05/1.7046E+04 -1.4605E+05/5.8559E+03
F9 0.0/0.0 7.3880/6.8919 1.3226E+04/250.4819

F10 4.3225E-15/6.4863E-16 7.0916E-07/1.1344E-07 20.92/0.0318

F11 403225E-15/6.4863E-16 = 7.0916E-07/1.1344E-17 20.9250/0.0318

F12 1.0791/0.009 0.8356/0.0216 3.6895E+08/6.5997E+07
F13 99.5018/0.0842 94.8339/0.5289 1.0567E+09/1.5256E+08

A partir du tableau (7.9) et (7.9), nous pouvons voir que l'effet d’optimisation des
algorithmes GWO et MVO a été légerement réduit dans les fonctions de grandes dimen-
sions lorsque la dimension atteint 1000, MVGWO obtient toujours des valeurs optimales
théoriques sur les fonctions F9, F10, et F11.

En résumé, nous pouvons conclure que l'algorithme MVGWO peut rechercher des
solutions plus difficiles sur des problemes de grandes dimensions dans la plupart des cas.

TABLE 7.11 — Résultats des fonctions de test multimodales & dimension fixe

(F14-F23)

ENo MVGWO GWO MVO

AVG/STD AVG/STD AVG/STD
F14 3.8719/3.9532 3.2182/3.7199 0.998/4.2330
F15 0.0011/0.0037 0.0024/0.0061 0.0039/0.0075
Fl6 -1.0316/6.8251E-06 -1.0316/3.5060E-09 -1.0316/5.8742E-08
F17 3.00/3.3236E-06 3.7000/14.7885 3.00/6.9230E-07
F18 -38587/0.0025 -38618/0.0026 -38628/1.2168E-07
F19 -3.1730/0.0792 -3.2475/0.0803 -3.2584/0.0605
F20 -6.0970/1.1197 9.1394/2.0617 -7.5438/2.9225
F21 -6.7263/1.2988 -10.2268/0.9630 -8.3060/2.8577
F22 -6.5264/1.3243 -10.0853/1.7518 -9.3821/2.3816

Parmi les vingt-deux fonctions (F14-F23) sont des fonctions multimodales fixes par rap-

port aux fonctions multimodales & dimension variable F8-F13, ces problemes de référence
ont moins d’optima locaux en raison de leurs faibles dimensions, et pourraient donc étre
utilisés pour tester ’équilibre entre les capacités d’exploration et d’exploitation des algo-
rithmes.
D’apreés le tableau (7.11), nous pouvons voir que ces algorithmes sont tres proches de 1’op-
timum théorique dans les problemes F16-F19. Dans F15, MVGWO montre une meilleure
performance par rapport aux autres algorithmes. Par conséquent, nous pouvons conclure
que notre algorithme MVGWO peut équilibrer entre I’exploration et 1’exploitation.

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers
(MVGWO) pour les problemes d’optimisation globale a grande dimension

123

Analyse de convergence

Figure (7.4) et (7.5) illustrent le comportement de convergence de MVGWO et les autres
algorithmes sur les fonctions a 30 dimensions F1-F13. L'axe x et I’axe y représentent respec-
tivement le numéro d’itération de la population et la valeur moyenne des 30 résultats de
calcul.

Nous observons que l'algorithme MVGWO proposé commence a converger rapidement
dans les générations précédentes de ces 13 fonctions et se maintient plus rapidement que
les autres algorithmes dans les générations suivantes. De plus, MVGWO obtient I’optimum

global sur les fonctions unimodales F1-F4 et multimodales F9, F10 et F11.

10Y [

10Y [N
——MVGWO MVGWO % MVGWO
N 109 N
\ GWO 0 ~ GWO N\ Gwo
MVO \\\ MVO N MVO
107100 e g 10100 \\
& » 107100 N\ ®
8 X 3 Y 2 \
S s N\ £ \
i \ e T \
02 \ 10200 10;:22C \
\\
10300 107300 107300 \
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
T Iteration Iteration lteration
Ay 8 |
B e ———MVGWO Uy MVGWO MVGWO
R Gwo GwWo 10* Gwo
\ MVO MVO MVO
107190 \ 108
0 P «
§ é’ é 102 {{
& g &
-200 10
10 \
10°
2
10-300 10
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
10¢
MVGWO
GWO
MVO
10°
"
2
o
]
% 102 \
s
10 - =
200 400 600 800 1000

Iteration

FIGURE 7.4 — Résultats des fonctions de test unimodales a 30 dimensions (F1-

F7)

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

124 N , . L2 N . .
(MVGWO) pour les problemes d’optimisation globale a grande dimension
——wowo ——MVGWO 10° —MVGWO
10° Gwo Gwo Gwo
— MVO 3000 S |——mvo ——mvo
7] \ 5
2 10° 2 4000 g 1°
£ I £
s i i
-5000
10:1Y 1010
6000
-7000
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
0 & | ———MVGWO —MVGWO
10 GWO GWO
——Mvo MVO
5
o 10° <l
0 73
[Q
£ £
i i
10<1O
0
e 10
200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration
FIGURE 7.5 — Résultats des fonctions de test multimodales a 30 dimensions
(F8-F13)
10° . 10
o —MGWO — MGWO — MGWO
10 GWO Gwo GWO
———NO —— MVO —— MVO
10-\00 10~100
o 107100 o »
g% g g
£ £ £
i & T
10_200 10-200 104200
10-300 10-300 10400
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
. Iteration Iteration Iteration
o
MGWO ; MGWO g MGWO
Gwo 10° Gwo Gwo
— MVO —— MVO — MVO
10-100 104
g g 10° g
S S 5
i i i
10-200 A
10 \
10?
102 =
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
MGWO
102 N GWO

Fitness

200 400 600 800 1000
Iteration

FIGURE 7.6 — Résultats des fonctions de test unimodales a 100 dimensions
(F1-F7)

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers
(MVGWO) pour les probléemes d’optimisation globale a grande dimension

125

Fitness

Fitness

MGWO

1000

05 MGWO MGWO 10°
i Gwo H 10° GWO GWO
—— MVO ——— VO ——MVO
8 » o 10°
& 17]
< E 10 e
i [
-10
15 1070 10
2
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
taration Iteration Iteration
, MGWO MGWO MGWO
10 GwWo GwWo ; Gwo
———MVO G 10 ———MVO
-5
10 % 10°] 108
i) c
ic i
10710 10*
-15 102 -
10 109
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
FIGURE 7.7 — Résultats des fonctions de test multimodales a 100 dimensions
10" P 10°
——MVGWO 200 ——MVGWO ——MVGWO
10
GWO GWO GWO
—— MVO —— MVO —— MVO
1071% 107190
" 123 13
0
£ :« g
[[i
1029 10200
10~200
1030 10300
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
10° lteration Iteration Iteration
MVGWO MVGWO 10° MVGWO
GWO GWO GWO
———MVO — —
108 MvVo MVO
-100
123 10 123 "
g g 6 5 10*
i 10 i
10-200
10*
102 T
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800
Iteration Iteration Iteration
| ——MVGWO
GWo
——MVO
g
< 10°
£

200 400 600 800 1000
Iteration

FIGURE 7.8 — Résultats des fonctions de test unimodales a 500 dimensions

(F1-F7)

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

126 N , LoL 2. . . .
(MVGWO) pour les problemes d’optimisation globale a grande dimension
S — MVGWOl- MVGWO 10° MVGWO
\ GWo Gwo GWO
——— MVO 100 ——MVO —— MVO
2
) o @ 10
8 8 8
& 5 10° S
i i i
4
\ 10—10
6 107
8
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
PO e 10" —
— MVGWO — MVGWO — MVGWO
- Gwo ewo . st Gwo
10 — MVO — MVO 10 . — MVO
2 10° 2 2 108
< £ 10° £
i i i
10-10 104
10715 10?
10° — =
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
FIGURE 7.9 — Résultats des fonctions de test multimodales a 500 dimensions
(F8-F13)
10° = 10°
— MVGWO MVGWO —MVGWO
GWO 102(x] GWO GWO
—— MVO — MVO ———MVQO
10729 1010
172] (7] 1]
2
H £ 10 g
w w w
102%° 10200
10-200
107300 10300
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
lteration Iteration Iteration
0° 1010 —
——MVGWO ———MVGWO 108 MVGWO
GWO GWO GWO
— MVO ——— 0N O MVO
108 5
10
§ 10100 ﬁ 2
£ £ £
w w408 w 104
-200
10 10° 103
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iteration Iteration Iteration
10° S
MVGWO
GWO
p— NIV O:
172]
e
Z 10°

200 400 600 800 1000
lteration

FIGURE 7.10 — Résultats des fonctions de test unimodales a 1000 dimensions
(F1-F7)

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

R S e e . R ; ; 127
(MVGWO) pour les problemes d’optimisation globale a grande dimension
[
[MVGWO H \ MVGWO 10° \\ MVGWO
GWO \ GwWo \ GWOo
MVO 1000 | MVO \ MvVO
) \
{ 5 \
2 2 ' g 10°1 |
g E el g \
= = 3 =3 \
& e LY ‘. & \
| \
l‘ 1010 ‘\
10-10 | \
-10° | \
| \
N L
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
) Iteration lteration lteration
10
10° \ ———MVGWO Rlag MVGWO 1010 MVGWO
\ Gwo \ Gwo \ GWOo
\ MVo | MVO " MVO
\
\ " |
w 1051 | p o |
173 \ 0 l 0
g \ 2 ol -
= \ = 10 l =
[\ [() |
I\ 5
10710 \ \ |
\ { \
'\
— 10° | = . : :
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
teration Iteration teration

FIGURE 7.11 — Résultats des fonctions de test multimodales a 1000 dimensions
(F8-F13)

Les graphiques de convergence des trois algorithmes sur les fonctions de grandes
dimensions sont présentés dans les figures (7.6), (7.7), (7.8), (7.9), (7.10) et (7.11).

Bien que la dimension ait augmenté, MVGWO peut converger rapidement des le début
des itérations sur toutes les fonctions, et son taux de convergence est toujours plus élevé
que GWO et MVO. Comme on peut le voir sur les figures (7.8) et (7.9), MVGWO converge
rapidement vers la valeur optimale globale sur les fonctions de 500 dimensions : F1-F4,

F7, F9, F10, et F11. Comparé a GWO et MVO, MVGWO est fortement compétitif dans la
résolution des problemes de grandes dimensions.

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

128 R o s \ . .
(MVGWO) pour les problémes d’optimisation globale a grande dimension
10 10"
107 MVGWO MVGWO MVGWO
GWO GwWo GWO
MVO MVO MVO
7]) @
8 £ 10 e
2102 [\ i
| \
—t 107
g
3 10°
200 400 600 800 1000 200 SO0 QO IT00 200 400 600 800 1000
taration s iteration Iteration
MVGWO [MVGWO 4.8} MVGWO
} Gwo 35! GWO Gwo
k MvO MVO 2t MvVO
[22t
§ § 36| ﬁ
He S £ 24}
i 10"} 2 | i
3.7 5 26 -
-2.8
-3.8 S
oo 32b

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

l lteration lteration Iteration
MVGWO [NVGWO
WO 100} GWo
-10°] MVO WO
2 n
3 [}
£ g |
- [\
\ \
|
\ \‘\\
L) B . 3
-10'
200 400 600 800 1000 200 400 600 800 1000

Iteration Iteration

FIGURE 7.12 — Résultats des fonctions de référence multimodales a dimension
fixe (F14-F22)

La figure (7.12) montre les courbes de convergence de MVGWO, GWO, et MVO sur les
fonctions multimodales a dimension fixe. De toute évidence, la tendance de convergence de
ces derniers est tres proche. Cependant, MVGWO converge vers 'optimum global dans les
fonctions F15, F18 et F19. Par conséquent, nous concluons que, bien qu’il existe de nombreux
optima locaux dans les problemes de fonctions multimodales fixes, le MVGWO a une bonne
vitesse de convergence et une bonne précision.

7.0.8 Série d’expériences 2: MVGWO pour la sélection d’attributs et ’optimisa-
tion des parametres de SVM

Les machines a vecteurs de support (SVM) (CORTES et VAPNIK, 1995) sont une famille
d’algorithmes d’apprentissage automatique qui résolvent les problémes de classification, de
régression et de détection d’anomalies (CORTES et VAPNIK, 1995). Les SVM ont été utili-
sés dans une variété d’applications, notamment la bio-informatique (ZHOU et TUCK, 2007),
I'énergie renouvelable (BOUZERDOUM, MELLIT et PAVAN, 2013), et la chimio-informatique
(VATSA, SINGH et NOORE, 2005).

Les SVM ont été développés pour la premiere fois par Vladimir Valpinik en 1990 (CORTES et
VAPNIK, 1995), I'idée principale des SVM est de projeter les données d’apprentissage dans
une dimension plus grande, de sorte que les données non linéairement séparables dans
I'espace des caractéristiques d’entrée deviennent linéairement séparables dans 1'espace des
caractéristiques de haute dimension par la construction d’un hyperplan optimal avec des ca-
tégories séparées des données d’apprentissage (FARIS et al., 2018). Dans la littérature, SVM

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 129

prouve une excellente classification avec une grande précision de prédiction dans un large
éventail de problemes de classification et de régression (FARIS et al., 2018). Les SVM ont
des parametres de noyau et de pénalité qui ont un impact majeur sur leurs performances.
Le parametre de pénalité C controle le compromis entre la maximisation d’une marge de
classification et la minimisation de 'erreur d’apprentissage. Le parameétre du noyau définit
la transformation non linéaire de 1'espace d’entrée vers un espace a haute dimension. Les
chercheurs ont utilisé et mis en ceuvre diverses fonctions noyau dans la littérature (polyno-
miale, sigmoides ou linéaires). Le noyau commun et fortement recommandé est la fonction
de base radiale (RBF). Le noyau RBF aide le SVM a obtenir une prédiction précise et une
efficacité fiable, comme l'indiquent plusieurs études (CHAO et HORNG, 2015; HUANG et
WANG, 2006b; YU, LIONG et BABOVIC, 2004). De plus, le RBF a moins de parameétres a op-
timiser et peut effectuer une meilleure analyse des données de plus grandes dimensions.
Deux problemes importants doivent étre abordés afin d’obtenir I’avantage du SVM et d’at-
teindre la meilleure capacité de généralisation avec une précision de prédiction élevée. Le
premier est 'optimisation du parametre du noyau du SVM et de ses parametres de péna-
lité. Le second est la sélection du meilleur sous-ensemble d’attributs a inclure dans la phase
d’apprentissage (FARIS et al., 2018; THARWAT et HASSANIEN, 2018). L'un des algorithmes
classiques utilisés pour régler les parametres est la recherche de grille. Il est utilisé pour op-
timiser les paramétres du SVM. Dans cet algorithme, les parametres varient dans 1’espace
de recherche avec une taille de pas fixe. Cependant, cet algorithme est complexe, prend
du temps et ne convient que pour optimiser quelques parameétres (STAELIN, 2003 ; ZHANG,
CHEN et HE, 2010). Dans la littérature, de nombreuses études utilisent des algorithmes mé-
taheuristiques pour optimiser les parametres de SVM en raison de leur grande efficacité a
générer des solutions acceptables, notamment lorsque 1’espace de recherche est extréme-
ment grand et lorsque le probleme est complexe (WANG, ZHAO et DEB, 2015). La sélection
de caractéristiques (attributs) est une technique de prétraitement qui consiste a choisir un
petit sous-ensemble ou une liste de N variables (caractéristiques) a partir d’'un ensemble de
données de M caractéristiques (N < M).
La sélection de caractéristiques (FS) permet de :

— Eliminer les caractéristiques non pertinentes et redondantes dans un ensemble de

données (FARIS et al., 2018).

— Diminuer le temps de formation (FARIS et al., 2018).

— Réduire la complexité du modele de classification (FARIS et al., 2018).

— Augmenter les performances de classification du modele (FARIS et al., 2018).
Il existe deux approches classiques pour effectuer la sélection des caractéristiques dans la
classification : le filtre et I'enveloppe (wrapper).
L’approche filtrante évalue les caractéristiques d’un ensemble de données sans utiliser un
algorithme d’apprentissage, tandis que l’approche enveloppante utilise un algorithme de
classification spécifique pour évaluer la qualité du sous-ensemble de caractéristiques sélec-
tionné.
De nombreux algorithmes métaheurtiques ont été proposés pour la sélection des caractéris-
tiques et I'optimisation simultanée des parametres de SVM.

7.0.9 Machine a vecteur de support (SVM)

La machine a vecteurs de support (SVM) est un modele mathématique proposé par
Vapinik (CORTES et VAPNIK, 1995). Une étude comparative a montré que le SVM est 1'un
des meilleurs classificateurs d’apprentissage automatique et peut-étre utilisé a la fois pour
la régression et la classification. L'objectif principal des SVM est d’orienter les hyperplans
pour séparer les différentes classes. Lorsque les données sont linéairement séparables, 1'algo-
rithme SVM atteint une grande précision de classification. Cependant, 1’efficacité des SVM

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

130 (MVGWO) pour les problémes d’optimisation globale a grande dimension

est affectée par des données non linéairement séparables. Les fonctions noyau sont utili-
sées pour résoudre ce probleme. Par conséquent, les fonctions de noyau sont utilisées pour
mapper les caractéristiques actuelles dans un nouvel espace de dimension supérieure ot
les données peuvent étre séparées linéairement. L'utilisation des SVM présente deux défis
principaux : la sélection des fonctions noyau appropriées et le réglage de leurs parametres.
Sur le plan informatique, la recherche du plan optimal est considérée comme un probleme
d’optimisation pour aider la fonction noyau a rechercher des décisions linéaires a travers
une transformation non linéaire (CORTES et VAPNIK, 1995; WANG, 2005).

La figure (7.13) illustre un exemple d'un jeu de données de classe binaire séparé par des
hyperplans optimaux de SVM.

Classe 2

Classe 1

S

Vecteurs
de support

FIGURE 7.13 — Hyperplan optimal dans une machine & vecteurs de support

Il existe différents types de fonction noyau, les plus utilisés dans la littérature étant le
noyau hyperbolique tangent, le noyau polynomial et le noyau RBE, comme le montrent les
équations (7.10), (7.11), et (7.12) respectivement.

Ky (xi, x;) = tan h(cy(x;, xj) + c2) (7.10)
Kp(xl-, x]-) = <xi, Xj + 1>d (711)
Kipr(xi, xj) = exp(—y ||xj — xin), where y > 0 (7.12)

— L'un des problemes majeurs des SVM est la solution de la fonction noyau et les va-
leurs de leurs parametres qui ont un impact significatif sur la précision et la perfor-
mance du modele SVM (WANG, 2005).

Il existe de nombreuses approches dans la littérature pour optimiser les parametres des
SVM. Parmi elles, les algorithmes métaheuristiques qui ont prouvé leur efficacité et leur
robustesse pour trouver des solutions optimales aux problémes d’optimisation. Par consé-
quent, dans cette these, nous avons introduit un nouvel algorithme nommé MVGWO pour
optimiser les paramétres du SVM pour la premiére fois dans la littérature.

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 131

7.010 Modele MVGWO-SVM proposé

Trois points importants sont pris en considération concernant I'implémentation propo-
sée de MVGWO pour la sélection d’attributs et 'optimisation des parametres de SVM : la
fonction de fitness, le schéma d’encodage des individus, et I’architecture du systéme (FARIS
et al., 2018). Ces points sont décrits comme suit :

Schéma d’encodage

Les individus sont encodés sous la forme d’un vecteur de N éléments de nombres réels,
ot N est le nombre d’attributs originales dans un ensemble de données, plus deux éléments
pour représenter les parametres du SVM : le cotit (cost) (C) et le gamma (7). Chaque élément
du vecteur est un nombre aléatoire dans [0, 1]. Par conséquent, ces éléments sont arrondis
et peuvent prendre la valeur 1 ou 0; indiquant si I'attribut est sélectionné ou non comme le
montre la figure (7.14).

Pour les parametres du SVM C et y; C est mappé a l'intervalle [0,35000] et v est mappé a
[0,32] (FARIS et al., 2018). Dans notre expérience, les valeurs de C et y sont transformées
linéairement selon 1’équation (7.13) :

A — mi
B= &(maxlg — ming) + ming (7.13)
maxa — miny

Evaluation de fitness (fonction objectif)

Pour évaluer les solutions générées, nous utilisons 1’exactitude de la classification qui est
calculée a l’aide de la matrice de confusion présentée dans le tableau (6.11). La matrice de
confusion est la principale source d’évaluation des modéles de classification (FARIS et al.,

2018).

. TP + TN
E - 7.14
xactitude = 4o EN T FP L TN (7.14)

Architecture du systeme

Afin d’effectuer la sélection des caractéristiques et I'optimisation des parametres du SVM
en utilisant MVGWO. Nous avons utilisé deux architectures de systéme. Le premier systeme
mis en ceuvre et utilisé dans (HUANG et WANG, 2006a; LIN et al., 2008) est nommé archi-
tecture (1). Le second est une amélioration du premier systéme proposé dans (FARIS et al.,
2018) nommé architecture (2).

Le flux de travail de ces architectures est donné ci-dessous.

— Normalisation des données : nous avons mis en correspondance toutes les caracté-
ristiques de tous les ensembles de données a la méme échelle pour qu’elles soient
dans l'intervalle [0, 1] afin d’éviter le mauvais effet de certaines caractéristiques qui
ont des valeurs de biais différentes sur le processus d’apprentissage de 1’algorithme
SVM. Cette étape du processus a été appliquée en utilisant I’équation (7.15).

A —ming

B=——"—
max, — ming

(7.15)
— Décodage des individus MVGWO : dans cette étape, les vecteurs sont divisés en deux
parties : la premiere partie du vecteur est pour les paramétres du SVM tandis que la

seconde est pour les caractéristiques sélectionnées comme représenté dans la figure
(7.14).

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

152 (MVGWO) pour les problémes d’optimisation globale a grande dimension

Paramétres du SVM Attributs
A A
r ! 1

clvfala]-Tn]

|002|031|094|020|072|058|
| I]

[| [
L2 3 L2

[olo] Lo]

Cost=640, Gamma=31, Caractéristiques sélectionnées ={F1,F3,F4}

Schéma de codage

Exemple

FIGURE 7.14 — Schéma de codage des individus MVGWO pour l'optimisation
de SVM et la sélection d’attributs (FARIS, MIRJALILI et ALJARAH, 2019b)

— Sous-ensemble de caractéristiques sélectionnées : aprés que les individus ont été dé-
codés en un vecteur binaire, les caractéristiques sont choisies dans I'ensemble de don-
nées d’apprentissage.

— Evaluation du fitness : chaque solution générée par I'algorithme MVGWO qui repré-
sente les caractéristiques sélectionnées et les parametres SVM est évaluée a 1’aide de
la fonction fitness qui représente 1’exactitude de la classification.

— Critere d’arrét : 'ensemble du processus s’arréte si une condition d’arrét est satisfait.
Dans ce travail, la condition de terminaison est le nombre maximum d’itérations.

La différence entre ces deux architectures réside dans la méthode d’apprentissage et de test
et dans I’évaluation du fitness.

Dans 1’architecture (1), I'ensemble des données d’apprentissage est déployé pour créer le
modele SVM, puis la valeur objective renvoyée par la fonction objective est I’évaluation du
SVM entrainé en utilisant I'ensemble de données de test. Par conséquent, dans I’architecture
(2), 'ensemble de données d’apprentissage est divisé en parties plus petites afin d’effectuer
une validation croisée K-blocs, de sorte que nous exécutons 1'algorithme SVM K fois et les
résultats moyens sont retournés. Dans cette architecture, ’ensemble de données de test
n’est pas utilisé dans l'itération de la métaheuristique, il est utilisé pour évaluer la solution
finale générée (les meilleurs parameétres du SVM et les attributs finaux sélectionnés).

7.0.11 Expériences et résultats

Dans cette section, nous présentons 1'évaluation de l’algorithme proposé (MVGWO)
pour la sélection d’attributs et 1’optimisation des paramétres de SVM. Quinze jeux de don-
nées (tableau (7.12)) ont été utilisés pour évaluer les cinq algorithmes et pour chaque jeu
de données, les expériences ont été répétées dix fois pour obtenir des résultats statistique-
ment significatifs. Le nombre d’itérations et la taille de la population ont été fixés a 50 et 20
respectivement. En général, I'interaction entre 1'algorithme de classification et la sélection
des caractéristiques rend la sélection des caractéristiques basée sur la méthode d’enveloppe
(wrapper) trés puissante. Mais il est cofiteux en calcul, et il peut sur-ajuster. Par conséquent,
il a été observé par I'expérience qu'un petit nombre de générations peut converger vers une
solution et réduire le temps de calcul de l'algorithme métaheuristique (FARIS et al., 2018).
Comme indiqué précédemment, la différence entre les architectures (1) et (2) réside dans
la méthodologie d’apprentissage et de test utilisée dans chacune d’elles. Dans l’architecture
(1), nous avons utilisé 10 validations croisées; 9 blocs sont utilisés pour l'apprentissage du
SVM et un pour le test, tandis que la valeur de fitness est renvoyée par la fonction de fitness
basée sur le 10 eme bloc de test. Dans 1’architecture (2), nous avons utilisé 10 blocs pour la

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 133

validation croisée externe et 3 blocs pour la validation interne (FARIS et al., 2018).
Pour obtenir des résultats statistiquement significatifs, les expériences sont répétées dix fois.

TABLE 7.12 — Les ensembles de données de classification

Datasets Attributs Ensemble d’apprentissage Ensemble de test
Blood 4 493 255
Breast cancer 8 461 238
Diabetes 8 506 262
Heart 13 179 91
Hepatitis 10 102 53
Liver 6 79 41
Parkinson 22 128 67
Lymphography 18 98 50
Vote 16 198 102
Wine 13 118 60
Z00 16 67 34
Sonar 60 138 70
Exactly 13 660 340
Inosophere 34 232 119
BreastEW 31 178973 93986

Résultats et discussions

La comparaison de MVGWO a été effectuée avec quatre algorithmes métaheuristiques :
MVO, GWO, WOA et BAT. Les performances des cinq algorithmes métaheuristiques ont
été évaluées en fonction du meilleur, la moyenne, le pire et de I’écart type de I'exactitude
de la classification et de la moyenne, et I'écart type des caractéristiques sélectionnées. Le
tableau(7.13) et le tableau(7.14) montrent les résultats obtenus avec l'architecture (1) et 1’ar-
chitecture (2), respectivement.

698TTL9T €SLTTITI96 SF69TEST 8ISTTEST L6 €9TTVEL OFCF60S96 6S€TTFLST THOCTCIN96 €LSTFTHI 9ETTHS L6 Ma3seaIg
OTTFEIL STSTLhIEC6 VLF6IC 9VT6T6 9EITFSET CTFSST6 STOEFLST 6LVFE0T6 LECTTFLIL IV TST6 araydsouoy
6V9'TTS L 1021FV6L €9TTFE6 8OSTIL6 €SSTFIL 9FFITIT6 SH8O0THL 00F00T 1€0F69 0'0F00T Apoexyg
€€9°TF9'6C €9ST6SE€8 SVEFTIe TEVETOILSS LEVTLTT 1S8T6S98 6IIETFS LT 69FFST8 STTTCLl TLLF60°S8 Teuog
L9G1FE8 V66168 99 TTCIL VCE9TT6 V6ETFCL 98LT60T6 W6 IFLL €6'/F8T06 ISTIFE9 €T8FE6 007
0CF08 916 ETVLL6 LOVEFS6 OCSTLL66 S6STTLS 16€TFVLL6 6191FC8 €80F7TL9/6 ISCITFEL 80T TF9ST /6 QUIM

TI6TF69 G99GTFEEE6 0SSTTI . TL8TF99T6 L9ST1FETY 99716 669TFCL 88TYFE6 TIGTFIY CUTVTEST6 0,
097 TTS6 6S0F7T898°€C6 SISSTFHL SOOITILSLL 99€TTIL COPITHOSL 1SUTT6'S SLFIT60SSL /81788 cr9T/ves AyderSoydwA
T6LITITL 6S0F7T898°€6 9ICSTEL T99T68476 FSOTT6 96FT8L¥6 98TTECl LS9T8L06 LYTETI OV 0V €TH196 uosupyIeJ
GL0TF9C G8I'6F7¢6'T9 FICTFIS S688FC600L LVCTTY FOSTFCH99 Z¥TIFE 899FCe699 06V IFE €9 TIF6ST9 TAT]
066TTS6 1/TCITCS699 99STLO0L €I0TITSTHS9 61FSL €S9T6I'19 9P TTV6 9SS TITLSST9 IL0€TFIZ 9IFOITLSS9 spnedop
86CIT8Y L6S'8TCH'SL 9S0FT9S €€98TSHI8L 96 1T6F SSSTSHIS S0TTS 6I'STHOLE08 SV60TET C9'LF0LE08 e
GV ITVES 98T TLY9SL 078 19779594 €ITTLS TEVT60S9L 98T 1T6F 65STI6GL 9ICTTST SSLETIC6SL sa3aqe1q
0LSTFTE LUTTERLZ6 9ISOT9EC 819CT9956L €T80TLT SI9TT99SL6 S¥60TEE 60171986 8160TST 865 IT 1626 poorg
S/80F6T 10CFIVS6 C€90F8L 8ISTTLLTS SI60FCS S/8TFLS6 ¥.90FES SYTT66 76 V66 0TS 8/6'TF95G6 IooueDisealq
SV 9P oN SpMIdexXg SV 9P oN SpmImdeXT SV PN OPMHEXH SV 9P N SpMBOeXT SV 9P oN SpNIIOEXT syosere(
INAS+LvE INAS+VOM INAS+OMD INAS+OAIN INASTFOMDAIN ~ /aupLiod]y

7 IN303IYDIR,[3P SIeINSARY — F1°Z 14V],

LYEVTFEVT OPETFLLS6 6OV TFIST €OSTFIIL66 9VOTFSST 6V ITP6'86 6SCTFLST THOEFCIT96 08 TT6FI 6V TFCI66 MA3sea1g
6VL9T9ST THTTLS86 S9CCTESI €STET99TL6 109CTTF6'ST FTETTSIOS6 9ILTTYST LFSOTELF66 08€T9T TITT 66 a1aydsouo]
8/ETTI6 8S0°SFSL6 IILTTVL L96TTT08 SLFITS9 69TITESS OVLTTS9IL 0C0TTLSS6 8¥60TES LS6'9TS'L6 Appoexyg
€601TC/LT 19SCTLSL6 ¥HTTCST SSYT8ELC6 VIUSTISC €STT6SZ6 SSITTSZ 729786 60V T6FC SITCS66 Teuog
11E€TTL . OTET66 V6V ITLL 00T00I €99T1FIS 00T001 S90TTVLC LO0TT6066 OLITLL 9T'ET66 007
SIV'ITE9 00F00I 6I9TTTL 00T00T ZLST1T9Z €CTT86 €9 1TL 0F00L T1STITE9 0'0700T QUIA
CLIVT6L 806€TTS6 €OLETTIL LETTEEE'86 LISTTET 9976 S90TT99 019'TT66 68 T1T9L 019'TF66 210,
€9CT66 LS6TT06€6 €CSTT6S TO99TTHI'T6 SIFITL6 199STETS6 CSSTT6L 98FETIS6'S6 L06TTLS 604 F87 L6 AyderdoydwA
00FFSTT 8STTS66 SSVCFSTIL P99 TFELF66 SCISTFCIL TI8GTFS66 SIFCFSTL 00F00l ZVIFCIL 0'0F00T uosunyIeJ
VSeITSY ¥80LTSIIS ¥660F6'C ISSTE/88. — SLOTT9E G809TVIL6L 1L60FSE T0STTI6T8 I TTSE CT'SF/8F 18 AT]
16€STCL 68LF06€S 800TTFLOT FPPECITS06LES 9V TTSOL Sc9LT6006 €LCTFSS 68S9FCS 16 VIT6ITS 6I1'ST99°€6 snedapy
PIPTLS ¥PS9T6C98 €99 TFLH LLTCST8 ceCITS 99/4TCo68 LESTTIT 66 STSHISS 0L8T1T6F 8C'CFHL 06 }ea]
6LLTFS9 9ST'ETPOIS 996 0FFF CLSETIEY6L SEUITCH 99FVTFL9TS SLECTTLE SSICT68TC8 650 TTET 69°CTHIVC8 sa39qe1q
VOTIFVE 0LTTS0L6 €SETIFST €601FE1986 F660FLE 6STFI986 6690FFE S9TFICL6 88L0F8T 60'TT19'86 poolg
SCLITIY 016 TTCrI'S6 FIFITFY 6VITTCILL6 6STTTEY 99TTEI86 6SI'TTEY CISTTPIS6 SI60TCY LI'TT9586 I9oueDIsedlg
SVOP.N oPMmmoeXT SV 9P oN opmIdexXy SV 9PN OPMHIEXH SV OP N 9pMIoeXd SV 9P N opmnoexy syesere
INAS+1Vd INAS+VOM INAS+OMD INAS+OAIN INAS+HOMDAIN /w303y

T 9IN303)TYdIE,[9P SYeNSNY — £1°Z A1dVL

Chapitre 7. L’hybridation entre I'optimiseur de loup gris et I'optimiseur de multi-vers (MVGWO) pour les problém?§5
d’optimisation globale a grande dimension

Les résultats de 1’architecture (1) montrent que MVGWO a obtenu les taux d’exactitude moyens les plus élevés par
rapport a MVO, GWO, WOA et BAT dans 10 jeux de données sur 15, dépassant un taux de précision de 99 % dans cinq
d’entre eux. De plus, MVGWO présente des valeurs d’écart type plus faibles pour la plupart des jeux de données. On
peut également remarquer que les quatre optimiseurs ont des résultats trés proches en ce qui concerne le nombre de
caractéristiques sélectionnées.

1 §6'hap1'tre 7. L’hybridation entre I’'optimiseur de loup gris et I’'optimiseur de multi-vers (MVGWO) pour les problemes
d’optimisation globale a grande dimension

TABLE 7.15 — Meilleurs résultats obtenus sur la base de 1’architecture 1

Datasets MVGWO+SVM MVO+SVM GWO+4+SVM BAT+SVM WOA+SVM
BreastCancer
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 3 3 3 2 2
Cost(C) 10634.8524 19528.547 0.01 34990.6633 2191.842
0% 4.1416 0.1627 7.9359 31.9542 4.1416
Blood
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 2 2 2 1 1
Cost(C) 135828.124 20491.198 26581.7513 35000 7528.2267
0% 0.13408 27.799 25.7082 32 30.1525
Diabetes
Meilleure exactitude 88.3117 90.909 83.1169 85.7143 86.842
No. d’attributs sélectionnés 5 2 2 4 7
Cost(C) 26531.5558 4425.6434 18386.297 27841.0099 33226.2976
121 0.05752 9.1906 10.0843 0.0001 24.3417
eart
Meilleure exactitude 96.296 96.2963 96.2963 96.2963 100
No. d’attributs sélectionnés 2 3 3 5 6
Cost(C) 7038.7962 13045.43 27389.7794 35000 21185.4602
1:ZI 8.6774 32 14.2662 0.0001 0.0001
epatitis
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 4 11 7 9 4
Cost(C) 27572.2471 4832.0676 11928.6103 8345.7252 2659.458
z‘ 16.6689 0.0001 1.4293 31.6455 1.3209
iver
Meilleure exactitude 88.2353 88.2353 88.2353 91.1765 94.1176
No. d’attributs sélectionnés 3 3 4 4 3
Cost(C) 18299.355 23546.2523 25641.8595 34149.645 6519.7337
0% 5.7563 8.8822 3.2262 0.023717 10.9441
Parkinson
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 8 10 6 8 8
Cost(C) 22681.9024 7916.9982 11888.601 35000 29747.2304
0% 11.0146 1.4787 20.4663 31.9367 20.2004
Lymphography
Meilleure exactitude 100 100 100 100 100
NNo. d’attributs sélectionnés 4 9 8 10 4
Cost(C) 6213.8803 7395.9228 17539.8848 35000 2303.3763
Q/I 32 15.5389 0.0001 0.0001 22.083
ote
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 6 7 6 6 1
Cost(C) 23343.948 19106.5268 5059.3321 43.8848 0.01
0 32 27.4206 7477 31.8956 19.5221
Wine
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 4 4 4 5 4
Cost(C) 27281.1682 30827.594 27844.9409 35000 9096.3939
% 16.8916 23.0442 22.9366 0.002473 22.3304
00
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 6 6 4 5 4
Cost(C) 8424.6553 21250.6541 34801.9705 592.625 12155.075
g 12.4382 10.8859 9.3777 32 23.287
onar
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 19 24 24 26 24
Cost(C) 5404.9692 18835.3194 27637.7038 31904.46 25765.4137
0 3.0578 4.6774 0.6325 3.0741 1.0302
Exactly
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 7 7 7 7 6
Cost(C) 26063.4256 15578.1379 32668.9288 35000 17081.8763
10.1892 15.0837 11.1187 32 15.8769
Inosophere
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 13 12 14 17 6
Cost(C) 17943.1875 14807.6794 34508.7709 34936.5561 19369.766
v 4.2251 7.1903 45114 1.7072 0.33787

Chapitre 7. L’hybridation entre I'optimiseur de loup gris et I'optimiseur de multi-vers (MVGWO) pour les problém%ﬂ
d’optimisation globale a grande dimension

Les meilleurs résultats et parametres obtenus sur la base de 'architecture (1) sont listés dans le tableau (7.15). On
peut voir que tous les algorithmes ont atteint un taux d’exactitude de 100% dans 12 ensembles de données sur 15.
En examinant les résultats de I’architecture (2) dans le tableau (7.14), on peut observer que les taux d’exactitude obtenus
par tous les optimiseurs sont inférieurs a ceux de I’architecture (1). Cette diminution est due au schéma d’apprentissage
/ test incorporé dans cette architecture. Comme il a été mentionné précédemment, la partie teste de cette architecture
n’a pas été représentée pendant le processus d’optimisation.
Par conséquent, les résultats devraient étre faibles mais plus crédibles. D’apres les résultats obtenus par 1’architecture
(2) dans le tableau (7.14). L’algorithme MVGWO montre une exactitude moyenne plus élevée que les autres optimiseurs
dans 7 jeux de données et il est classé deuxieme dans 5 jeux de données. De plus, MVGWO montre une plus grande
robustesse dans la plupart des jeux de données, en particulier pour Breast cancer, Blood, Diabetes, Heart, Parkinson,
Lymphography, vote, exactly, and BreastEW.

— MVGWO

%3 ‘ / —wo %5 [—mo 2 7—’% —me
L / — o —aio AT o

/ WoA 1A o /U o8

/ -) o BAT

Accuracy

Accura

10 20 El] 40 50
2 30 40 50 10 20 30 40 0
Iterations

Iterations Iterations

FIGURE 7.15 — Courbe de convergence basé sur 1'exactitude pour BreastCancer, Blood, et Diabetes respecti-
vement

1 :%hapjtre 7. L’hybridation entre I’'optimiseur de loup gris et I’'optimiseur de multi-vers (MVGWO) pour les problemes
d’optimisation globale a grande dimension

— NVGWO — — MVGWO —ewo
— Mo —wo o — o
o T — o L GO
oA
WoA

oA o
o — 87

Accuracy
Accuracy

Accuracy
k=1

10 20 0 40 50

Iterations

Iterations Iterations

FIGURE 7.16 — Courbe de convergence basé sur 1’exactitude pour Heart, Hepatitis, et Liver, respectivement

— MVGWO

100 — MVGWO — MVGWO ©
— Mo % — Mo — Mo

—GWo — GO — GWo

WOA WOA / WOA

— BAT

9.5 > —BAT —BAT

Accuracy
=4

Accuracy

Accuracy

98.5

10 0 30 4 50 0 20 0 40 50 10 20 0 40 20

Iterations [terations Iterations

FIGURE 7.17 — Courbe de convergence basé sur I'exactitude pour Parkinson, Lymphography, et Vote, respec-
tivement

Chapitre 7. L’hybridation entre I'optimiseur de loup gris et I'optimiseur de multi-vers (MVGWO) pour les plroblémﬁ9
d’optimisation globale a grande dimension

— MWVGWO
— M0
—GWo
WOA
—BAT

100

999

998 ’

Accuracy

997‘

Accuracy

996

995‘

Iterations

— MGwo
— W0
—GWo
WOA
—BAT

100

95 |

85 (

Accuracy

Iterations

100

FIGURE 7.18 — Courbe de convergence basé sur 1'exactitude pour Wine, Zoo, et Sonar, respectivement

= —— MVGWO

— Mo

— GW0
WOA
BAT

Accuracy

Iterations

— MVGW(

— MV0

— GWo
WOA
BAT

9

Accuracy

30 40

Iterations

v . — MVGWO
7 —mo
% /H i — o
—/ WoA
£ L7
/7 BAT
%/,
9
2 f
I
|
“\‘
o0l
10 0 30 I 50
Iterations
95 — MVGWO
— Mo
—Gwo
. WOA
0 / / BAT
> '_I
o /
s /
3
U 985
<

0

Iterations

4

FIGURE 7.19 — Courbe de convergence basé sur 'exactitude pour Exactly, Inosophere, et BreastEW, respecti-

vement

Les figures (7.15), (7.16), (7.17), (7.18) et (57.19) montrent les courbes de convergence de tous les optimiseurs basés
sur l'architecture (2). Dans ces figures, MVGWO montre une vitesse de convergence plus élevée dans la plupart des jeux

de données.

TABLE 7.16 — Meilleurs résultats obtenus sur la base de 1’architecture 2

Datasets MVGWO+SVM MVO+SVM GWO+SVM BAT+SVM WOA-+SVM
BreastCancer
Meilleure exactitude 98.5710 98.571 100 98.571 100
No. d’attributs sélectionnés 5 5 6 2 8
Cost(C) 35000 3572.08 13082.418 34511.67 1303.78
0% 0.001 22.3438 0.0126 1.231 0.0381
Blood
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 2 3 1 3 3
Cost(C) 8990.477 18158.72 7470.902 34949.82 81.299
0% 13.2306 0.065 1.7649 31.9641 17.0019
Diabetes
Meilleure exactitude 82.894 84.4156 81.8182 83.116 81.818
No. d’attributs sélectionnés 5 8 4 3 8
Cost(C) 30906.389 20155.5298 14794.88 34946.08 2515.502
gl 0.2346 0.0001 0.0059 0.01385 0.016
eart
Meilleure exactitude 88.888 92.592 92.592 88.888 92.59
No. d’attributs sélectionnés 3 7 3 5 4
Cost(C) 22681.9024 7916.9982 11888.601 35000 29747.2304
gl - 2.0629 0.0001 0.2568 0.0118 25.894
epatitis
Meilleure exactitude 85.714 78.571 73.333 78.571 80
No. d’attributs sélectionnés 7 10 8 7 19
Cost(C) 18259.609 32576.59 16821.697 1.1755 508.396
z. 8.7467 13.381 29.822 1.7722 0.0001
iver
Meilleure exactitude 80 77.142 73.529 82.352 82.8571
No. d’attributs sélectionnés 2 5 5 4 6
Cost(C) 25545.019 32705.51 2636.208 28642.78 188.411
0.2764 0.0511 0.2054 0.0568 0.1415
Parkinson
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 5 14 8 12 9
Cost(C) 1899.665 10829.48 20207.238 34495.89 34420.544
0% 21.0349 2.931 213.525 15.9891 9.933
Lymphography
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 4 9 8 10 4
Cost(C) 6213.8803 7395.9228 17539.8848 35000 2303.3763
'\y] 32 15.5389 0.0001 0.0001 22.083
ote
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 6 7 6 6 1
Cost(C) 23343.948 19106.5268 5059.3321 43.8848 0.01
0% 32 27.4206 7.477 31.8956 19.5221
Wine
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 4 4 4 5 4
Cost(C) 27281.1682 30827.594 27844.9409 35000 9096.3939
% 16.8916 23.0442 22.9366 0.002473 22.3304
00
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 6 6 4 5 4
Cost(C) 8424.6553 21250.6541 34801.9705 592.625 12155.075
g 12.4382 10.8859 9.3777 32 23.287
onar
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 19 24 24 26 24
Cost(C) 5404.9692 18835.3194 27637.7038 31904.46 25765.4137
0% 3.0578 4.6774 0.6325 3.0741 1.0302
Exactly
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 7 7 7 7 6
Cost(C) 26063.4256 15578.1379 32668.9288 35000 17081.8763
0% 10.1892 15.0837 11.1187 32 15.8769
Inosophere
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 13 12 14 17 6
Cost(C) 17943.1875 14807.6794 34508.7709 34936.5561 19369.766
g 4.2251 7.1903 45114 1.7072 0.33787
reastEW
Meilleure exactitude 100 100 100 100 100
No. d’attributs sélectionnés 10 12 11 12 5
Cost(C) 35000 30415.7459 4015.307 35000 1630.0844
0% 6.7689 20.2696 0.057051 0.0001 6.1259

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

(MVGWO) pour les problemes d’optimisation globale a grande dimension 14l

Les meilleurs résultats et parameétres obtenus sur la base de l'architecture (2) sont
présentés dans le tableau (7.16). On peut voir que tous les algorithmes ont atteint un taux
de précision de 100 dans 10 jeux de données sur 15.

Pour vérifier la signification des différences entre les résultats de MVGWO et ceux des
autres optimiseurs, le test statistique non paramétrique de Wilcoxon est effectué.

TABLE 7.17 — Valeurs p du test de Wilcoxon des résultats de la classification
MVGWO par rapport aux autres algorithmes (p >=0,05).

GWO MVO BAT WOA
BreastCancer 0.090 0.4698 0.0172 0.4515
Blood 0.207 0.4777 0.5828 0.2142
Diabetes 1.697E-04 0.4777 1.693E-04 1.707E-04
Heart 0.006 1.000 0.0107 0.049
Hepatitis 0.001 0.054 0.049 0.0256
Liver 0.760 0.5703 0.3066 0.056
Parkinson 0.034 0.0173 0.054 0.2266
Lymphography 2.696E-04 2.218E-04 0.0015 1.639E-04
Vote 0.030 0.2520 0.6734 0.4347
Wine 0.368 0.7891 0.3681 0.3681
Z00 6.654E-04 0.056 0.3699 0.6807
Sonar 0.025 0.056 0.0015 0.054
Exactly 0.056 0.3681 2.297E-04 0.0350
Inosophere 0.818 0.3827 0.7764 0.5057
BreastEW 0.030 0.2997 0.7578 0.7578

Le test est effectué sur la base des résultats du MVGWO par rapport a chacun des
autres optimiseurs a un niveau de signification de 5%. Dans le tableau (7.17), les valeurs p
obtenues par le test sont listées. Toutes les valeurs p du tableau inférieures a 0,05 signifient
que I'hypothese nulle est rejetée (indiquant une différence significative) a un niveau de
signification de 5%. D’apres les résultats, on peut voir que MVGWO est significative-
ment meilleur que GWO dans 10 ensembles de données sur 15. Alors que MVGWO est
significativement meilleur que BAT, WOA et MVO dans 8, 7 et 5 ensembles de données,
respectivement.

Comparaison avec la recherche de grille (sans sélection d’attributs)

Dans cette expérience, nous comparons MVGWO avec la recherche de grille pour opti-
miser les parametres de SVM. Pour rendre la comparaison équitable, MVGWO est appliqué
uniquement pour 'optimisation des parametres sans la partie de sélection des caractéris-
tiques, car la recherche de grille n’a pas cette capacité. Les deux techniques ont été appli-
quées avec une validation croisée 10-fois. La recherche de grille est utilisée comme décrite
dans (FARIS et al., 2018; HUANG et WANG, 2006a).

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

142 (MVGWO) pour les problémes d’optimisation globale a grande dimension
TABLE 7.18 — Comparaison entre MVGWO et la recherche de grille pour 1'op-
timisation des parameétres du SVM
Arch 1 Arch 2
MVGWO Grid MVGWO Grid
BreastCancer 97.56+1.664 94.90£0.020 95.7042.781 96.601-0.050
Blood 98.094+0.9878 95.00+£0.041 97.394+2.048 93.30+£0.054
Diabetes 80.981+4.1438 77.33+0.089 75.78+4.692 76.104-0.031
Heart 81.11+£7.2934 68.70+£0.226 76.2946.343 74.00+0.091
Hepatitis 77.471+8.6971 82.90+0.097 59.23£8.732 55.6040.022
Liver 80.32+4.7133 68.30+0.014 71.26+7.756 67.60+0.009
Parkinson 97.4243.6817 85.00£0.214 94.941+4.084 85.60£0.059
Lymphography 92.57+6.6219 87.00£0.019 83.04+6.667 80.30+0.077
Vote 96.33+2.4595 93.70+£0.081 94.00+6.614 93.30+0.018
Wine 99.44+6.9921 96.60+£0.074 97.1843.953 95.004-0.018
Zoo 96.004+6.9921 95.00+£0.134 94.00+6.992 93.30+0.054
Sonar 92.73+4.782 67.60£0.299 88.4048.043 81.204-0.085
Exactly 100.0+£0.000 68.804-0.008 100.0+0.0 69.00+0.001
Inosophere 96.57+£3.7616 88.80+=0.132 95.144-4.269 87.304-0.055
BreastEW 98.59+1.811 97.90+0.041 98.064+1.744 97.10+0.017

Le tableau (7.18) montre les résultats de la comparaison basée sur les architectures (1)

et (2) susmentionnées. Les résultats d’architecture (1) montrent que MVGWO est nettement
meilleur que la recherche de grille dans 14 ensembles de données. Le jeu de données Hepa-
titis était le seul qui montre de meilleures performances pour la recherche de grille.
En vérifiant les exactitudes moyennes de classification obtenues par architecture (2). On
peut voir que les taux de précision obtenus par MVGWO sont plus élevés que ceux de la
recherche de grille dans 13 jeux de données. Les seules exceptions sont pour Breast cancer
et Diabetes.

7.0.12 Conclusion de I’'approche

Dans cette approche, un algorithme hybride basé sur 1’optimiseur loup gris avec 1'op-
timiseur multi-vers nommé MVGWO est proposé pour résoudre des problemes d’optimi-
sation a grande dimension. Une version améliorée de GWO basée sur un poids d’inertie
adaptatif est proposée pour améliorer la capacité de recherche globale de cet algorithme et
pour maintenir la diversité des solutions. L'algorithme MVGWO combine la bonne capacité
d’exploitation de GWO avec la forte capacité d’exploration de l'algorithme MVO.

Afin d’équilibrer 'exploitation et I’exploration, un coefficient d’équilibre adaptatif est uti-
lisé dans cet algorithme. La probabilité d’exploitation ou d’exploration est controlée par le
coefficient d’équilibre. En changeant le coefficient d’équilibre, 1’algorithme MVGWO peut
éviter la valeur optimale locale autant que possible et peut avoir une vitesse de convergence
rapide.

Pour vérifier la supériorité des performances de 'algorithme MVGWO, vingt-deux fonc-
tions de test de différents types et dimensions sont utilisées pour tester le MVGWO proposé
et les résultats démontrent clairement que les performances du MVGWO proposé sont supé-
rieures aux algorithmes GWO et MVO. 1l est évident que MVGWO présente une précision
de solution et une vitesse de convergence élevée et convient a la résolution de problemes
d’optimisation de grandes dimensions. Pour confirmer la supériorité de notre algorithme,
nous l'avons appliqué pour la sélection des attributs et I'optimisation des parameétres de

7.1. Un réseau de neurones récurrent optimisé par I’hybridation entre I’'optimiseur de Ioﬂﬁ
gris et I'optimiseur de multi-vers (MVGWO) pour la sécurité IoT

SVM simultanément. Deux architectures systéme ont été implémentées pour I’approche pro-
posée. L'approche développée est évaluée et comparée avec quatre algorithmes métaheuris-
tiques bien considérés (MVO, GWO, BAT et WOA) et a la recherche de grille, I'expérience
montre que MVGWO a été en mesure d’optimiser SVM en obtenant la plus grande préci-
sion par rapport aux autres optimiseurs basés sur les deux architectures étudiées. Pour les
travaux futurs, nous essaierons d’appliquer MVGWO a différents problemes pratiques tels
que le traitement d'images.

7.1 Un réseau de neurones récurrent optimisé par 1’hybridation
entre I'optimiseur de loup gris et 'optimiseur de multi-vers
(MVGWO) pour la sécurité IoT

Les réseaux de neurones sont formés avec des algorithmes d’apprentissage a rétropro-

pagation, qui sont généralement lents et nécessitent donc des taux d’apprentissage et une
dynamique plus élevés pour atteindre une convergence plus rapide. Ces approches ne sont
performantes que si 'apprentissage incrémental est nécessaire. Cependant, ils sont encore
trop lents pour les applications «réelles». Néanmoins, le modele levengerg-Marquardt est
toujours utilisé pour les réseaux de petite et moyenne taille (RASHID, ABBAS et TUREL,
2019). Le manque de mémoire disponible est ce qui empéche 1'utilisation d’algorithmes plus
rapides. La rétropropagation est un algorithme déterministe qui s’attaque aux problemes
linéaires et non linéaires. Un autre probleme associé aux algorithmes de rétropropagation
est la sélection d'un taux d’apprentissage approprié, qui est une question compliquée.
Pour un réseau linéaire, un taux d’apprentissage trop rapide entrainerait un apprentissage
instable; a I'inverse, un taux d’apprentissage trop lent entraine un temps d’apprentissage
excessivement long (RASHID, ABBAS et TUREL, 2019).
Le probleme est plus complexe pour les réseaux multicouches non linéaires, car il est
difficile de trouver une méthode simple pour sélectionner un taux d’apprentissage. La
surface d’erreur des réseaux non linéaires est également plus difficile que celle des réseaux
linéaires (RASHID, ABBAS et TUREL, 2019; HAGAN et al., 1996).

D’autre part, 'utilisation de réseaux de neurones avec des fonctions de transfert non
linéaires présenterait plusieurs solutions minimales locales dans la surface d’erreur. Il est
donc possible qu'une solution dans un réseau soit "coincée" dans une solution locale. Cela
peut se produire en fonction des conditions initiales de départ. Il est a noter qu’avoir une
solution dans les minima locaux pourrait étre une solution satisfaisante si la solution est
proche du minimum global. Sinon, la solution est incorrecte (RASHID, ABBAS et TUREL,
2019). En outre, l'algorithme d’apprentissage par rétropropagation ne produit pas des
connexions de poids parfaites pour la solution optimale. Dans ce cas, le réseau doit étre
réinitialisé a plusieurs reprises pour garantir 1’'obtention de la meilleure solution (RASHID,
ABBAS et TUREL, 2019; SIKDER, UDDIN et HALDER, 2016; BARADWA]J et PAL, 2012).

En revanche, il existe des algorithmes inspirés de la nature, qui sont dérivés du compor-
tement naturel des animaux. Ces algorithmes sont stochastiques. L'élément essentiel qui
est importé dans ces algorithmes est le caractere aléatoire. Cela signifie que les algorithmes
utilisent des solutions initiales aléatoires qui sont ensuite améliorées grace a une séquence
d’itérations qui évitent les optima locaux élevés (RASHID, ABBAS et TUREL, 2019).

De plus, un réseau de neurones multicouches est subtil lorsqu’il s’agit de décider de la
sélection des neurones cachés. Il existe un probleme de sous-ajustement qui peut survenir
lorsqu’un petit nombre de neurones cachés sont utilisés; de plus, un sur-ajustement peut
survenir lorsque trop de neurones cachés sont utilisés. Une alternative a un réseau de
neurones multicouches est le réseau de neurones récurrent (RNN). Un RNN utilise moins

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

144 (MVGWO) pour les problémes d’optimisation globale a grande dimension

de neurones cachés car il a une couche de contexte pour préserver les réseaux de neurones
cachés précédents. Par conséquent, le réseau est plus stable et peut gérer avec succes des
modeéles temporels (RASHID, ABBAS et TUREL, 2019; RASHID, 2009). Ce travail présente,
une optimisation d’un réseau de neurones récurrent (RNN) par notre algorithme hybride
MVGWO basé sur 1'optimiseur de loup gris (GWO) et 'optimisation multi-verse (MVO)
(déja détaillait dans les sections précédentes).

La sécurité et les menaces augmentent considérablement en raison de 1'utilisation accrue
des applications de l'internet des objets dans tous les domaines. En raison de la nature
déséquilibrée des données de sécurité IoT, la conception de la détection d’anomalies basée
sur un modele dans le réseau IoT représente un défi pour les modeles d’apprentissage
automatique, car la plupart de ces modeles supposent un nombre égal d’échantillons pour
chaque classe.

Environ 2,79% des profils de réseau IoT sont des types d’anomalies qui imposent un dés-
équilibre sévere, 1a ou il y a trois échantillons dans les types d’anomalies pour des centaines
d’échantillons dans la classe normale majoritaire. Il en résulte des performances prédictives
médiocres pour l'identification du type d’anomalie, ce qui est essentiellement un probleme
car le type d’anomalie est plus sensible que le type d’activité normal. Ce travail propose
un modele basé sur les réseaux de neurones récurrents optimisé par 1’algorithme MVGWO
nommé (M-RNNMVGWO) en utilisant la technique de sur-échantillonnage des minorités
synthétiques (SMOTE) pour la prédiction des anomalies dans le réseau IoT. Les approches
proposées sont simulées avec des données DS20S et les performances sont comparées a
d’autres approches d’apprentissage automatique. Les parametres d’évaluation tels que la
sensibilité, la précision, la spécificité, et la F-mesure sont utilisés pour confirmer la supério-
rité de notre approche proposée.

7.1.1 Réseau de neurones récurrents (RNN)

Le perceptron multicouche transmet les données des couches inférieures aux couches
supérieures, tandis que les réseaux de neurones récurrents (RNN) sont considérés comme
des réseaux de neurones a flux de données bidirectionnels (RASHID, ABBAS et TUREL, 2019).
Le flux de données se propage des phases de traitement précédentes vers les phases anté-
rieures. Dans ce travail de recherche, on utilise le concept de réseau de neurones récurrent
simple, qui a été proposé pour la premiere fois par Jeff Elman (RASHID, ABBAS et TUREL,
2019; ELMAN, 1990).

Le modele de la figure 7.20 utilise un réseau a trois couches. Au niveau de la couche cachée,
la sortie de chaque neurone caché au moment (f — 1) est sauvegardée dans les neurones de
contexte puis, au moment (), est alimentée conjointement avec 1’entrée initiale de la couche
cachée (RASHID, ABBAS et TUREL, 2019). Ainsi, des copies des valeurs précédentes des neu-
rones cachés sont continuellement conservées dans les neurones de contexte, en raison de la
propagation a travers les connexions récurrentes depuis le temps (t — 1), avant qu'une regle
de mise a jour des parametres soit appliquée au temps (t). Par conséquent, le modele de
réseau conserve et acquiert un ensemble d’états résumant les entrées précédentes (RASHID,
ABBAS et TUREL, 2019).

Dans cette approche proposée, un modele RNN est développé en utilisant MVGWO pour
optimiser les valeurs des biais et des poids du modele. Dans un premier temps, le modele
de réseau de neurones est formé en utilisant un ensemble de données d’apprentissage, et ses
poids et biais sont optimisés en utilisant un réseau récurrent modifié avec MVGWO. Dans la
deuxiéme étape, pour évaluer le modele formé, le modele congu est testé avec un ensemble
de données de test.

7.1. Un réseau de neurones récurrent optimisé par I’hybridation entre I’'optimiseur de 101%%
gris et I'optimiseur de multi-vers (MVGWO) pour la sécurité IoT

Input (1) Output (1)

Hidden(t)

Context (1)

FIGURE 7.20 — Un modele simple de RNN (RASHID, ABBAS et TUREL, 2019)

7.1.2 Un réseau de neurones récurrent modifié

Le modele de réseau de neurones développé consiste a utiliser le concept de RNN sur
un perceptron multicouche avec deux couches cachées et deux couches de contexte (un
contexte pour chaque couche cachée). La structure du modele est la suivante : 13, 10-10,
10-10, 1; 13 neurones dans la couche d’entrée, 10 neurones dans la premiéere couche cachée
avec 10 neurones pour la premiére couche de contexte, 10 neurones dans la deuxieme
couche cachée avec 10 neurones pour la deuxiéme couche de contexte, et 1 neurone dans
la couche de sortie. Les neurones des premiéres et deuxiémes couches de contexte sont des
copies des neurones de l'instant précédent des premiéres et deuxiémes couches cachées,
respectivement (voir les équations ci-dessous) (RASHID, ABBAS et TUREL, 2019).

Cl(t) = hi(t—1) (7.16)

C}(t) représente le i, neurone dans la premiere couche de contexte au temps ¢, ou il
est égal a h} (t — 1) qui représente le j,,, neurone dans la premiere couche cachée a l'instant
précédent (RASHID, ABBAS et TUREL, 2019).

Co(t) = hz(t—1) (7.17)

C2 (t) représente le i, neurone dans la deuxiéme couche de contexte au temps ¢ ou il est
égal a h;(t — 1) qui représente le j,, neurone de la deuxiéme couche cachée a l'instant
précédent.

La propagation avant vers la premiére couche cachée peut étre représentée comme suit :

Con!

I
(1) = F(Leips(®) + (L uhl (1) (7.18)

1

flnet) = == (7.19)

Ou f(net) représente une fonction d’activation dans laquelle les fonctions Sigmoide et
Softamax sont utilisées a des fins expérimentales dans chaque neurone caché au niveau des
couches cachées.

v}j et ullj, indiquent les connexions de poids concernant la premiere couche cachée h]l (t)etla

couche d’entrée x;(t), et la premiére couche cachée hjl- (t) et la premiere couche de contexte

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

146 (MVGWO) pour les problémes d’optimisation globale a grande dimension

Cl(t), respectivement.
La propagation avant vers la deuxieme couche cachée peut étre représentée comme suit :

Con?

H1
() = FLORh (1) + F(L 15 Chu(t)) (7.20)
] m

Ou vjz-g et u2, ¢ indiquent les connexions de poids entre la deuxiéme couche cachée hé(t) etla
premiere couche ! (t), et entre la deuxiéme couche cachée h;(t) et la deuxiéme couche de

contexte C2 (t), respectivement.
La propagation avant vers la couche de sortie peut étre écrite comme suit :

H2
Ok(t) = f) werhi (t) (7.21)
8

Ou wgy représente le poids de la connexion entre la couche de sortie Ok (t) et la deuxieme
couche cachée hé(t).
De méme, la fonction objective ici pour 'entrainement du modele est la plus petite er-
reur quadratique moyenne (MSE) pour obtenir la classification la plus élevée, ot MSE
représente la variance entre la sortie prédite et la sortie cible. Le MSE est calculé comme suit :
1 n
MSE, = Y (Ox(t) — di(1))? (7.22)
k=1

Ou n représente le nombre de neurones de sortie et di(t) et O}‘ désignent les sorties

souhaitées et réelles du K" neurone.
La MSE totale de tous les échantillons peut étre exprimée comme suit :

1 S
Total = — MSE 7.23
otalpsg = pzl p (7.23)

Ou p représente un modele d’échantillon et S représente le nombre de modéles d’apprentis-
sage. Notez que 'entrée du MVGWO est le MSE et que la sortie est les poids et les biais.

71.3 Le M-RNNMVGWO

Dans la phase d’apprentissage, le M-RNNMVGWO a deux parties : le RNN modifié et
le MVGWO. Le MVGWO définit initialement ses variables, ses poids et ses biais au RNN
modifié sous la forme de vecteur. Le premier échantillon est ensuite envoyé au RNN modi-
fié, puis une copie de la sortie de la premiére couche cachée au temps t est conservée dans
la premieére couche de contexte. Ensuite, a l'instant (t + 1), le réseau est réinjecté dans la
premiere couche cachée.

Simultanément, une copie de la sortie de la deuxiéme couche cachée au temps (t) est conser-
vée dans la deuxieme couche de contexte. Puis, au temps t + 1, le réseau est réinjecté dans
la deuxieme couche cachée. Ce modele de réseau neuronal récurrent préserve et apprend
un ensemble d’états résumant les entrées précédentes. Ce processus se poursuit de maniere
itérative pour alimenter tous les autres échantillons d’apprentissage au RNN modifié en
utilisant les mémes poids et biais initialisés (RASHID, ABBAS et TUREL, 2019). Apres avoir
calculé Le MSE totale (Totalpsg) sur les échantillons d’apprentissage, le MVGWO regoit le
MSE totale.

Le MVGWO évalue le MSE totale (Totalpsg). Ensuite, apres la modernisation de la valeur
de fitness et de la position de chacun des meilleurs loups, le vecteur des poids et biais, qui
désigne les positions des agents de recherche, est ajustée de maniere itérative. Une fois que

7.1. Un réseau de neurones récurrent optimisé par I’hybridation entre I’'optimiseur de 10%
gris et I'optimiseur de multi-vers (MVGWO) pour la sécurité IoT

les pois et les biais sont mis & jour par MVGWO, ils sont transmis au RNN modifié.

En conclusion, les échantillons d’apprentissage et les poids et les biais mis a jour sont uti-
lisés pour entrainer le RNN modifié et pour archiver un nouveau MSE total. La procédure
d’apprentissage est constante jusqu’a ce que la condition d’arrét soit satisfaite. Pour finir, les
poids et les biais optimisés sont utilisés pour tester le M-RNNMVGWO en utilisant le jeu de
données de test sans utiliser le MVGWO.

7.1.4 Calcul de la complexité des poids

Dans tous les modeles, "utilisateur peut spécifier les couches cachées, les couches de
contextes et les neurones de chaque couche. L'exercice de base consiste a choisir le plus petit
nombre possible des parametres pour trouver le meilleur arrangement possible en fonction
des exigences. Cependant, dans la pratique, cela n’est pas facile car il faut faire plusieurs
essais en utilisant diverses structures et en évaluant leurs résultats pour déterminer la
structure de modele la mieux adaptée a la tache. Sur la base de nos essais, une ou deux
couches cachées peuvent étre suffisantes. L'équation suivante définit le calcul des poids de
connexion pour M-RNNMVGWO :

d=(i+1)«hl+ (h14+1)«h2+ (h2+1) %0+ cl*hl+ c2*h2 (7.24)

Ou d dénote la dimension du probléme, 7,11, h2,c1,c2, et 0 représentent les neurones de la
couche d’entrée, les neurones de la premiere couche cachée, les neurones de la deuxieme
couche cachée, les neurones de la premiere couche de contexte, les neurones de la deuxieme
couche de contexte et les neurones de la sortie, respectivement. Les couches d’entrées et les
couches cachées ont toutes les deux un biais; un neurone est donc ajouté a chacune d’elles
(RASHID, ABBAS et TUREL, 2019).

7.1.5 La prédiction d’anomalies dans le réseau IoT

Un réseau de neurones récurrent modifié avec l'algorithme MVGWO est redéveloppé
pour la prédiction des anomalies dans le réseau IoT.
Le travail proposé comporte deux phases : (a) 'obtention d'un corpus équilibré de profils
IoT a partir de données originales déséquilibrées (PAHL et AUBET, 2018) en utilisant SMOTE
et (b) la conception d'un modéle basé sur notre algorithme proposé M-RNNMVGWO pour
la prédiction d’anomalies dans le réseau IoT (DASH et al., 2020). Dans ce travail, nous avons
utilisé le jeu de données de sécurité IoT de Kaggle!. (PAHL M-O, 2018) pour I'évaluation
du modele. Cet ensemble de données est produit dans un environnement virtuel par le
biais d'un systéeme d’orchestration d’espace intelligent distribué (DS20S) qui est composé
d’informations de communication entre divers nceuds IoT dans la couche d’application. Il y
a un total de 357 952 échantillons, chacun ayant un nombre de 13 attributs. Cet ensemble de
données couvre huit types d’anomalies : "anomalous (dataProbing)" (dP), "anomalous (Do-
Sattack)" (DoS), "anomalous (malitiousControl)" (mC), "anomalous (malitiousOperation)"
(MO), "anomalous (scan)" (scan), "anomalous (spying)" (spying), et "anomalous (wrong-
SetUp)" (wSU).Les détails du pourcentage des distributions des anomalies "anomalous
(dataProbing)", "anomalous (DoSattack)", "anomalous (malitiousControl)", "anomalous
(malitiousOperation)”, "anomalous (scan)", "anomalous (spying)", et "anomalous (wrong-
SetUp)" ayant les distributions 03. 41% 57,70% 08,87% 08,03% 15,44% 05,31% et 01,21%
respectivement (tableau 7.19).

1. https ://www.kaggle.com/francoisxa/ds2ostraffictraces

Chapitre 7. L’hybridation entre I’'optimiseur de loup gris et I'optimiseur de multi-vers

148 (MVGWO) pour les problémes d’optimisation globale a grande dimension

TABLE 7.19 — L'ensemble de données utilisé pour la prédiction d’anomalies
dans le réseau IoT

N ° d’échantillons N ° d’attributs N ° de classes
357 952 13 8

Lors de la mise en ceuvre d'un algorithme d’apprentissage automatique, la structure des
données, en particulier 1'équilibre entre les nombres d’observations pour chaque cible po-
tentielle, a une influence significative sur les performances du modele de prédiction (DASH
et al.,, 2020; LEMAITRE, NOGUEIRA et ARIDAS, 2017). En raison de la nature déséquilibrée
des données d’anomalies IoT. Nous avons utilisé SMOTE (CHAWLA et al., 2002) afin d’ob-
tenir un équilibre entre les classes sous-représentées et la classe majoritaire (DASH et al.,
2020).

7.1.6 Configuration Expérimentale et analyse des résultats

La méthode proposée a été mise en ceuvre sur un systeme doté d’un processeur Intel(R)
Core(TM) i5, 1,60 GHz 2,30 GHz, de 4,00 Go de RAM et d"un systeme d’exploitation 64 bits
avec Windows 10.

Diverses mesures de performance telles que la sensibilité, la précision, la spécificité, et la
F-mesure, ont été calculés et comparés (tableau 7.20) pour étudier 1'efficacité de la méthode
proposée.

Résultats et discussion

TABLE 7.20 — Analyse des performances avec SMOTE et sans SMOTE

Algorithmes Sensibilité Précision Spécificité F-mesure
RF 0.87 0.99 0.25 0.93
NB 0.97 1.00 1.00 0.98
MLP 0.99 1.00 1.00 0.99
RNN 0.98 1.00 1.00 0.99
M-RNNMVGWO 1.00 0.99 0.22 0.99
RF-SMOTE 0.99 1.00 1.00 0.99
NB-SMOTE 0.97 1.00 1.00 0.98
MLP-SMOTE 0.99 0.99 0.23 0.99
RNN-SMOTE 0.98 1.00 1.00 0.99
M-RNNMVGWO-SMOTE 1.00 1.00 1.00 1.00

Les comparaisons de tous ces modéles sur la base de diverses mesures de performance
sont présentées dans le tableau 7.20. En observant de pres les mesures de performance, on
constate que I’approche proposée est meilleure en termes de sensibilité, précision, spécificité,
et F-mesure, ce qui signifie |'efficacité de 'identification des activités anormales et la capacité
a gérer le déséquilibre des données IoT par rapport aux autres modeéles. La comparaison
entre RNN et M-RNNMVGWO montre que MVGWO a amélioré le RNN avec une grande
précision. on peut conclure que MVGWO a fourni de bons résultats et peut-étre considérée
comme une alternative aux autres méthodes de formation de réseaux de neurones récurrents
(RNN).

7.2. Conclusion 149

7.1.7 Conclusion de I’approche

Le développement d’un systéme IoT approprié avec une tolérance zéro pour les erreurs
de classification a toujours été un défi pour les chercheurs de tous niveaux. L'apprentis-
sage automatique est 1'une des meilleures approches pour résoudre un tel probleme dans
I'TIoT. Ce travail propose une méthode basée sur les réseaux de neurones récurrents optimi-
sés par l'algorithme MVGWO (M-RNNMVGWO) en utilisant la technique SMOTE pour la
prédiction des anomalies dans les données du réseau IoT (DS20S) (DASH et al., 2020). Les
résultats de la simulation montrent que 1’approche proposée a réussi a gérer la nature dés-
équilibrée des données et s’est avérée efficace pour identifier les types d’anomalies et I'ac-
tivité normale. Cette méthode proposée s’avére supérieure aux autres méthodes en termes
de diverses mesures d’évaluation, a savoir la sensibilité, la précision, la spécificité et la F-
mesure. Dans les scénarios IoT du monde réel, la plupart des données sont dans un format
non structuré et la conception d’une méthode basée sur 1’apprentissage automatique pour
de telles données est toujours un défi de recherche.

7.2 Conclusion

Dans ce chapitre, des nouveaux algorithmes d’optimisation, nommés BAT-SDE, PLMVO
et MVGWO ont été présentés. Le premier algorithme est basé sur l'optimisation des
chauves-souris avec une évolution différentielle auto-adaptative pour I'optimisation globale
et pour former les réseaux de neurones a propagation avant (FFNN). A partir de 'analyse
et de I'expérimentation fait, nous constatons que BAT-SDE surpasse les autres algorithmes
pour tous les problemes testés. Le deuxieme algorithme est basé sur 1'optimisation de 1’es-
saim de particules, I'optimisation multi-verse basée sur le vol de Lévy pour l'optimisation
globale et pour optimiser simultanément la structure, les poids de connexion et les biais du
réseau de neurones a propagation avant (FFNN). L'algorithme fusionne la meilleure force de
PSO en exploitation et de LMVO en exploration. Les résultats montrent la supériorité de 1’al-
gorithme PLMVO avec une haute exactitude, et une convergence rapide. De plus, la faible
valeur de l'écart type a prouvé que notre algorithme est robuste et stable. Le troisieme al-
gorithme est basé sur I'optimiseur loup gris avec ’optimiseur multi-vers nommé MVGWO.
Cet algorithme est proposé pour résoudre des problemes d’optimisation a grande dimen-
sion. L'algorithme MVGWO combine la bonne capacité d’exploitation de GWO avec la forte
capacité d’exploration de I'algorithme MVO. MVGWO est utilisé pour 1'optimisation glo-
bale, la sélection d’attributs et 'optimisation les parameétres des SVM, et pour optimiser les
réseaux de neurones récurrents. Les résultats montrent que MVGWO présente une précision
de solution et une vitesse de convergence élevée et convient a la résolution de problémes
d’optimisation de grandes dimensions, et que les performances de GWO et MVO ont été
améliorées de maniere significative.

151

Chapitre 8

Conclusion générale

Les travaux de recherche présentés dans cette thése concernent le développement de
nouvelles méthodes d’optimisation globale qui s’appuient sur I’hybridation des algorithmes
métaheuristiques et le datamining. Nous avons focalisé nos recherches sur I’hybridation
entre les algorithmes évolutionnaires et les algorithmes de l'intelligence des essaims
destinés a résoudre des problemes d’optimisation globale et a résoudre les problemes liés
a I'extraction des connaissances. Dans cette partie, nous allons présenter les contributions
issues de ces travaux. Ainsi, nous discuterons des perspectives d’amélioration qui pourrait
faire suite a ce travail.

Dans notre premiere contribution, 1’algorithme de chauve-souris a été hybridé avec un
algorithme d’évolution différentielle auto-adaptatif (SDE) nommé (BAT-SDE) ot la solution
est modifiée en utilisant la meilleure stratégie de DE. Cette hybridation a pour but d’amé-
liorer la convergence prématurée de 1'algorithme de chauve-souris pour les problemes de
grandes dimensions. Notant que 1’algorithme d’évolution différentielle auto-adaptative
a été amélioré, le mécanisme permettant d’ajuster les parametres de contrdle a chaque
itération a été modifié. L'algorithme proposé est comparé a 1'évolution différentielle et a
l'algorithme des chauves-souris pour résoudre un ensemble de cinq fonctions de tests afin
de trouver la solution globale.

Une nouvelle approche de formation basée sur BAT-SDE pour former le réseau de neurones
a propagation avant (FFNN) a été proposée. La méthode de formation a pris en compte les
capacités de BAT-SDE en termes d’exploration et d’exploitation élevées pour localiser les
valeurs optimales pour les poids et les biais de FFNN. L'approche a été comparée et évaluée
a l'aide de sept ensembles de données biomédicales standard et d'un grand ensemble
de données de détection de fraude. Cet ensemble de données est tres déséquilibré; la
méthode SMOTE + ENN a été utilisée pour résoudre ce probléme en tant que technique de
prétraitement utilisée pour traiter des ensembles de données déséquilibrées. L'ensemble
de données étant tres bruyant; 1’élimination récursive des caractéristiques avec validation
croisée est utilisée comme méthode de sélection d’attributs.

La comparaison entre l’algorithme proposé et huit algorithmes utilisés pour former les
réseaux de neurones a propagation avant dans la littérature montre la supériorité de
I'algorithme proposé avec une grande exactitude et une petite erreur quadratique moyenne
(MSE) dans la plupart des ensembles de données par rapport aux autres algorithmes de
formation. De plus, la faible valeur de I'écart type montre que l'algorithme proposé est
robuste et stable. Les résultats obtenus par BAT-SDE sur la base de 'exactitude moyenne
et du MSE prouvent que cet algorithme peut trouver le meilleur ensemble de poids et de
biais et empécher une convergence prématurée vers des optima locaux. Les résultats ont été
confirmés en utilisant le test de Friedman, le BAT-SDE a le rang le plus élevé parmi toutes
les autres méthodes de formation. Enfin, sur la base de ces expériences, on peut conclure
que le BAT-SDE a fourni de bons résultats et peut-étre considérée comme une alternative a
d’autres méthodes de formation pour les petits et grands ensembles de données.

152 Chapitre 8. Conclusion générale

Dans notre deuxieme contribution, nous avons proposé une hybridation séquentielle de
I'optimisation de l'essaim de particules (PSO) et de 1'optimisation multi-verse basée sur le
vol de Lévy (LMVO). L'algorithme fusionne la meilleure force de PSO en exploitation et
de LMVO en exploration. L'algorithme proposé est utilisé pour optimiser simultanément
la structure, les poids de connexion et les biais du réseau de neurones a propagation
avant (FFNN). De nombreux chercheurs ont étudié le probleme de la recherche de valeurs
optimales pour les poids de connexion et les biais. Cependant, la littérature contient peu de
recherches sur I'optimisation de la structure et les poids / biais simultanément. Dans notre
étude, nous avons utilisé un schéma de codage hybride pour représenter les solutions de
PLMVO pour la formation de MLP qui comprend le nombre de nceuds cachés, les poids de
connexion et les biais. La méthode de formation a pris en compte les capacités du PLMVO
en termes d’exploration et d’exploitation élevées pour localiser les valeurs optimales pour la
structure, les poids et les biais de FFNN. L'approche est proposée afin de minimiser I'erreur
de formation et d’augmenter 1’exactitude de la classification. L'algorithme est comparé et
évalué a l'aide de quinze fonctions de tests, neuf ensembles de données biomédicales. Les
résultats indiquent que le schéma de codage hybride utilisé pour optimiser le nombre de
neceuds cachés, les poids de connexion et les biais facilite le processus d’optimisation des
métaheuristiques. L'approche a permis aux algorithmes d’obtenir une tres grande exacti-
tude de classification sur tous les ensembles de données. La comparaison entre 1’algorithme
proposé et les autres algorithmes montre la supériorité de 1’algorithme PLMVO avec une
haute exactitude, une petit MSE et une convergence rapide dans la plupart des ensembles
de données par rapport aux autres algorithmes de formation.

De plus, la faible valeur de I'écart type a prouvé que le PLMVO peut atteindre les mémes
résultats lors de différentes exécutions, ce qui confirme que notre entraineur est robuste
et stable. Pour confirmer les résultats, nous avons utilisé le PLMVO-MLP pour détecter
les logiciels malveillants de Linux. Le PLMVO-MLP a été comparé a deux approches
utilisées pour détecter les logiciels malveillants dans la littérature. Sur la base des résultats,
il peut noter que le modéle dépasse les travaux précédents avec une tres grande exactitude,
une meilleure F-mesure, une meilleure précision et un meilleur rappel. Enfin, a partir de
I'expérience, nous pouvons conclure que PLMVO peut donner de bons résultats et peut
étre une alternative aux autres méthodes de formation.

Dans la troisieme contribution, un algorithme hybride basé sur 1’optimiseur loup gris avec
I'optimiseur multi-vers nommé MVGWO est proposé pour résoudre des probléemes d’opti-
misation a grande dimension. Une version améliorée de GWO basée sur un poids d’inertie
adaptatif est proposée pour améliorer la capacité de recherche globale de cet algorithme et
pour maintenir la diversité des solutions. Afin d’équilibrer I'exploitation et I’exploration, un
coefficient d’équilibre adaptatif est utilisé dans cet algorithme. La probabilité d’exploitation
ou d’exploration est controlée par le coefficient d’équilibre. En changeant le coefficient
d’équilibre, 1'algorithme MVGWO peut avoir une vitesse de convergence rapide et peut
éviter la valeur optimale locale autant que possible.

Pour vérifier la supériorité des performances de l'algorithme MVGWO, vingt-deux fonc-
tions de tests de différents types et dimensions sont utilisées pour tester le MVGWO
proposé et les résultats démontrent clairement que les performances du MVGWO proposé
sont supérieures aux algorithmes GWO et MVO. 1l est évident que MVGWO présente
une précision de solution et une vitesse de convergence élevée et convient a la résolution
de problemes d’optimisation de grandes dimensions. Pour confirmer la supériorité de
notre algorithme, nous 1'avons appliqué pour la sélection d’attributs et I'optimisation des
parameétres de SVM simultanément. L'approche développée est évaluée et comparée avec
quatre algorithmes métaheuristiques bien considérés (MVO, GWO, BAT et WOA) et a la
recherche de grille, I'expérience montre que MVGWO a été en mesure d’optimiser SVM en
obtenant la plus grande précision par rapport aux autres algorithmes.

Chapitre 8. Conclusion générale 153

Dans notre quatrieme contribution, nous avons proposé une méthode basée sur les réseaux
de neurones récurrents optimisés par ’algorithme MVGWO (M-RNNMVGWO) en utilisant
la technique SMOTE pour la prédiction des anomalies dans les données du réseau IoT.
Les résultats de la simulation montrent que ’approche proposée a réussi a gérer la nature
déséquilibrée des données et s’est avérée efficace pour identifier les types d’anomalies et
l'activité normale. Cette méthode proposée s’avere supérieure aux autres méthodes en
termes de diverses mesures d’évaluation, a savoir la sensibilité, la précision, la spécificité et
la F-mesure.

Perspectives

Certes les méthodes présentées dans cette thése ont donné des résultats pertinents
mais la recherche continue!

Dans les travaux futurs, nous nous concentrons sur la fagon d’étendre ces approches pour
explorer et résoudre des problemes d’optimisation complexes comme les problemes d’opti-
misation du big data et I’application de ces algorithmes aux données IoT. De plus, améliorez
les algorithmes proposés pour résoudre des problémes d’optimisation multiobjectifs.

Nous proposons ainsi d’hybrider d’autres algorithmes métaheuristiques pour résoudre des
problemes réels liés a I’extraction de connaissances.

155

Bibliographie

ABBATTISTA, Fabio, Nicola ABBATTISTA et Laura CAPONETTI (1995). « An evolutionary and
cooperative agents model for optimization ». In : Proceedings of 1995 IEEE International
Conference on Evolutionary Computation. T. 2. IEEE, p. 668-671.

AGGARWAL, Charu C et al. (2018). « Neural networks and deep learning ». In : Springer 10,
p- 978-3.

AGHDAM, Mehdi Hosseinzadeh, Nasser GHASEM-AGHAEE et Mohammad Ehsan BASIRI
(2009). « Text feature selection using ant colony optimization ». In : Expert systems with
applications 36.3, p. 6843-6853.

AGRAWAL, Rakesh, Ramakrishnan SRIKANT et al. (1994). « Fast algorithms for mining as-
sociation rules ». In : Proc. 20th int. conf. very large data bases, VLDB. T. 1215. Citeseer,
p- 487-499.

AL-ANI, Ahmed, Akram ALSUKKER et Rami N KHUSHABA (2013). « Feature subset selec-
tion using differential evolution and a wheel based search strategy ». In : Swarm and
Evolutionary Computation 9, p. 15-26.

ALDENDERFER, Mark S et Roger K BLASHFIELD (1984). Cluster analysis. Newberry Park.

ALJARAH, Ibrahim, Hossam FARIS et Seyedali MIRJALILI (2018a). « Optimizing connection
weights in neural networks using the whale optimization algorithm ». In : Soft Computing
22.1, p. 1-15.

— (2018b). « Optimizing connection weights in neural networks using the whale optimiza-
tion algorithm ». In : Soft Computing 22.1, p. 1-15.

ALJARAH, Ibrahim et al. (2018). « Training radial basis function networks using biogeography-
based optimizer ». In : Neural Computing and Applications 29.7, p. 529-553.

AMINE, Abdelmalek et al. (2011). « A hybrid approach based on self-organizing neural net-
works and the k-nearest neighbors method to study molecular similarity ». In : Interna-
tional Journal of Chemoinformatics and Chemical Engineering (IJCCE) 1.1, p. 75-95.

AREL, Itamar, Derek C ROSE et Thomas P KARNOWSKI (2010). « Deep machine learning-a
new frontier in artificial intelligence research [research frontier] ». In : IEEE computational
intelligence magazine 5.4, p. 13-18.

ASMITHA, KA et P VINOD (2014). « A machine learning approach for linux malware detec-
tion ». In : 2014 International Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT). IEEE, p. 825-830.

AziMI, Zahra Naji (2005). « Hybrid heuristics for examination timetabling problem ». In :
Applied Mathematics and Computation 163.2, p. 705-733.

BAcCK, Thomas, Giinter RUDOLPH et Hans-Paul SCHWEFEL (1993). « Evolutionary program-
ming and evolution strategies : Similarities and differences ». In : In Proceedings of the
Second Annual Conference on Evolutionary Programming. Citeseer.

BACKER, Eric (1995). Computer-assisted reasoning in cluster analysis. Prentice Hall International
(UK) Ltd.

BARADWAJ, Brijesh Kumar et Saurabh PAL (2012). « Mining educational data to analyze
students’ performance ». In : arXiv preprint arXiv :1201.3417.

BARRAZA, Juan et al. (2018). « A new hybridization approach between the fireworks algo-
rithm and grey wolf optimizer algorithm ». In : Journal of Optimization 2018.

156 Bibliographie

BARTZ-BEIELSTEIN, Thomas (2006). Experimental Research in Evolutionary Computation : The
New Experimentalism (Natural Computing Series). Springer.

BENGIO, Yoshua (2009). Learning deep architectures for AI. Now Publishers Inc.

BENUWA, Ben Bright et al. (2016). « A review of deep machine learning ». In : International
Journal of Engineering Research in Africa 24, p. 124-136.

BEYER, Hans-Georg (2001). The theory of evolution strategies. Springer Science et Business Me-
dia.

BLUM, Christian et al. (2011). « Hybrid metaheuristics in combinatorial optimization : A
survey ». In : Applied soft computing 11.6, p. 4135-4151.

BONABEAU, Eric, Marco DORIGO et Guy THERAULAZ (1999). Swarm intelligence from natural
to artificial isystems. Oxford University Press.

BORGELT, Christian (2003). « Efficient implementations of apriori and eclat ». In : FIMI'03 :
Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations, p. 90.
BOSTANI, Hamid et Mansour SHEIKHAN (2017). « Hybrid of binary gravitational search al-
gorithm and mutual information for feature selection in intrusion detection systems ».

In : Soft computing 21.9, p. 2307-2324.

BOUBEZOUL, Abderrahmane et Sébastien PARIS (2012). « Application of global optimization
methods to model and feature selection ». In : Pattern Recognition 45.10, p. 3676-3686.
BOUGHORBEL, Sabri, Fethi JARRAY et Mohammed EL-ANBARI (2017). « Optimal classifier
for imbalanced data using Matthews Correlation Coefficient metric ». In : PloS one 12.6,

e0177678.

BOUHLEL, Ines et al. (2007). « Screening of antimutagenicity via antioxidant activity in dif-
ferent extracts from the leaves of Acacia salicina from the center of Tunisia ». In : Envi-
ronmental Toxicology and Pharmacology 23.1, p. 56-63.

BOUZERDOUM, Moufida, Adel MELLIT et A Massi PAVAN (2013). « A hybrid model (SARIMA-
SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant ».
In : Solar Energy 98, p. 226-235.

BREST, Janez et al. (2006). « Self-adapting control parameters in differential evolution : A
comparative study on numerical benchmark problems ». In : IEEE transactions on evolu-
tionary computation 10.6, p. 646-657.

BUCHNER, Alex G et al. (1999). « An internet-enabled knowledge discovery process ». In :
9th International Database Conference on Heterogeneous and Internet Databases. IDC.

CARRIZOSA, Emilio et Dolores Romero MORALES (2013). « Supervised classification and
mathematical optimization ». In : Computers & Operations Research 40.1, p. 150-165.

CHAO, Chih-Feng et Ming-Huwi HORNG (2015). « The construction of support vector ma-
chine classifier using the firefly algorithm ». In : Computational intelligence and neuroscience
2015.

CHATTERJEE, Snehamoy et Ashis BHATTACHERJEE (2011). « Genetic algorithms for feature
selection of image analysis-based quality monitoring model : An application to an iron
mine ». In : Engineering applications of artificial intelligence 24.5, p. 786-795.

CHAWLA, Nitesh V et al. (2002). « SMOTE : synthetic minority over-sampling technique ».
In : Journal of artificial intelligence research 16, p. 321-357.

CHEN, Bolun, Ling CHEN et Yixin CHEN (2013). « Efficient ant colony optimization for image
feature selection ». In : Signal processing 93.6, p. 1566-1576.

CHEN, Huadong et al. (2007). « A hybrid of artificial fish swarm algorithm and particle
swarm optimization for feedforward neural network training ». In : International Confe-
rence on Intelligent Systems and Knowledge Engineering 2007. Atlantis Press.

CHO, Ming-Yuan et Thi Thom HOANG (2017). « Feature selection and parameters optimiza-
tion of SVM using particle swarm optimization for fault classification in power distribu-
tion systems ». In : Computational intelligence and neuroscience 2017.

Bibliographie 157

CHUANG, Li-Yeh, Sheng-Wei TsAI et Cheng-Hong YANG (2011). « Improved binary particle
swarm optimization using catfish effect for feature selection ». In : Expert Systems with
Applications 38.10, p. 12699-12707.

CHUANG, Li-Yeh et al. (2008). « Improved binary PSO for feature selection using gene ex-
pression data ». In : Computational Biology and Chemistry 32.1, p. 29-38.

C10s, Krzysztof] et al. (2007). « The knowledge discovery process ». In : Data Mining. Sprin-
ger, p. 9-24.

COELLO, Carlos (jan. 2005). « An Introduction to Evolutionary Algorithms and Their Appli-
cations ». In : p. 425-442. 1SBN : 978-3-540-28063-7. DOI : 10.1007/11533962_39.

CORNE, David, Clarisse DHAENENS et Laetitia JOURDAN (2012). « Synergies between ope-
rations research and data mining : The emerging use of multi-objective approaches ». In :
European Journal of Operational Research 221.3, p. 469-479.

CORTES, Corinna et Vladimir VAPNIK (1995). « Support-vector networks ». In : Machine lear-
ning 20.3, p. 273-297.

COSKUN, Musab et al. (2017). « An overview of popular deep learning methods ». In : Euro-
pean Journal of Technique 7.2, p. 165-176.

Cozz1, Emanuele et al. (2018). « Understanding linux malware ». In : 2018 IEEE symposium
on security and privacy (SP). IEEE, p. 161-175.

DA SILVA, Ivan Nunes et al. (2017). « Artificial neural network architectures and training
processes ». In : Artificial neural networks. Springer, p. 21-28.

DAS, Nibaran et al. (2012). « A genetic algorithm based region sampling for selection of local
features in handwritten digit recognition application ». In : Applied Soft Computing 12.5,
p- 1592-1606.

DAS, Swagatam et Ponnuthurai Nagaratham SUGANTHAN (2010). « Differential evolution :
A survey of the state-of-the-art ». In : IEEE transactions on evolutionary computation 15.1,
p- 4-31.

DASsH, Pandit Byomakesha et al. (2020). « Model based IoT security framework using mul-
ticlass adaptive boosting with SMOTE ». In : Security and Privacy 3.5, e112.

DENG, Li et Dong YU (2014). « Deep learning : methods and applications ». In : Foundations
and trends in signal processing 7.3—4, p. 197-387.

DHAENENS, Clarisse (2016). Metaheuristics for big data. London, UK.

DORIGO, Marco (1992). « Optimization, learning and natural algorithms ». In : Ph. D. Thesis,
Politecnico di Milano.

EL DOR, Abbas (2012). « Perfectionnement des algorithmes d’optimisation par essaim par-
ticulaire : applications en segmentation d’images et en électronique ». Thése de doct.
Université Paris-Est.

EL GHAZALI, Talbi (2009). Metaheuristics : From Design to Implementation. Wiley Sons, Incor-
porated.

ELBENANI, Bouazza, Jacques A FERLAND et Jonathan BELLEMARE (2012). « Genetic algo-
rithm and large neighbourhood search to solve the cell formation problem ». In : Expert
Systems with Applications 39.3, p. 2408-2414.

ELMAN, Jeffrey L (1990). « Finding structure in time ». In : Cognitive science 14.2, p. 179-211.

EMARY, Eid, Hossam M ZAWBAA et Aboul Ella HASSANIEN (2016). « Binary grey wolf op-
timization approaches for feature selection ». In : Neurocomputing 172, p. 371-381.

EMARY, Eid et al. (2015). « Feature subset selection approach by gray-wolf optimization ».
In : Afro-European conference for industrial advancement. Springer, p. 1-13.

FALTINGS, Boi et Michael SCHUMACHER (2009). L'intelligence artificielle par la pratique. PPUR
presses polytechniques.

FAN, Qian et al. (2020). « A new improved whale optimization algorithm with joint search
mechanisms for high-dimensional global optimization problems ». In : Engineering with
Computers, p. 1-28.

https://doi.org/10.1007/11533962_39

158 Bibliographie

FARIS, Hossam, Ibrahim ALJARAH et Seyedali MIRJALILI (2016a). « Training feedforward
neural networks using multi-verse optimizer for binary classification problems ». In :
Applied Intelligence 45.2, p. 322-332.

— (2016b). « Training feedforward neural networks using multi-verse optimizer for binary
classification problems ». In : Applied Intelligence 45.2, p. 322-332.

— (2017). « Evolving radial basis function networks using moth—flame optimizer ». In :
Handbook of neural computation. Elsevier, p. 537-550.

— (2018). « Improved monarch butterfly optimization for unconstrained global search and
neural network training ». In : Applied Intelligence 48.2, p. 445-464.

FARIS, Hossam, Seyedali MIRJALILI et Ibrahim ALJARAH (2019a). « Automatic selection of
hidden neurons and weights in neural networks using grey wolf optimizer based on a
hybrid encoding scheme ». In : International Journal of Machine Learning and Cybernetics
10.10, p. 2901-2920.

— (2019b). « Automatic selection of hidden neurons and weights in neural networks using
grey wolf optimizer based on a hybrid encoding scheme ». In : International Journal of
Machine Learning and Cybernetics 10.10, p. 2901-2920.

FARIS, Hossam et al. (2018). « A multi-verse optimizer approach for feature selection and op-
timizing SVM parameters based on a robust system architecture ». In : Neural Computing
and Applications 30.8, p. 2355-2369.

FAYYAD, Usama, Gregory PIATETSKY-SHAPIRO et Padhraic SMYTH (1996). « From data mi-
ning to knowledge discovery in databases ». In : Al magazine 17.3, p. 37-37.

FAYYAD, Usama M et al. (1996). « Advances in knowledge discovery and data mining ». In :
American Association for Artificial Intelligence.

FEDOROVICI, Lucian-Ovidiu et al. (2012). « Embedding gravitational search algorithms in
convolutional neural networks for OCR applications ». In : 2012 7th IEEE International
Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, p. 125-130.

FISTER JR, Iztok, DuSan FISTER et Xin-She YANG (2013). « A hybrid bat algorithm ». In : arXiv
preprint arXiv :1303.6310.

FOGEL, Lawrence J, Alvin] OWENS et Michael] WALSH (1966). « Artificial intelligence
through simulated evolution ». In :

FOUILHOUX, Pierre (2015). « Optimisation combinatoire : Programmation linéaire et algo-
rithmes ». In : Université Pierre et Marie Curie.

FREITAS, Alex A (2002a). Data mining and knowledge discovery with evolutionary algorithms.
Springer Science et Business Media.

— (2002b). Data mining and knowledge discovery with evolutionary algorithms. Springer Science
et Business Media.

FREITAS, Alex A. (2011). Data mining and knowledge discovery with evolutionary algorithms.
Springer.

FREDEERIC, Héeliodore et al. (2017). Metaheuristics for intelligent electrical networks. ISTE, Ltd.

GAMBARDELLA, Luca Maria, Roberto MONTEMANNI et Dennis WEYLAND (2012). « Cou-
pling ant colony systems with strong local searches ». In : European Journal of Operational
Research 220.3, p. 831-843.

GAREY, Michael R (1979). « A Guide to the Theory of NP-Completeness ». In : Computers and
intractability.

GHAEMI, Manizheh et Mohammad-Reza FEIZI-DERAKHSHI (2016). « Feature selection using
forest optimization algorithm ». In : Pattern Recognition 60, p. 121-129.

GOODFELLOW, lan et al. (2016). Deep learning. T. 1. 2. MIT press Cambridge.

GRINSTEIN, Usama M Fayyad Georges G et Andreas WIERSE (2002). Information visualization
in data mining and knowledge discovery. Morgan Kaufmann.

GU, Shenkai, Ran CHENG et Yaochu JIN (2018). « Feature selection for high-dimensional
classification using a competitive swarm optimizer ». In : Soft Computing 22.3, p. 811-822.

Bibliographie 159

GUENDOUZ, Mohamed, Abdelmalek AMINE et Reda Mohamed HAMOU (2017). « A discrete
modified fireworks algorithm for community detection in complex networks ». In : Ap-
plied Intelligence 46.2, p. 373-385.

GUPTA, Tarun Kumar et Khalid RAZA (2019). « Optimization of ANN architecture : a review
on nature-inspired techniques ». In : Machine learning in bio-signal analysis and diagnostic
imaging, p. 159-182.

GUYON, Isabelle et al. (2002). « Gene selection for cancer classification using support vector
machines ». In : Machine learning 46.1, p. 389-422.

HACHIMI, Hanaa (2013). « Hybridations d’algorithmes métaheuristiques en optimisation
globale et leurs applications ». These de doct. INSA de Rouen.

HAFEZ, Ahmed Ibrahem et al. (2016). « Sine cosine optimization algorithm for feature selec-
tion ». In : 2016 international symposium on innovations in intelligent systems and applications
(INISTA). IEEE, p. 1-5.

HAGAN, MT et al. (1996). Neural network design vol. 20 : Pws Pub.

HAMM, Lonnie, B Wade BRORSEN et Martin T HAGAN (2002). « Global optimization of neu-
ral network weights ». In : Proceedings of the 2002 International Joint Conference on Neural
Networks. [CNN’02 (Cat. No. 02CH37290). T. 2. IEEE, p. 1228-1233.

HAaMOU, Reda Mohamed, Abdelmalek AMINE et Amine BOUDIA (2013). « A new meta-
heuristic based on social bees for detection and filtering of spam ». In : International Jour-
nal of Applied Metaheuristic Computing (IJAMC) 4.3, p. 15-33.

HAND, David | et Niall M ADAMS (2014). « Data mining ». In : Wiley StatsRef : Statistics
Reference Online, p. 1-7.

HASSANIN, Mohamed F, Abdullah M SHOEB et Aboul Ella HASSANIEN (2016). « Grey wolf
optimizer-based back-propagation neural network algorithm ». In : 2016 12th Internatio-
nal Computer Engineering Conference (ICENCO). IEEE, p. 213-218.

HE, Haibo et Edwardo A GARCIA (2009). « Learning from imbalanced data ». In : IEEE Tran-
sactions on knowledge and data engineering 21.9, p. 1263-1284.

HE, Kaiming et al. (2016). « Deep residual learning for image recognition ». In : Proceedings
of the IEEE conference on computer vision and pattern recognition, p. 770-778.

HEATON, Jeff (2015). « Artificial Intelligence for Humans, Volume 3 : Neural Networks and
Deep Learning, 1.0 ». In : Chesterfield, USA : Heaton Research Inc.

HODGKIN, Alan L et Andrew F HUXLEY (1952). « A quantitative description of membrane
current and its application to conduction and excitation in nerve ». In : The Journal of
physiology 1174, p. 500-544.

HOLLAND, John H (1962a). « Concerning efficient adaptive systems ». In : Self-Organizing
Systems 230.

— (1962b). « Outline for a logical theory of adaptive systems ». In : Journal of the ACM
(JACM) 9.3, p. 297-314.

— (1992). « Genetic algorithms ». In : Scientific american 267.1, p. 66-73.

HUANG, Cheng-Lung (2009). « ACO-based hybrid classification system with feature subset
selection and model parameters optimization ». In : Neurocomputing 73.1-3, p. 438-448.

HUANG, Cheng-Lung et Chieh-Jen WANG (2006a). « A GA-based feature selection and pa-
rameters optimization for support vector machines ». In : Expert Systems with applications
31.2, p. 231-240.

— (2006b). « A GA-based feature selection and parameters optimizationfor support vector
machines ». In : Expert Systems with applications 31.2, p. 231-240.

HUANG, Hu et al. (2012). « Ant colony optimization-based feature selection method for sur-
face electromyography signals classification ». In : Computers in biology and medicine 42.1,
p- 30-38.

160 Bibliographie

IBRAHIM, Rehab Ali et al. (2019). « Improved salp swarm algorithm based on particle swarm
optimization for feature selection ». In : Journal of Ambient Intelligence and Humanized Com-
puting 10.8, p. 3155-3169.

JACQUIN, Sophie (2015). « Hybridation des métaheuristiques et de la programmation dyna-
mique pour les problémes d’optimisation mono et multi-objectif : application a la pro-
duction dénergie ». These de doct. Lille 1.

JADDI, Najmeh Sadat, Salwani ABDULLAH et Abdul Razak HAMDAN (2015). « Optimiza-
tion of neural network model using modified bat-inspired algorithm ». In : Applied Soft
Computing 37, p. 71-86.

JAYARAMAN, Vijayashree et H Parveen SULTANA (2019). « Artificial gravitational cuckoo
search algorithm along with particle bee optimized associative memory neural network
for feature selection in heart disease classification ». In : Journal of Ambient Intelligence and
Humanized Computing, p. 1-10.

JIA, Heming et al. (2019). « Multiverse optimization algorithm based on Lévy flight impro-
vement for multithreshold color image segmentation ». In : IEEE Access 7, p. 32805-32844.

JOURDAN, Laetitia (2003). « Métaheuristiques pour l'extraction de connaissances : applica-
tion a la génomique ». These de doct. Université des Sciences et Technologie de Lille-Lille
L

KABIR, Md Monirul, Md SHAHJAHAN et Kazuyuki MURASE (2011). « A new local search
based hybrid genetic algorithm for feature selection ». In : Neurocomputing 74.17, p. 2914-
2928.

— (2012). « A new hybrid ant colony optimization algorithm for feature selection ». In :
Expert Systems with Applications 39.3, p. 3747-3763.

KABLI, Fatima, Reda Mohamed HAMOU et Abdelmalek AMINE (2018). « Protein classifica-
tion using n-gram technique and association rules ». In : International Journal of Software
Innovation (IJSI) 6.2, p. 77-89.

KARABOGA, Dervis et Bahriye BASTURK (2008). « On the performance of artificial bee colony
(ABC) algorithm ». In : Applied soft computing 8.1, p. 687-697.

KARASOZEN, Bulent, Alexander RUBINOV, Gerhard-Wilhelm WEBER et al. (2006). « Optimi-
zation in data mining ». In : European Journal of Operational Research 173.3, p. 701-704.
KARTHIKEYAN, K et PK DHAL (2015). « Transient stability enhancement by optimal location

and tuning of STATCOM using PSO ». In : Procedia Technology 21, p. 345-351.

KENNEDY, James et Russell EBERHART (1995a). « Particle swarm optimization ». In : Procee-
dings of ICNN'95-international conference on neural networks. T. 4. IEEE, p. 1942-1948.

— (1995b). « Particle swarm optimization ». In : Proceedings of ICNN’95-international confe-
rence on neural networks. T. 4. IEEE, p. 1942-1948.

KENTER, Tom et al. (2017). « Neural networks for information retrieval ». In : Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, p. 1403-1406.

KHAN, Abdullah et al. (2019). « An alternative approach to neural network training based on
hybrid bio meta-heuristic algorithm ». In : Journal of Ambient Intelligence and Humanized
Computing 10.10, p. 3821-3830.

KIRA, Kenji et Larry A RENDELL (1992). « A practical approach to feature selection ». In :
Machine learning proceedings 1992. Elsevier, p. 249-256.

KIRANYAZ, Serkan et al. (2009a). « Evolutionary artificial neural networks by multi-dimensional
particle swarm optimization ». In : Neural networks 22.10, p. 1448-1462.

— (2009b). « Evolutionary artificial neural networks by multi-dimensional particle swarm
optimization ». In : Neural networks 22.10, p. 1448-1462.

KoHAVI, Ron et George H JOHN (1997). « Wrappers for feature subset selection ». In : Artifi-
cial intelligence 97.1-2, p. 273-324.

Bibliographie 161

KOHLI, Mehak et Sankalap ARORA (2018). « Chaotic grey wolf optimization algorithm for
constrained optimization problems ». In : Journal of computational design and engineering
5.4, p. 458-472.

KoMAKI, GM et Vahid KAYVANFAR (2015). « Grey Wolf Optimizer algorithm for the two-
stage assembly flow shop scheduling problem with release time ». In : Journal of Compu-
tational Science 8, p. 109-120.

Koza, John R et John R KOZA (1992). Genetic programming : on the programming of computers
by means of natural selection. T. 1. MIT press.

KRUEGER, Martin (1994). « Méthode d’analyse d’algorithmes d’optimisation stochastiques
a l'aide d’algorithmes génétiques ». These de doct.

KUBAT, Miroslav (1999). « Neural networks : a comprehensive foundation by Simon Haykin,
Macmillan, 1994, ISBN 0-02-352781-7. » In : The Knowledge Engineering Review 13.4, p. 409-
412.

LEMAITRE, Guillaume, Fernando NOGUEIRA et Christos K ARIDAS (2017). « Imbalanced-
learn : A python toolbox to tackle the curse of imbalanced datasets in machine learning ».
In : The Journal of Machine Learning Research 18.1, p. 559-563.

L1, Jing et al. (2012). « Brief introduction of back propagation (BP) neural network algorithm
and its improvement ». In : Advances in computer science and information engineering. Sprin-
ger, p. 553-558.

L1, Shijin et al. (2011). « An effective feature selection method for hyperspectral image clas-
sification based on genetic algorithm and support vector machine ». In : Knowledge-Based
Systems 24.1, p. 40-48.

LIN, Hai et Katsumi YAMASHITA (2002). « Hybrid simplex genetic algorithm for blind equa-
lization using RBF networks ». In : Mathematics and Computers in Simulation 59.4, p. 293-
304.

LIN, Shih-Wei et al. (2008). « Particle swarm optimization for parameter determination and
feature selection of support vector machines ». In : Expert systems with applications 35.4,
p. 1817-1824.

L1U, Huan et Hiroshi MOTODA (2007). Computational methods of feature selection. CRC Press.

MACQUEEN, James et al. (1967). « Some methods for classification and analysis of multiva-
riate observations ». In : Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability. T. 1. 14. Oakland, CA, USA, p. 281-297.

MAFARJA, Majdi et Seyedali MIRJALILI (2018). « Whale optimization approaches for wrap-
per feature selection ». In : Applied Soft Computing 62, p. 441-453.

MAFARJA, Majdi M et Seyedali MIRJALILI (2017). « Hybrid whale optimization algorithm
with simulated annealing for feature selection ». In : Neurocomputing 260, p. 302-312.
MAIMON, Oded et Lior ROKACH (2005). « Data mining and knowledge discovery hand-

book ». In:

— (2007). Soft computing for knowledge discovery and data mining. Springer Science et Business
Media.

MANTOVANI, Rafael G et al. (2015). « Effectiveness of random search in SVM hyper-parameter
tuning ». In : 2015 International Joint Conference on Neural Networks (I[CNN). Ieee, p. 1-8.

MARTIN, R (1990). «Single-interval learning by simile within a simulated hebbian neural
network ». In : Computers & Mathematics with Applications 20.4-6, p. 217-226.

MARTI, Rafael et Abdellah EL-FALLAHI (2004). « Multilayer neural networks : an experi-
mental evaluation of on-line training methods ». In : Computers and Operations Research
31.9, p. 1491-1513.

McCULLOCH, Warren S et Walter PITTS (1943). « A logical calculus of the ideas immanent
in nervous activity ». In : The bulletin of mathematical biophysics 5.4, p. 115-133.

MEISEL, Stephan et Dirk MATTFELD (2010). « Synergies of operations research and data mi-
ning ». In : European Journal of Operational Research 206.1, p. 1-10.

162 Bibliographie

MENDES, Rui et al. (2002a). « Particle swarms for feedforward neural network training ». In :
Proceedings of the 2002 International Joint Conference on Neural Networks. ICNN'02 (Cat. No.
02CH37290). T. 2. IEEE, p. 1895-1899.

— (2002b). « Particle swarms for feedforward neural network training ». In : Proceedings of
the 2002 International Joint Conference on Neural Networks. [CNN’02 (Cat. No. 02CH37290).
T. 2. IEEE, p. 1895-1899.

MINAR, Matiur Rahman et Jibon NAHER (2018). « Recent advances in deep learning : An
overview ». In : arXiv preprint arXiv :1807.08169.

MIRJALILI, Seyedali (2015). « How effective is the Grey Wolf optimizer in training multi-
layer perceptrons ». In : Applied Intelligence 43.1, p. 150-161.

MIRJALILI, Seyedali et Andrew LEWIS (2016). « The whale optimization algorithm ». In :
Advances in engineering software 95, p. 51-67.

MIRJALILL, Seyedali, Seyed Mohammad MIRJALILI et Abdolreza HATAMLOU (2016). « Multi-
verse optimizer : a nature-inspired algorithm for global optimization ». In : Neural Com-
puting and Applications 27.2, p. 495-513.

MIRJALILL, Seyedali, Seyed Mohammad MIRJALILI et Andrew LEWIS (2014a). « Grey wolf
optimizer ». In : Advances in engineering software 69, p. 46-61.

— (2014b). « Let a biogeography-based optimizer train your multi-layer perceptron ». In :
Information Sciences 269, p. 188-209.

MITRA, Mandar et BB CHAUDHURI (2000). « Information retrieval from documents : A sur-
vey ». In : Information retrieval 2.2, p. 141-163.

MITTAL, Nitin, Urvinder SINGH et Balwinder Singh SOHI (2016). « Modified grey wolf op-
timizer for global engineering optimization ». In : Applied Computational Intelligence and
Soft Computing 2016.

MOHAMMED, Hardi et Tarik RASHID (2020). « A novel hybrid GWO with WOA for global
numerical optimization and solving pressure vessel design ». In : Neural Computing and
Applications, p. 1-18.

MOsLEHI, Fateme et Abdorrahman HAERI (2020). « A novel hybrid wrapper—filter approach
based on genetic algorithm, particle swarm optimization for feature subset selection ».
In : Journal of Ambient Intelligence and Humanized Computing 11.3, p. 1105-1127.

MURPHEY, Yi L et al. (2007). « OAHO : an effective algorithm for multi-class learning from
imbalanced data ». In : 2007 International Joint Conference on Neural Networks. IEEE, p. 406-
411.

NANDY, Sudarshan, Partha Pratim SARKAR et Achintya DAS (2012). « Training a feed-forward
neural network with artificial bee colony based backpropagation method ». In : arXiv pre-
print arXiv :1209.2548.

NARENDRA, Patrenahalli M. et Keinosuke FUKUNAGA (1977). « A branch and bound algo-
rithm for feature subset selection ». In : IEEE Computer Architecture Letters 26.09, p. 917-
922.

NAwWI, Nazri Mohd, Muhammad Zubair REHMAN et Abdullah KHAN (2014a). « A new bat
based back-propagation (BAT-BP) algorithm ». In : Advances in Systems Science. Springer,
p- 395-404.

— (2014b). « A new bat based back-propagation (BAT-BP) algorithm ». In : Advances in Sys-
tems Science. Springer, p. 395-404.

NDIAYE, Samba et al. (2014). « Approche de sélection d’attributs pour la classification basée
sur l'algorithme RFE-SVM ». In : Revue Africaine de la Recherche en Informatique et Mathé-
matiques Appliquées 17.

OLAFSSON, Sigurdur (2006). « Introduction to operations research and data mining ». In :
Computers and operations research 33.11, p. 3067-3069.

OLAFSSON, Sigurdur, Xiaonan LI et Shuning WU (2008). « Operations research and data
mining ». In : European Journal of Operational Research 187.3, p. 1429-1448.

Bibliographie 163

OLIVEIRA, Adriano Ll et al. (2010). « GA-based method for feature selection and parameters
optimization for machine learning regression applied to software effort estimation ». In :
information and Software Technology 52.11, p. 1155-1166.

OzCIFT, Akin et Arif GULTEN (2013). « Genetic algorithm wrapped Bayesian network fea-
ture selection applied to differential diagnosis of erythemato-squamous diseases ». In :
Digital Signal Processing 23.1, p. 230-237.

PADAWAN (2018). platform for multi-architecture ELF analysis. URL : https://padawan.s3.
eurecom.fr/.

PAHL, Marc-Oliver et Frangois-Xavier AUBET (2018). « All eyes on you : Distributed Multi-
Dimensional IoT microservice anomaly detection ». In : 2018 14th International Conference
on Network and Service Management (CNSM). IEEE, p. 72-80.

PAHL M-O, Aubet F-X (2018). DS20S traffic traces. URL : https : / / www . kaggle . com/
francoisxa/ds2ostraffictraces.

PALMES, Paulito P, Taichi HAYASAKA et Shiro Usul (2005). « Mutation-based genetic neural
network ». In : IEEE Transactions on Neural Networks 16.3, p. 587-600.

PAN, Jeng-Shyang, Thi-Kien DAO, Shu-Chuan CHU et al. (2017). « A novel hybrid GWO-FPA
algorithm for optimization applications ». In : International conference on smart vehicular
technology, transportation, communication and applications. Springer, p. 274-281.

PAN, Tien-Szu, Thi-Kien DAO, Shu-Chuan CHU et al. (2015). « A communication strategy for
paralleling grey wolf optimizer ». In : International Conference on Genetic and Evolutionary
Computing. Springer, p. 253-262.

PANDIT, Shivam (2019). Early-Stage-Malware-Prediction-using-Deep-Learning. URL : https://
github.com/shivam7066/Early-Stage-Malware-Prediction-using-Deep-Learning.

PERDISCI, Roberto, Andrea LANZI et Wenke LEE (2008). « Classification of packed execu-
tables for accurate computer virus detection ». In : Pattern recognition letters 29.14, p. 1941-
1946.

PINTO, Pedro, Thomas A. RUNKLER et Jodo M. SOUSA (2005). « Wasp swarm optimization
of logistic systems ». In : Adaptive and Natural Computing Algorithms, Springer, 264-267.
DOI: 10.1007/3-211-27389-1_63.

RAD, BABAK BASHARI, MOHAMMAD KAZEM HASSAN NEJAD et MARYAM SHAHPASAND
(2018). « Malware classification and detection using artificial neural network ». In : Jour-
nal of Engineering Science and Technology 13, p. 14-23.

RAIDL, Giinther R (2006). « A unified view on hybrid metaheuristics ». In : International work-
shop on hybrid metaheuristics. Springer, p. 1-12.

RAMOS, Caio CO et al. (2011). « A novel algorithm for feature selection using harmony
search and its application for non-technical losses detection ». In : Computers & Electrical
Engineering 37.6, p. 886-894.

RASHEDI, Esmat, Hossein NEZAMABADI-POUR et Saeid SARYAZDI (2009). « GSA : a gravi-
tational search algorithm ». In : Information sciences 179.13, p. 2232-2248.

RASHID, Tarik (2009). « A heterogeneous ensemble network using machine learning tech-
niques ». In : International Journal of Computer Science an Network Security 9.8, p. 335-339.

RASHID, Tarik A, Dosti K ABBAS et Yalin K TUREL (2019). « A multi hidden recurrent neural
network with a modified grey wolf optimizer ». In : PloS one 14.3, €0213237.

RECHENBERG, Ingo (1965). « Cybernetic solution path of an experimental problem ». In :
Royal Aircraft Establishment Library Translation 1122.

— (1973). Evolutions strategie : Optimierung technischer systeme nach prinzipien der biologischen
evolution, frommann—holzboog.

RHODE, Matilda, Pete BURNAP et Kevin JONES (2018). « Early-stage malware prediction
using recurrent neural networks ». In : computers & security 77, p. 578-594.

ROTHLAUF, Franz (2011). Optimization Methods. Springer-Verlag Berlin, Heidelberg GmbH
et Co. KG.

https://padawan.s3.eurecom.fr/
https://padawan.s3.eurecom.fr/
https://www.kaggle.com/francoisxa/ds2ostraffictraces
https://www.kaggle.com/francoisxa/ds2ostraffictraces
https://github.com/shivam7066/Early-Stage-Malware-Prediction-using-Deep-Learning
https://github.com/shivam7066/Early-Stage-Malware-Prediction-using-Deep-Learning
https://doi.org/10.1007/3-211-27389-1_63

164 Bibliographie

RUMELHART, David E, Geoffrey E HINTON et Ronald] WILLIAMS (1988). Neurocomputing :
Foundations of research.

RUNKLER, Thomas A (2008). « Wasp swarm optimization of the c-means clustering model ».
In : International Journal of Intelligent Systems 23.3, p. 269-285.

SAGARIKA, A et TR JYOTHSNA (2015). « Tuning of PSO algorithm for single machine and
multi machine power system using STATCOM controller ». In : International research jour-
nal of engineering and technology 2.04, p. 175-182.

SAHA, Sujan Kumar, Sudeshna SARKAR et Pabitra MITRA (2009). « Feature selection tech-
niques for maximum entropy based biomedical named entity recognition ». In : Journal
of biomedical informatics 42.5, p. 905-911.

SAXE, Joshua et Konstantin BERLIN (2015). « Deep neural network based malware detection
using two dimensional binary program features ». In : 2015 10th International Conference
on Malicious and Unwanted Software (MALWARE). IEEE, p. 11-20.

SAXENA, Akash et al. (2018). « Intelligent Grey Wolf Optimizer—-Development and applica-
tion for strategic bidding in uniform price spot energy market ». In : Applied Soft Compu-
ting 69, p. 1-13.

SCHULTZ, Matthew G et al. (2000). « Data mining methods for detection of new malicious
executables ». In : Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.
IEEE, p. 38-49.

SEXTON, Randall S et al. (1998). « Global optimization for artificial neural networks : A tabu
search application ». In : European Journal of Operational Research 106.2-3, p. 570-584.

SHAW, D et Witold KINSNER (1996). « Chaotic simulated annealing in multilayer feedfor-
ward networks ». In : Proceedings of 1996 Canadian Conference on Electrical and Computer
Engineering. T. 1. IEEE, p. 265-269.

SHILAJA, C et T ARUNPRASATH (2019). « Internet of medical things-load optimization of po-
wer flow based on hybrid enhanced grey wolf optimization and dragonfly algorithm ».
In : Future Generation Computer Systems 98, p. 319-330.

SIKDER, Md Fahim, Md Jamal UDDIN et Sajal HALDER (2016). « Predicting students yearly
performance using neural network : A case study of BSMRSTU ». In : 2016 5th Internatio-
nal Conference on Informatics, Electronics and Vision (ICIEV). IEEE, p. 524-529.

SINDHU, R et al. (2019). « A hybrid SCA inspired BBO for feature selection problems ». In :
Mathematical Problems in Engineering 2019.

SINGH, Harminder, Shivani MEHTA et Sushil PRASHAR (2016). « Economic load dispatch
using multi verse optimization ». In : International Journal of Engineering Research & Science
(IJOER) 6.2, p. 2395-6992.

SINGH, N et SB SINGH (2017a). « A novel hybrid GWO-SCA approach for optimization pro-
blems ». In : Engineering Science and Technology, an International Journal 20.6, p. 1586-1601.

SINGH, Narinder et SB SINGH (2017b). « Hybrid algorithm of particle swarm optimization
and grey wolf optimizer for improving convergence performance ». In : Journal of Applied
Mathematics 2017.

STAELIN, Carl (2003). « Parameter selection for support vector machines ». In : Hewlett-
Packard Company, Tech. Rep. HPL-2002-354R1 1.

STORN, Rainer et Kenneth PRICE (1997a). « Differential evolution—a simple and efficient heu-
ristic for global optimization over continuous spaces ». In : Journal of global optimization
11.4, p. 341-359.

— (1997b). « Differential evolution—a simple and efficient heuristic for global optimization
over continuous spaces ». In : Journal of global optimization 11.4, p. 341-359.

STUTZLE, Thomas et Holger H HOOs (2000). « MAX-MIN ant system ». In : Future generation
computer systems 16.8, p. 889-914.

TAILLARD, Eric (1993). « Parallel iterative search methods for vehicle routing problems ».
In : Networks 23.8, p. 661-673.

Bibliographie 165

TALBI, E-G (2002). « A taxonomy of hybrid metaheuristics ». In : Journal of heuristics 8.5,
p- 541-564.

TANESE, Reiko (1987). « Parallel genetic algorithm for a hypercube ». In : Genetic algorithms
and their applications : proceedings of the second International Conference on Genetic Algo-
rithms : July 28-31, 1987 at the Massachusetts Institute of Technology, Cambridge, MA. Hills-
dale, NJ : L. Erlhaum Associates, 1987.

TARKHANEH, Omid et Haifeng SHEN (2019). « Training of feedforward neural networks for
data classification using hybrid particle swarm optimization, Mantegna Lévy flight and
neighborhood search ». In : Heliyon 5.4, e01275.

TAWHID, Mohamed A et Abdelmonem M IBRAHIM (2020). « A hybridization of grey wolf
optimizer and differential evolution for solving nonlinear systems ». In : Evolving Systems
11.1, p. 65-87.

TEH, Yee Whye et Geoffrey E HINTON (2001). « Rate-coded restricted Boltzmann machines
for face recognition ». In : Advances in neural information processing systems, p. 908-914.
THARWAT, Alaa et Thomas GABEL (2019). « Parameters optimization of support vector ma-
chines for imbalanced data using social ski driver algorithm ». In : Neural Computing and

Applications, p. 1-14.

THARWAT, Alaa, Thomas GABEL et Aboul Ella HASSANIEN (2017). « Parameter optimization
of support vector machine using dragonfly algorithm ». In : International conference on
advanced intelligent systems and informatics. Springer, p. 309-319.

THARWAT, Alaa et Aboul Ella HASSANIEN (2018). « Chaotic antlion algorithm for parameter
optimization of support vector machine ». In : Applied Intelligence 48.3, p. 670-686.

THARWAT, Alaa, Aboul Ella HASSANIEN et Basem E ELNAGHI (2017). « A BA-based algo-
rithm for parameter optimization of support vector machine ». In : Pattern Recognition
Letters 93, p. 13-22.

THARWAT, Alaa, Yasmine S. MOEMEN et Aboul Ella HASSANIEN (2017). « Classification of
toxicity effects of biotransformed hepatic drugs using whale optimized support vector
machines ». In : Journal of Biomedical Informatics 68, p. 132-149. I1SSN : 1532-0464. DOI :
https://doi.org/10.1016/j.jbi.2017.03.002. URL : https://www.sciencedirect.
com/science/article/pii/S15632046417300515.

UNLER, Alper, Alper MURAT et Ratna Babu CHINNAM (2011). « mr2PSO : A maximum
relevance minimum redundancy feature selection method based on swarm intelligence
for support vector machine classification ». In : Information Sciences 181.20, p. 4625-4641.

VAPNIK, Vladimir N (1999). « An overview of statistical learning theory ». In : IEEE transac-
tions on neural networks 10.5, p. 988-999.

VATSA, Mayank, Richa SINGH et Afzel NOORE (2005). « Improving biometric recognition
accuracy and robustness using DWT and SVM watermarking ». In : IEICE Electronics
Express 2.12, p. 362-367.

WANG, Gai-Ge, Xinchao ZHAO et Suash DEB (2015). « A novel monarch butterfly optimiza-
tion with greedy strategy and self-adaptive ». In : 2015 Second International Conference on
Soft Computing and Machine Intelligence (ISCMI). IEEE, p. 45-50.

WANG, Lipo (2005). Support vector machines : theory and applications. T. 177. Springer Science
& Business Media.

WITTEN, lan H et al. (2005). « Practical machine learning tools and techniques ». In : Morgan
Kaufmann, p. 578.

YAMANY, Waleed et al. (2015). « Moth-flame optimization for training multi-layer percep-
trons ». In : 2015 11th International computer engineering Conference ICENCO). IEEE, p. 267-
272.

YANG, Qiang et Xindong WU (2006). « 10 challenging problems in data mining research ».
In : International Journal of Information Technology & Decision Making 5.04, p. 597-604.

https://doi.org/https://doi.org/10.1016/j.jbi.2017.03.002
https://www.sciencedirect.com/science/article/pii/S1532046417300515
https://www.sciencedirect.com/science/article/pii/S1532046417300515

166 Bibliographie

YANG, Xin-She (2010). « A new metaheuristic bat-inspired algorithm ». In : Nature inspired
cooperative strategies for optimization (NICSO 2010). Springer, p. 65-74.

YANG, XS (2011). « A new metaheuristic bat-inspired algorithm. Nature Inspired Coopera-
tive Strategies for Optimization.(NICSO). 284, 6574. doi : 10.1007 ». In :

YAO, Xin (1993). « A review of evolutionary artificial neural networks ». In : International
journal of intelligent systems 8.4, p. 539-567.

YE, Yanbin et Chia-Chu CHIANG (2006). « A parallel apriori algorithm for frequent itemsets
mining ». In : Fourth International Conference on Software Engineering Research, Management
and Applications (SERA’06). IEEE, p. 87-94.

YU, Jianbo, Lifeng XI et Shijin WANG (2007). « An improved particle swarm optimization
for evolving feedforward artificial neural networks ». In : Neural Processing Letters 26.3,
p. 217-231.

YU, Xinying, Shie-Yui LIONG et Vladan BABOVIC (2004). « EC-SVM approach for real-time
hydrologic forecasting ». In : Journal of Hydroinformatics 6.3, p. 209-223.

YUE, Zhihang, Sen ZHANG et Wendong XIAO (2020). « A novel hybrid algorithm based on
grey wolf optimizer and fireworks algorithm ». In : Sensors 20.7, p. 2147.

YUVARAJ, N et P THANGARAJ (2019). « Machine learning based adaptive congestion win-
dow adjustment for Congestion Aware Routing in Cross Layer Approach Handling of
Wireless Mesh Network ». In : Cluster Computing 22.4, p. 9929-9939.

ZAKI, Mohammed] (2001). « Parallel sequence mining on shared-memory machines ». In :
Journal of Parallel and Distributed Computing 61.3, p. 401-426.

ZANCHETTIN, Cleber, Teresa B LUDERMIR et Leandro Maciel ALMEIDA (2011). « Hybrid trai-
ning method for MLP : optimization of architecture and training ». In : IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 41.4, p. 1097-1109.

ZHANG, Chengqi et Shichao ZHANG (2003). Association rule mining : models and algorithms.
T. 2307. Springer.

ZHANG, Chong et al. (2018a). « A cost-sensitive deep belief network for imbalanced classifi-
cation ». In : IEEE transactions on neural networks and learning systems 30.1, p. 109-122.
ZHANG, Guogiang Peter (2000). « Neural networks for classification : a survey ». In : IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 30.4, p. 451-

462.

ZHANG, Li et al. (2018b). « Feature selection using firefly optimization for classification and
regression models ». In : Decision Support Systems 106, p. 64-85.

ZHANG, Sen et Yongquan ZHOU (2015). « Grey wolf optimizer based on Powell local op-
timization method for clustering analysis ». In : Discrete Dynamics in Nature and Society
2015.

ZHANG, XiaoLi, XueFeng CHEN et ZhengJia HE (2010). « An ACO-based algorithm for pa-
rameter optimization of support vector machines ». In : Expert systems with applications
37.9, p. 6618-6628.

ZHAO, Liang et Feng QIAN (2011). « Tuning the structure and parameters of a neural net-
work using cooperative binary-real particle swarm optimization ». In : Expert Systems
with Applications 38.5, p. 4972-4977.

ZHOU, Xin et David P Tuck (2007). « MSVM-RFE : extensions of SVM-RFE for multiclass
gene selection on DNA microarray data ». In : Bioinformatics 23.9, p. 1106-1114.

ZHOU, Zhi-Hua et Xu-Ying LI1U (2005). « Training cost-sensitive neural networks with me-
thods addressing the class imbalance problem ». In : IEEE Transactions on knowledge and
data engineering 18.1, p. 63-77.

ZHU, Aijun et al. (2015). « Hybridizing grey wolf optimization with differential evolution
for global optimization and test scheduling for 3D stacked SoC ». In : Journal of Systems
Engineering and Electronics 26.2, p. 317-328.

167

Liste des publications

Articles scientifiques

Automatic selection of hidden neurons and weights in neural networks for data classifi-
cation using hybrid Particle swarm optimization, Multi-Verse Optimization based on Levy
flight. Springer : Evolutionary Intelligence. DOI : 10.1007 /s12065-021-00579-w.

A self-adaptive hybrid Bat Algorithm for training feedforward neural network. Rabab bous-
maha, Reda Mohamed Hamou, Abdelmalek Amine. International Journal of Swarm Intelli-
gence Research. (Volume 12, issue 4).

Optimizing connection weights in neural networks using hybrid metaheuristics algorithm.
Rabab bousmaha, Reda Mohamed Hamou, Abdelmalek Amine. International journal infor-
mation retrieval research (IJIRR) (Volume 12, issue 1).

Conférences et posters

A Comparison of Metaheuristics and BP for Training Feed forward Neural Networks. Poster
presentation at the third edition of national Study Day on Computer Science Research (JERI"
2019) On April 23th, 2019 at Dr-Moulay Taher- University, Saida, Algeria.

Language - Independent in Twitter Sentiment Analysis at the Doctorial Symposium of 6th
IFIP International Conference on Computational Intelligence and Its Applications (IFIP DS
CIIA2018) on May 8th, 2018 at USTO-MB University, Oran, Algeria.

Training feedforward neural networks using hybrid particle swarm optimization, Multi-
Verse Optimization at the 1st Conference on Innovative Trends in Computer Science CITCS
2019, which will be held at 8 may 1945, Guelma university, Algeria

