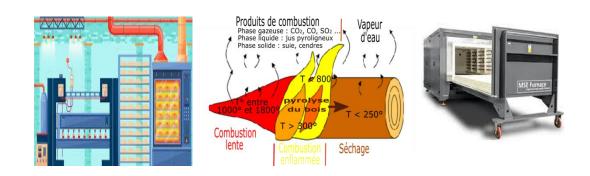
الجمهورية الجزائرية الديمقراطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE


وزارة التعليم العالي و البحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université de Saida - Dr Moulay Tahar

Faculté de Technologie Département de Génie des Procédés

Technologie des fours industriels

« Cours et exercices »

Préparé par D^r Fatima Zohra CHOUMANE

Année Universitaire 2022-2023

PREAMBULE

Notre propagation sur terre passe par la carbonisation des espèces végétales supérieures et, d'une manière plus générale, par l'incessante combustion de toutes substances combustibles. De la première lampe-tempête jusqu'aux réverbères du XVIIIème siècle, et de la lueur des réverbères jusqu'au blême éclat des lampadaires qui éclairent les autoroutes, tout est combustion, et la combustion est le principe intime de tout objet fabriqué par nous.

Les Anneaux de Saturne (1995) de W. G. Sebald

Public cible:

L'objectif de ce polycopié des cours est de fournir à l'étudiant une vision claire sur la combustion, sur les différents fours de l'industrie des matériaux, sur leurs caractéristiques physico-chimiques pour pouvoir décrire leur d'utilisation.

Ce polycopié est destiné aux étudiants en formation de génie des procédés, génie chimiques, raffinage et pétrochimie et à tout public, s'intéressants à l'étude des phénomènes de combustion et transfert de chaleur dans les fours industriels qui sont à l'origine des méthodes de fabrication, mise en forme et obtention des différents types des matériaux.

Pré-requis:

Les fours sont la pièce maitresse dans l'industrie des matériaux. Dans cette optique, l'étudiant doit en mesure de savoir :

- La combustion et ses réactions chimiques, calcul de combustion, les combustibles, le pouvoir calorifique, température réelle de combustion,
- Les notions de transfert de chaleur, de la chimie organique et de la thermodynamique appliquée
- Classe et structure des matériaux
- Classification des fours selon la circulation des fumées.
- l'étudiant doit être capable de faire un bilan énergétique d'un four pour essayer de minimiser la chaleur perdue.

Contenu:

Ce polycopié contient des résumés de cours, il traite en particulier, les notions sur la combustion, le transfert de chaleur, les différents types des fours, calcul énergétiques et isolation des fours.

Le chapitre I se rapporte des phénomènes de la combustion,

Le chapitre II traite les différents types fours,

Le chapitre III est réservé au transfert du chaleur dans les fours,

Les chapitre IV et V sont consacrés à l'étude des calculs thermique et l'isolation des fours.

Ce polycopié de cours représente une synthèse des cours que j'ai assurés au sein du département de génie des procédés à l'université de Saida D^r Moulay Tahar. C'est un travail qui émane de mon expérience en tant qu'enseignante des cours de module technologie des fours industriels.

Compétences visées

- Les étudiants en formation de génie des procédés seront capables de dimensionner un four. Ils auront également des notions de transfert de chaleur.
- o Etre capables d'écrire des bilans de matière et d'énergie
- O D'avoir des notions sur les différents fours de l'industrie des matériaux, sur leurs caractéristiques physico-chimiques pour pouvoir décrire leur d'utilisation

Mots-clés

Matériaux, Bilans, Transfert de chaleur, Fours, Dimensionnement, Isolation,

L'auteur

Fatima Zohra CHOUMANE est une enseignante chercheur, maitre de conférences à l'université D^r Moulay Tahar de Saida, où elle a assuré des cours sur les technologies des fours industriels aux étudiants de première année master spécialité génie des procédés et matériaux (GPM).

Sommaire

Liste des figures- liste des tableaux

Chapitre 1. Combustion dans les fours industriels

1. Notions sur la combustion	7
2. Condition nécessaire pour obtenir une combustion	7
3. Nature et composition de l'air comburant	7
4. Les combustibles : solides, liquides, gazeux	7
5. Les réactions de combustion	8
7. Les différents types de combustion	9
8. Grandeurs de la combustion	10
9. Four à combustible	12
10.L'enthalpie de formation	13
13. Température de flamme	13
14.Les Pouvoir calorifique	14
16. Pouvoir comburivore	15
17. Pouvoir fumigène	15
18.L'entropie absolue	15
19.Le diagramme d'OSWALD	16
20. Procédés de combustion	17
Exercices	18

Chapitre 2. Classification des fours

1. Introduction	24
2. Définition	24
3. Le four industriel	24
4. Fonctionnement	24

Technologie des fours

5. Usages des fours et étuves			
6. Classification			
6.1.	26		
6.2.	Classification selon le mode de chargement	29	
6.3.	Fours à chauffage direct et indirect	29	
6.4.	Fours à haute et basse température	30	
6.5.	Les combustibles utilisés	30	
	Chapitre 3. Transfert de chaleur dans les fours		
1. Raj		32	
	conduction	32	
	rayonnement thermique	32	
4. La	convection	33	
5. Fours à haute température			
6. For	urs à basse température	34	
7. Rô	e de la conduction	36	
8. Ch	auffage à courants parallèles et chauffage à contre-courant	37	
9. For	urs discontinus	38	
Exercices		39	
Ch	apitre 4. Calcul thermique des fours		
	oduction	45	
	an énergétique	45	
3. Rei	ndement énergétique	45	
4. Rei	idement de combustion	46	
5. Flu	x thermiques admissibles	50	
	alité du chauffage	51	
7. Pui	ssance installée	51	
8. Dir	nensionnement des fours	53	
Ex	ercices	55	

Technologie des fours

Chapitre 5. Isolation des fours	
1. Conception générale	60
2. Définitions	60
3. Physique des matériaux réfractaires	60
4. Chimie des matériaux réfractaires	61
5. Interactions entre les réfractaires et le four	62
6. Dimensionnement des parois réfractaires	63
Exercices	64
Conclusion	66
Références bibliographiques	67

Liste des figures

- Figure 1. Les éléments de base d'un four à combustible
- Figure 2 : Diagramme d'OSTWALD du FOD
- Figure 3. Four discontinu à cloche cylindrique
- Figure 4 : Four discontinu à sole élévatrice
- Figure 5: Four discontinu à sole mobile
- Figure 6 : Four continu à pousseuse
- Figure 7 : Four continu à traction de feuillard
- Figure 8 : Fours à chauffage direct et indirect
- Figure 9 : Ventilateur de circulation de gaz dans un four de réchauffage de pièces en métaux non ferreux
- Figure 10 : Brûleur à grande vitesse et positionnement de ces brûleurs autour d'une charge cylindrique
 - Figure 11 : Puissance installée

Liste des tableaux

- **Tableau 1 :** Caractéristiques des combustibles
- **Tableau 2.** Résistance pyroscopique des matériaux réfractaires silico-alumineux en fonction de leur teneur en alumine

Chapitre 1. Combustion dans les fours industriels

1. Notion sur la combustion

La combustion est une réaction chimique d'oxydation exothermique, c'est l'oxydation d'un combustible (par exemple la matière végétale) avec un comburant (par exemple l'oxygène de l'air).

> But de la combustion

La combustion d'un corps porté à une température suffisante permet une production de chaleur.

2. Condition nécessaire pour obtenir une combustion

Il y a trois conditions qui doivent être réunies simultanément pour que la combustion soit possible :

Le combustible : matière capable de se consumer (de bruler)

Le comburant : corps qui se combinant avec un combustible permet la combustion

La source d'énergie : énergie nécessaire au démarrage de la réaction chimique de la combustion.

Remarque : L'absence d'un des trois éléments empêche le déclenchement de la combustion

3. Nature et composition de l'air comburant

Le comburant est l'air atmosphérique dont la composition est la suivante :

Oxygène : O_2 Dioxyde de carbone : CO_2

Azote: N₂ Gaz rares: Néon, Krypton...

4. Les combustibles : solides, liquides, gazeux

On distingue les combustibles solides, liquides et gazeux ; on peut les subdiviser en trois classes : le charbon, les hydrocarbures liquides, et les hydrocarbures gazeux.

Les hydrocarbures liquides ou gazeux d'usage courant sont des mélanges de plusieurs hydrocarbures.

La plupart des hydrocarbures liquides sont obtenus par distillation et crackage du pétrole brut. À partir de ce dernier, on obtient donc une variété de combustibles dont les plus communs sont l'essence, le kérosène, le gazole et le fuel lourd.

Les combustibles gazeux proviennent principalement soit de gisements de gaz naturel, soit de procédés chimiques de fabrication. Le gaz naturel est constitué principalement de méthane, contrairement aux gaz de transformation.

La composition générale des combustibles courants est donnée ci-dessous :

Tableau 1 : Caractéristiques des combustibles

Etat	Solide	Liquide	Gaz
			Hydrocarbures
Constituants	C, H ₂ O, Cendres	$C; H_2; S$	Mélanges CnHm,
			N_2 , CO_2
Combustibles	Charbons,	Fioul Domestique	Gaz naturels,
courants	Anthracites, Bois	Fiouls Lourds n°1 et 2	Butane et Propane
			commerciaux, Air
			propané

Exemple: gaz naturel = CH₄ majoritairement

Bois « sec » : en moyenne 19% d'eau, 1% de cendres, 40% de Carbone, 5% d'Hydrogène, 35% d'Azote et d'Oxygène, mais la teneur en eau peut varier de quelques pour cents.

5. Réaction de combustion

Les réactions de combustion se font sans variation de masse de chacun des éléments. Une combustion est une réaction chimique. On peut écrire le bilan de la réaction de combustion : Réactifs → Produits

Combustible + Comburant → Produits de la réaction

Combustible + Comburant → Produits de Combustion + chaleur

Gaz, bois... Air
$$\rightarrow$$
 CO₂, H₂O, ...

À titre d'exemple, les réactions de combustion du carbone et du méthane sont respectivement

$$C + O_2 \rightarrow CO_2 \tag{1}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 (2)

On distingue dans une telle réaction, les réactifs, qui subissent la réaction, et comburant, qui est le corps contenant l'agent oxydant, le plus fréquemment l'air. Les produits de la combustion d'hydrocarbures comprennent du dioxyde de carbone (CO₂) et de l'eau, qui selon les conditions de pression et de température, pourra être sous forme liquide ou vapeur.

Pour un hydrocarbure composé uniquement de carbone et d'hydrogène, de formule Cx Hy, la réaction de combustion s'écrit :

$$CxHy + (x + \frac{y}{4}) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2O$$
 (3)

On considère que l'air est composé de 21% d'oxygène et de 79% d'« azote atmosphérique » auquel on attribue une masse molaire fictive pour tenir compte de la présence d'argon.

La réaction de combustion d'un hydrocarbure avec l'air devient donc

$$CxHy + (x + \frac{y}{4}) O_2 + \frac{79}{21} (x + \frac{y}{4}) N_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{79}{21} (x + \frac{y}{4}) N_2$$
 (4)

6. Produits de combustion (fumées)

Les produits de combustion (fumées) sont constitués de :

> Principalement:

Dioxyde de carbone : CO₂

Vapeur d'eau H₂O

Azote N₂

> Eventuellement:

Oxyde de soufre SO₂

Oxygène O2

Monoxyde de carbone CO

NOx, NO, NO₂

Hydrogène libre H₂

Imbrulés solides ou gazeux.

La présence et le pourcentage de ces constituants présents dans les produits de combustion permettront :

- a) De définir le type de combustion
- b) D'envisager les risques potentiels :
 - o d'asphyxie pour les personnes
 - o de corrosion du matériel (chaudière, conduit de fumées)
 - o de pollutions atmosphériques
- c) D'affiner les réglages du brûleur et d'améliorer les rendements.

7. Les différents types de combustion

Il ne suffit pas de mettre en présence un combustible, de l'air et une étincelle pour réaliser une bonne combustion : Selon la quantité d'air, les réglages de l'appareil de combustion, la cheminée..., la combustion sera de plus ou moins bonne « qualité », c'est-à-dire :

- Sans produit toxique pour l'homme ou l'environnement dans les fumées
- Avec un bon rendement

C'est pour cette raison que l'on étudie les différents types de combustion

- La combustion est *complète* si la totalité du combustible est oxydée.
- La combustion est incomplète s'il y a présence de combustible dans les fumées, ou si certains composants sont partiellement oxydés (ex : CO)
- La combustion est dite stœchiométrique, neutre ou théorique si l'air comburant est en quantité suffisante et strictement nécessaire à la combustion complète de l'unité de combustible. Les fumées ne contiennent pas d'oxygène.
- La combustion est dite « avec flammes » ou « vive » lorsque les gaz de décomposition thermique s'oxydent
- La combustion est dite « sans flammes » ou « lente » lorsque l'oxydation concerne les résidus de cette décomposition thermique.

Au cours d'incendies de forêt ou de brûlages contrôlés, la majeure partie de la combustion est « vive », la phase « lente » se rencontre toutefois au niveau de la couverture morte ou lorsque le feu couve dans les racines.

La pyrolyse (destruction par le feu) : c'est la décomposition chimique, en vase clos, de la matière sous l'effet de la chaleur seule. Au cours d'incendies de forêt ou de brûlages contrôlés, ce phénomène se produit rarement mais la gazéification observée s'y apparente.

- La combustion est oxydante ou en excès d'air si une partie de l'air comburant est utilisé pour l'oxydation du combustible, l'autre partie se retrouvant dans les fumées. Excès d'air: c'est la quantité d'air au-delà de la stoechiométrie nécessaire à la combustion complète du combustible. Cet excès d'air est en général de 2 à 10% sur les équipements de chauffe industriels. Un trop faible excès d'air peut conduire à une combustion incomplète, des fumées noires, un étouffement du four. Un trop large excès d'air conduit essentiellement à une perte de rendement.
- La combustion est dite *réductrice* ou *en défaut d'air* si le volume d'air admis pour la combustion de l'unité de combustible est inférieur au volume d'air stœchiométrique ; l'oxygène y est néanmoins totalement utilisé donc pas de présence d'O₂ dans les fumées, mais il y a formation de monoxyde de carbone (CO).

8. Grandeurs de la combustion

a. Le facteur d'air, ou taux d'aération (N), est le rapport du volume d'air réellement utilisé (R) sur le volume d'air théorique (Va).

$$N = \frac{R}{Va}$$

En combustion stechiométrique : $\mathbf{R} = \mathbf{V}\mathbf{a}$

$$N = \frac{R}{Va} = 1$$

En combustion oxydante : $\mathbf{R} > \mathbf{Va}$ (excès d'air)

$$N = \frac{R}{Va} > 1$$

En combustion réductrice : R < Va (défaut d'air)

$$N = \frac{R}{Va} < 1$$

b. L'excès d'air (Ea), est le rapport du volume d'excès d'air (Vea) sur le volume d'air théorique (Va).

$$Ea = \frac{Vea}{Va}$$

$$\mathbf{N} = \frac{\mathbf{R}}{\mathbf{V}\mathbf{a}}$$
 Or.

$$N = \frac{R}{Va} = \frac{Va + Vea}{Va} = 1 + \frac{Vea}{Va} = 1 + Ea$$

$$N = 1 + Ea$$
 ou $Ea = N - 1$

D'où

c. Le défaut d'air (Da), est le rapport du volume de défaut d'air (Vda) sur le volume d'air théorique (Va).

$$Da = \frac{Vda}{Va}$$

$$N = \frac{R}{Va} = \frac{Va - Vda}{Va} = 1 - \frac{Vda}{Va} = 1 - Da$$

$$N = 1 - Da$$
 ou $Da = 1 - N$

D'où

Remarque:

• Lorsque l'excès d'air augmente :

Le volume de fumées sèches augmente,

Le volume de CO₂ ne bouge pas.

• La teneur en CO₂ dans les fumées sèches varie selon l'excès d'air.

Plus l'excès d'air est fort plus la teneur est basse.

Si l'excès d'air est nul la teneur est maximale et l'on parle de « CO₂ neutre » ou « CO₂ max » qui dépend de la composition du combustible utilisé.

Lorsque l'excès d'air augmente :

Le volume de fumées sèches augmente,

Le volume d'O₂ dans les fumées augmente.

• La teneur en O2 dans les fumées sèches varie selon l'excès d'air.

Plus l'excès d'air est fort plus la teneur est élevée.

La teneur en O₂ dans les fumées pourra varier de 0 à 21 % selon qu'il n'y a pas d'excès d'air ou que celui-ci est infini. (Phase de pré-ventilation par exemple)

9. Four à combustible

Les éléments de base d'un four à combustible sont présentés dans la figure 1.

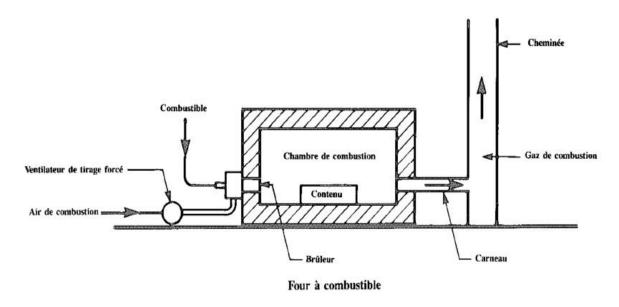


Figure 1. Les éléments de base d'un four à combustible

Lorsque la chaleur est produite par combustion, le four, le sécheur ou le four de cuisson est équipé d'une chambre de combustion dans laquelle brule un combustible. Ce dernier, admis au niveau du bruleur, est mélangé avec de l'air puis est allumé. Il s'agit habituellement de gaz naturel ou de mazout ou d'autres produits. Le produit peut être exposé directement à la chaleur

générée dans la chambre de combustion ou indirectement par le biais d'un échangeur de chaleur pour éviter une exposition directe au gaz de combustion.

10. L'enthalpie de formation

On désigne l'enthalpie de formation e par le symbole h f⁰

Considérons la combustion de carbone solide avec de l'oxygène dans un système ouvert stationnaire.

On suppose que les deux réactifs entrent dans la chambre de combustion à l'état de référence, et que le dioxyde de carbone formé sort à l'état de référence également.

L'équation chimique de réaction étant

$$C + O_2 \rightarrow CO_2$$
 (5)

La mesure de la chaleur échangée nous fournit donc la différence d'enthalpie entre les produits (P) et les réactifs (R) aux conditions de référence. Supposons que l'on attribue une valeur nulle à l'enthalpie des corps simples.

$$\sum_{P} \dot{n}_s \overline{h}_s - \sum_{R} \dot{n}_e \overline{h}_e$$

$$n_C \overline{q} = \sum_P n_s \overline{h}_s - \sum_R n_e \overline{h}_e = n_{CO_2} \overline{h}_{CO_2} - n_C \overline{h}_C - n_{O_2} \overline{h}_{O_2}$$

- 11. La chaleur spécifique : c'est la quantité de chaleur nécessaire pour élever la température d'un gramme de combustible de 1°C. Par définition, celle de l'eau est de 1 cal. g⁻¹.°C⁻¹ ou de 4, 18 J. g⁻¹.°C⁻¹
- **12. La chaleur latente de vaporisation** : c'est la quantité de chaleur nécessaire pour faire passer un corps de l'état liquide à l'état gazeux. Dans les conditions normales de température et de pression, celle de l'eau est de 2 260 J.g⁻¹.

13. Température de flamme:

Soit une réaction de combustion se produisant adiabatiquement, sans travail ni variation d'énergie cinétique et potentielle. La température des produits d'une telle réaction est appelée température adiabatique de flamme ou de combustion. En vertu des hypothèses d'absence de travail et de variations d'énergie cinétique et potentielle, il s'agit de la température maximum qui peut être atteinte pour les réactifs donnés. Pour un combustible donné et des pressions et température des réactifs donnés, la température adiabatique de flamme est maximale pour un mélange stœchiométrique. La température adiabatique de flamme peut être contrôlée par l'excès d'air utilisé.

Technologie des fours

En outre, la température peut être estimée en considérant que la chaleur dégagée par la

combustion est intégralement fournie aux produits de la combustion au niveau de la flamme,

sous forme de chaleur sensible (et/ou latente). Les produits de la combustion cèdent ensuite une

part de leur énergie par rayonnement dans le foyer, une autre partie de leur énergie par

convection/conduction, et en conservent une partie en quittant la chaudière à température plus

ou moins importante.

14. Les pouvoirs calorifiques :

Le pouvoir calorifique d'un combustible est la quantité de chaleur dégagée par la

combustion complète, sous la pression atmosphérique normale, de l'unité de combustible,

celui-ci ainsi que les produits de combustion étant à 0 °C.

 \rightarrow Notation : PC

→ Unité :

[kJ/kg(n) de combustible] ou [kJ/m³(n) de combustible]

→ Remarque :(n) signifie que toutes les réactions se produisent dans les

conditions normales de température et de pression.

On utilise souvent les expressions chaleur de réaction ou pouvoir calorifique, qui

désignent la chaleur extraite de la chambre de combustion durant une combustion à température

constante. Dans le cas d'une combustion isobare, la chaleur est égale à l'opposée de l'enthalpie

de combustion. On l'appelle pouvoir calorifique isobare. Dans le cas d'une combustion à

volume constant, la chaleur échangée est égale à l'opposé de l'énergie interne de combustion.

On l'appelle pouvoir calorifique isochore.

Le pouvoir calorifique_est dit inférieur (PCI) quand l'eau résultant de la combustion de

l'hydrogène et des hydrocarbures est supposée à l'état de vapeur dans les produits de

combustion.

Le pouvoir calorifique_est supérieur (PCS) quand cette eau de combustion est ramenée

à l'état liquide dans les fumées.

$$PCS - PCI = m_{H2O}.Lv$$

Lv=2500 kJ/kg aux CNTP

Masse d'eau contenue dans les fumées

Elle dépend de la quantité d'hydrogène présente dans le combustible

Exemple: $m(H_2O) = 1.6$ kg dans les fumées pour la combustion de 1 m³(n) de gaz naturel

Quelques PCI/PCS

Gaz naturel: PCI et PCS d'environ 10.2 kWh / m³(n) et 11.3 kWh / m³(n)

~ 14 ~

Fioul domestique: PCI et PCS d'environ 10 kWh / l(n) et 11 kWh / l(n)

15. La puissance du front de feu (loi de Byram) : elle est égale au produit de l'énergie libérée par la vitesse de progression du front de feu. Elle est classiquement déterminée par la formule suivante :

$$\mathbf{P_f} = \mathbf{PCI} \times \mathbf{M} \times \mathbf{V_f} \tag{6}$$

Avec,

P_f: puissance du feu par mètre linéaire de front, en W. rn⁻¹

PCI: pouvoir calorifique inférieur du combustible sec, en J. g⁻¹

M : masse sèche disparue au cours de la combustion, en g. m⁻²

 V_f : vitesse de propagation du front de feu, en rn. S^{-1}

- ➤ Le débit calorifique : est la quantité de chaleur libérée par unité de temps, il s'exprime en Watts.
- ➤ Le flux calorifique : rapporte le débit calorifique à l'unité de surface émissive, il s'exprime donc en W.m⁻²
- **16. Pouvoir comburivore :** c'est la quantité d'air nécessaire pour brûler une quantité unitaire de combustible, en kg d'air par kg de combustible (pour les solides) ou en Nm3 d'air par Nm3 de combustible (pour les gaz).
- **17. Pouvoir fumigène** : c'est la quantité de fumées produites par la combustion à l'air d'une quantité unitaire de combustible, en kg de fumées par kg de combustible ou Nm3 de fumées par Nm3 de combustible.

18. L'entropie absolue

Il est nécessaire d'invoquer le troisième principe de la thermodynamique, formulé à la suite des travaux de Nernst et Planck, selon lequel l'entropie d'un cristal parfait est nulle au zéro absolu. Ce principe fournit donc un point de référence absolu à partir duquel on peut évaluer l'entropie d'une substance.

L'entropie définie de la sorte est désignée sous le nom d'entropie absolue. On peut la déterminer expérimentalement par des mesures calorimétriques ou à l'aide de la thermodynamique statistique. Les entropies absolues des solides et liquides aux conditions normales sont disponibles dans la littérature. Elles sont désignées par le symbole S°. On en déduit l'entropie absolue à une pression quelconque par l'expression

$$\overline{s}_{p,T} = \overline{s}_T^0 - \overline{R} \ln \left(\frac{p}{p_0} \right)$$

19. Le diagramme d'Ostwald

Pour caractériser facilement la qualité de la combustion d'une installation, on mesure les taux γ CO_2 et γ O_2 dans les fumées, à l'aide d'un analyseur de fumées.

Ensuite, le diagramme permet d'obtenir en fonction du γ CO₂ mesuré et du γ O₂ mesuré :

Le type de combustion réelle

Le % d'excès d'air ou de défaut d'air

Le γ CO (s'il y a lieu)

Il est défini pour un combustible donné, l'axe des abscisses représente le γ O_2 et celui des ordonnées représente le γ CO_2 . Il comporte en général :

- \triangleright La droite des combustions oxydantes (γ CO = 0%) graduée en excès d'air,
- \triangleright Une graduation en défaut d'air sur l'axe vertical (γ O₂0%),
- \triangleright Le point représentatif de la combustion neutre (γ O₂=0% et γ CO = 0%) pour γ CO_{2max},
- Les droites d'égale teneur en CO (γ CO = cte) parallèle à la droite des combustions oxydantes,
- Les droites d'égal excès ou défaut d'air

Les diagrammes d'OSTWALD sont applicables à tous les combustibles, ils sont insensibles aux teneurs en eau et en cendres des combustibles solides, mais ne sont plus utilisables si la teneur en imbrûlés solides dépasse 3%. Les diagrammes pratiques sont limités à leur partie utile (γ O₂<21%).

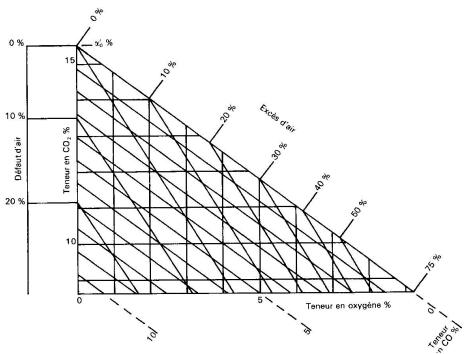


Figure 2: Diagramme d'OSTWALD du FOD

Exemple : On mesure γ CO₂ =11% et γ O₂ =6%

Sur le diagramme, on place le point, qui sur la diagonale supérieure : La combustion est donc complète, avec 38 % d'excès d'air, et 0%de CO

En fonction de la fiche technique du matériel de combustion, on peut ensuite modifier les réglages pour diminuer l'excès d'air.

20. Procédés de combustion

On caractérise l'efficacité d'un procédé réel de combustion au moyen de divers paramètres, selon l'application considérée.

Chambre de combustion (turbine à gaz): dans ce cas, si la combustion était complète et adiabatique, la température de sortie serait la température adiabatique de flamme. En réalité, la combustion n'est pas parfaite (formation d'oxydes d'azote p. ex.) et il se produit une perte de chaleur vers l'ambiance, de sorte que la quantité de combustible nécessaire pour obtenir une température donnée est plus élevée que pour une combustion complète et adiabatique.

Générateur de vapeur: dans ce cas, l'objectif est de transmettre un maximum de chaleur à la vapeur d'eau.

Moteur volumétrique à combustion interne : Pour un moteur, l'effet utile est le travail fourni. La manière logique de caractériser sa performance serait par conséquent d'employer son rendement exégétique.

Exercices

Exercice 1

La réaction chimique bilan entre le carbone $\, \, C \,$ dans le dioxygène $\, O_2 \,$ se fait selon :

$$C + O_2 \rightarrow CO_2$$

- 1- Quel est le combustible ?
- 2- Quel est le comburant ?
- 3- Quel est le produit
- 4- Quels sont les réactifs?
- 5- Comment on peut prouver la présence de ce produit ?

Réponse

- 1- Quel est le combustible ? Le carbone
- 2- Quel est le comburant ? Le dioxygène
- 3- Quel est le produit ? Le dioxyde de carbone
- 4- Quels sont les réactifs ? Le carbone et le dioxygène
- 5- Comment on peut prouver la présence de ce produit ?

On utilise l'eau de chaux, car le dioxyde de carbone trouble l'eau de chaux.

Exercice 2

La combustion complet du butane est une réaction chimique (transformation chimique) qui produit une grande quantité de la chaleur,

Butane + dioxygène → eau + dioxyde de carbone

- 1- Dans ce cas quelle est la couleur de la flemme (feu)
- 2- Comment est la quantité l'air (dioxygène)
- 3- Quel est le comburant ?
- 4- Quel est le combustible ?
- 5- Quels sont les réactifs?
- 6- Quels sont les produits
- 7- Comment on peut prouver la présence de ces produits ?
- 8- Ecrire cette réaction bilan en utilisant les formules chimiques

<u>Réponse</u>

La combustion complète du butane est une réaction chimique (transformation chimique) qui produit une grande quantité de la chaleur,

Butane + dioxygène → eau + dioxyde de carbone

- 1- Dans ce cas quelle est la couleur de la flemme (feu) :Bleu
- 2- Comment est la quantité l'air (dioxygène)

Suffisante

- 3- Quel est le comburant ? dioxygène
- 4- Quel est le combustible ? Butane
- 5- Quels sont les réactifs ? Butane et dioxygène
- 6- Quels sont les produits ? Eau et dioxyde de carbone
- 7- Comment on peut prouver la présence de ces produits ?

La présence de la buée explique que de l'eau s'est formée.

Le test de l'eau de chaux montre la formation de dioxyde de carbone.

8- Ecrire cette réaction bilan en utilisant les formules chimiques

$$C_4H_{10} + O_2 \rightarrow H_2O + CO_2$$

Exercice 3

La combustion incomplète du butane est une réaction chimique (transformation chimique) qui produit une petite quantité de la chaleur,

Butane + dioxygène → eau + dioxyde de carbone + carbone + monoxyde de carbone

- 1- Quelle est la couleur de la flemme (feu)
- 2- Comment est la quantité l'air (dioxygène)
- 3- Quel est le comburant ?
- 4- Quel est le combustible ?
- 5- Quels sont les réactifs?
- 6- Quels sont les produits?
- 7- Comment on peut prouver la présence de ces produits ?
- 8- Ecrire cette réaction bilan en utilisant les formules chimiques

Réponse

La combustion incomplète du butane est une réaction chimique (transformation chimique) qui produit une petite quantité de la chaleur,

Butane + dioxygène → eau + dioxyde de carbone + carbone + monoxyde de carbone

- 1- Quelle est la couleur de la flemme (feu) : jaune
- 2- Comment est la quantité l'air (dioxygène) insuffisante
- 3- Quel est le comburant? Butane
- 4- Quel est le combustible ? Dioxygène
- 5- Quels sont les réactifs ? Butane et dioxygène
- 6- Quels sont les produits ?

Eau et dioxyde de carbone et monoxyde de carbone et le carbone.

7- Comment on peut prouver la présence de ces produits ?

la présence de la buée explique que de l'eau s'est formée.

Le test de l'eau de chaux montre la formation de dioxyde de carbone.

8- Ecrire cette réaction bilan en utilisant les formules chimiques

$$C_4H_{10} + O_2 \rightarrow H_2O + CO_2 + CO + C$$

Exercice 4

La réaction de combustion du Benzène C6H6 avec l'oxygène, est

$$(C_6H_6)(l) + 7,5O_2(g) ----- \rightarrow 6 CO_2(g) + 3 H_2O(l)$$
 à T = 298°K et P = 1 atm

Calculer:

- 1- L'Enthalpie de combustion standard du benzène (P=1atm et T=298°K)
- 2- L'Enthalpie de combustion standard du benzène (P=1atm et T=400°K).

Données:

$$\Delta H_{f (CO_2)_g}^0 = -393.50 \frac{kj}{mole} \qquad \Delta H_{f (C_6H_6)_l}^0 = +49.00 \frac{kj}{mole} \qquad \Delta H_{f (H_2O)_l}^0 = -285.80 \frac{kj}{mole}$$

$$\Delta H_{V (C_6H_6)}^0 = +94.6 \frac{cal}{g} \quad \grave{a} \quad Tv = 80^{\circ}C \qquad \Delta H_{V (H_2O)}^0 = +1440 \frac{cal}{g} \quad \grave{a} \quad Tv = 100^{\circ}C$$

$$Cp_{(C_6H_6)_g} = 81.67 \frac{j}{mole.^{\circ}K} \qquad \qquad Cp_{(CO_2)_g} = Cp_{(H_2O)_g} = 40.00 \frac{j}{mole.^{\circ}K}$$

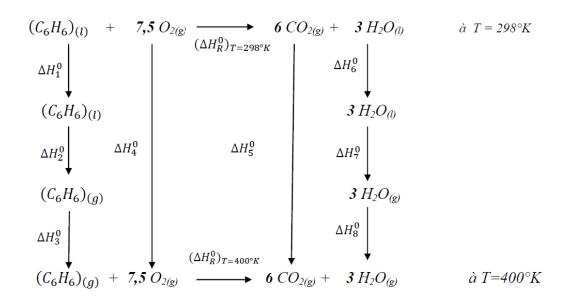
$$Cp_{(H_2O)_l} = 75.24 \frac{j}{mole.^{\circ}K} \qquad \qquad Cp_{(O_2)_g} = 30.00 \frac{j}{mole.^{\circ}K}$$

$$Cp_{(C_6H_6)_l} = 146.72 \frac{j}{mole.^{\circ}K}$$

Réponse.

$$a- (\Delta H_R^0)_{T=298^\circ K} = ?$$

$$Loi \ de \ HESS. \rightarrow (\Delta H_R^0)_{T=298^\circ K} = \sum_{i=1}^n (\Delta H_f^0)_P^{298^\circ K} - \sum_{i=1}^n (\Delta H_f^0)_R^{298^\circ K}$$


$$(\Delta H_R^0)_{T=298^\circ K} = 6. \ \Delta H_f^0_{(CO_2)_g} + 3 \ \Delta H_f^0_{(H_2O)_l} - \Delta H_f^0_{(C_6H_6)_l}$$

$$= 6.(-393,50) + 3.(-285,80) - 49,00 = -2361 - 857,4 - 49 = -3267,4 \ kj/mole$$

$$(\Delta H_R^0)_{T=298^{\circ}K} = -3267,4 \, kj/mole$$

$$b-(\Delta H_R^0)_{T=400^{\circ}K}=?$$

<u>Méthode du cycle</u>. $\rightarrow \sum (\Delta H)_{cycle} = 0$

$$\begin{split} \Delta H_1^0 = & \int_{298^\circ K}^{353^\circ K} C_{P(C_6H_6)(l)} dT = C_{P(C_6H_6)(l)}.\Delta T = 146,72. \left(\ 353 - 298 \right) = \ 8069,6 \ j \\ \Delta H_2^0 = m. \ \Delta H_{V(C_6H_6)}^0 = n. \ M. \ \Delta H_{V(C_6H_6)}^0 = 1.78. \ 94,6.4,185 = 30843,38 \ j \\ \Delta H_3^0 = & \int_{353^\circ K}^{400^\circ K} C_{P(C_6H_6)(g)} dT = C_{P(C_6H_6)(g)}.\Delta T = 81,67. \left(\ 400 - 353 \right) = \ 3838,49 \ j \\ \Delta H_4^0 = & \int_{298^\circ K}^{400^\circ K} 7,5. \ C_{P(O2)(g)} dT = 7,5 \ C_{P(O2)(g)}.\Delta T = 7,5. \ 30. \left(\ 400 - 298 \right) = \\ \Delta H_5^0 = & \int_{298^\circ K}^{400^\circ K} 6. \ C_{PCO2(g)} dT = 6.40 \ \left(\ 400 - 0298 \right) = \\ \Delta H_6^0 = & \int_{298^\circ K}^{373^\circ K} 3. \ C_{PH2O(l)} dT = 3. \ C_{PH2O(l)}.\Delta T = 3. \ 75,24. (373 - 298) = \\ \Delta H_7^0 = m. \ \Delta H_{VH2O}^0 = n. \ M. \ \Delta H_{V(H2O)}^0 = 3. \ 18. \ 1440.4.185 = \\ \Delta H_8^0 = & \int_{373^\circ K}^{400^\circ K} 3. \ C_{PH2O(g)} dT = C_{PH2O(g)}.\Delta T = 3.40. (400-373) = \\ \end{split}$$

D'ou:

$$\sum (\Delta H)_{cycle} = 0 \implies$$

D'ou:

$$\sum (\Delta H)_{cycle} = 0 \implies$$

$$\Delta H_{1}^{0} + \Delta H_{2}^{0} + \Delta H_{3}^{0} + \Delta H_{4}^{0} + (\Delta H_{R}^{0})_{T=400^{\circ}K} - \Delta H_{5}^{0} - \Delta H_{6}^{0} - \Delta H_{7}^{0} - \Delta H_{8}^{0} - (\Delta H_{R}^{0})_{T=298^{\circ}K} = 0$$

$$(\Delta H_{R}^{0})_{T=400^{\circ}K} = (\Delta H_{R}^{0})_{T=298^{\circ}K} + \underbrace{\Delta H_{5}^{0} + \Delta H_{6}^{0} + \Delta H_{7}^{0} + \Delta H_{8}^{0}}_{produits} \underbrace{-\Delta H_{1}^{0} - \Delta H_{2}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{4}^{0}}_{R\acute{e}actifs} - \underbrace{\Delta H_{2}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{4}^{0}}_{D=298^{\circ}K} + \underbrace{\Delta H_{5}^{0} + \Delta H_{6}^{0} + \Delta H_{7}^{0} + \Delta H_{8}^{0}}_{produits} \underbrace{-\Delta H_{1}^{0} - \Delta H_{2}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0}}_{R\acute{e}actifs} - \underbrace{\Delta H_{2}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^{0}}_{D=298^{\circ}K} + \underbrace{\Delta H_{5}^{0} + \Delta H_{6}^{0} + \Delta H_{7}^{0} + \Delta H_{8}^{0}}_{D=298^{\circ}K} + \underbrace{\Delta H_{5}^{0} + \Delta H_{5}^{0} + \Delta H_{5}^{0} + \Delta H_{5}^{0} + \Delta H_{5}^{0} - \Delta H_{1}^{0} - \Delta H_{2}^{0} - \Delta H_{3}^{0} - \Delta H_{3}^$$

On retrouve la loi de Kirchhoff $(\Delta H_R^0)_{T=400^\circ K} = -3267,4+304,\,373 = -2963,027 \text{ kj/mole}$

$$(\Delta H_R^0)_{T=400^{\circ}K} = -2963,027 \text{ kj/mole}$$

Exercice 5

Une analyse de combustion nous a donné le relevé suivant:

$$%CO_2 = 10%$$

$$%O_2 = 3%$$

Calculer le pourcentage d'excès d'air:

<u>Réponse</u>

La lecture du diagramme nous donne un facteur d'air N = 1,14

$$(1.14-1) \times 100 = 14\%$$
 d'excès d'air

Exercice 6

Une analyse de combustion nous a donné le relevé suivant:

$$%CO2 = 10%$$

$$\%$$
 O2 = 0,5%

Calculer le pourcentage du défaut d'air:

Réponse

La lecture du diagramme nous donne un facteur d'air N=0.94

$$(1-0.94) \times 100 = 6\%$$
 de défaut d'air

Chapitre 2. Classification des fours

1. Introduction

On parle généralement de **fours** pour les traitements de métaux et de matériaux à une température supérieure à 300 C° environ ;

le terme d'**étuve** est réservé aux traitements des produits organiques et minéraux à une température inférieure à 300 C° et, en particulier, aux traitements par la vapeur d'eau.

On peut trouver d'autres termes tels que : enceinte, chaîne, cuve, bain, réacteur, etc., mais l'étude thermique de ces équipements est semblable à celle des fours.

2. Définition

Un four est un outil utilisé pour élever la température d'un produit. Il peut être soit : - un équipement destiné uniquement au chauffage (exemple : réchauffage de l'acier avant déformation plastique, réchauffage de pétrole brut avant distillation) ; - un véritable réacteur dans lequel on élabore les produits (exemple : four de fusion de verre, four de vapocraquage de la pétrochimie).

Le four s'intègre généralement dans une ligne de production complexe dont il est un des éléments. On trouve des fours dans un très grand nombre d'activités industrielles :

- l'industrie sidérurgique ;
- le traitement thermique des métaux ;
- le raffinage et de l'industrie chimique ;
- -la cimenterie;
- l'industrie verrière ;
- les industries céramiques et des produits réfractaires.
 - **3. Le four industriel** est habituellement employé pour les applications telles que traiter, cuire ou sécher des composants, des pièces et/ou même des produits finis.

4. Fonctionnement

Lorsque l'opérateur ferme la porte d'accès et met en marche le four industriel, l'air à l'intérieur de celui-ci est conditionné par un réchauffeur. L'air chauffé est ensuite circulé à travers le four industriel grâce à un ventilateur qui assure la distribution égale de la température. Une fois que le four industriel atteint son point de consigne, il diminue son rendement au niveau minimal afin de maintenir une température stable. Si nécessaire, l'air chaud est expulsé via des tuyaux d'échappement afin d'initier un processus de refroidissement.

5. Usages des fours et étuves : Secteurs d'activité concernés et applications par secteur

a. Industrie des métaux

Pour ce secteur d'activité, les fours et les étuves sont présents dans :

- la sidérurgie et la première transformation de l'acier ;
- la métallurgie et la première transformation des métaux non ferreux ;
- − la fonderie et le travail des métaux ;
- les constructions mécaniques, automobile, navale et aéronautique.

Chaque four a un ou plusieurs usages particuliers qui correspondent à un domaine de température (tableau 1).

b. Agriculture et industries agroalimentaires

Les fours et étuves de ces secteurs industriels ont pour finalité :

- le séchage dans un domaine de température d'enceinte de 40 à 180 C°;
- − la cuisson (100 à 300 C°);
- − la pasteurisation (70 à 80 C°);
- − la stérilisation (110 à 130 C°);
- la rétraction des emballages plastiques.

c. Matériaux et céramique

Pour ce domaine, les fours et les étuves permettent :

- − le séchage de matériaux broyés : craie, talc, chaux, etc. (50 à 120 C°);
- le séchage de matériaux façonnés préparés par voie humide : argile, poteries, etc. ;
- la fusion de verre, de vitrocéramique, d'émaux, de réfractaires, de fibres céramique ;
- la cuisson de produits obtenus par moulage ou frittage :
- les produits céramiques techniques (1 000 à 2 600 C°),
- les briques, les tuiles en terre (1 000 C°),
- les réfractaires de fours (1 200 à 1 700 C°),
- les abrasifs de meules (1 200 C°),
- les faïences (920 à 1 250 C°), la porcelaine (1 100 à 1 600 C°),
- les poteries et les grès (950 à 1 280 C°);
- − la thermomaturation du béton préfabriqué (50 à 80 °C);
- − la fabrication du ciment (clinkérisation à 1 450 C°).

d. Autres secteurs

Les fours et les étuves sont également rencontrés pour :

- − le séchage du bois (40 à 100 C°);
- − le séchage de produits pharmaceutiques (20 à 80 C°);

- − la polymérisation de matières plastiques (100 à 200 C°);
- − la vulcanisation du caoutchouc (150 à 200 C°).

6. Classification

Toute classification est arbitraire, elle est toutefois utile dans la mesure où elle permet de retrouver des caractéristiques communes à des équipements. Nous proposons des classifications, en fonction:

- De la manutention du produit : four continu ou discontinu
- Selon le mode de chargement
- Du procédé de chauffage : direct ou indirect.
- Du niveau de température ;
- Du combustible.

6.1. Classification selon la manutention du produit :

On distingue les fours continus ou discontinus

A. Fours discontinus appelés aussi fours intermittents ou fours à charge;

La charge reste fixe pendant le traitement entre l'enfournement et le défournement. Un four discontinu est soumis à un cycle de température variable dans le temps, tout comme la charge. Il fonctionne en régime thermique variable : l'inertie thermique du four peut alors jouer un rôle important dans son exploitation.

Les différents fours discontinus sont :

- − les fours à sole horizontale fixe ;
- les fours puits ;
- les fours à creuset ;
- − les fours à sole élévatrice (figure 1) ;
- − les fours à cloche (figure 2) ;
- − les fours à pots ;
- les fours basculants ;
- − les fours à sole mobile (figure 3) ;
- les fours à chariots.

B. **Fours continus** appelés fours tunnels ou fours à passage.

les produits à traiter se déplacent de façon continue ou pas à pas depuis l'enfournement jusqu'au défournement. Un four continu fonctionne en régime thermique établi. La charge traverse le four et le cycle de température est réalisé sur la longueur du four au cours de l'avancement de la charge. Chaque section du four est à température constante dans le temps, température qui lui est propre pour un cycle de traitement donné.

Les pertes globales du four sont constantes pour un cycle donné.

Les différents fours continus sont :

- les fours à pousseuse (fours à rails intérieurs, fours à galets intérieurs) (figure 4) ;
- − les fours à traction de feuillard (figure 5) ;
- les fours à sole inclinée ;
- − les fours à sole vibrante ;
- − les fours à tubes-moufles ;
- les fours à chaînes ;
- les fours à câbles transporteurs ;
- − les fours à tablier sans fin ;
- les fours à rouleaux commandés ;
- − les fours à longerons ;
- − les fours à sole tournante ;
- − les fours à plateau tournant ;
- les fours à wagonnets ;
- les fours à balancelles ;
- − les fours verticaux à passage pour traitement de bandes ;
- − les fours à cornue rotative ;
- − les fours à bains de sels à convoyeurs.

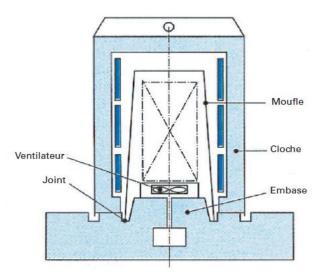


Figure 3. Four discontinu à cloche cylindrique

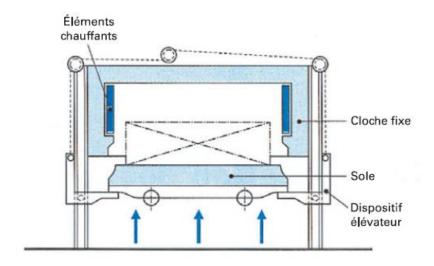


Figure 4 : Four discontinu à sole élévatrice

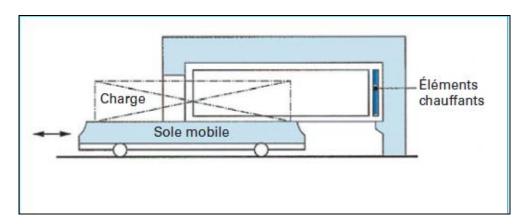


Figure 5: Four discontinu à sole mobile

Figure 6 : Four continu à pousseuse

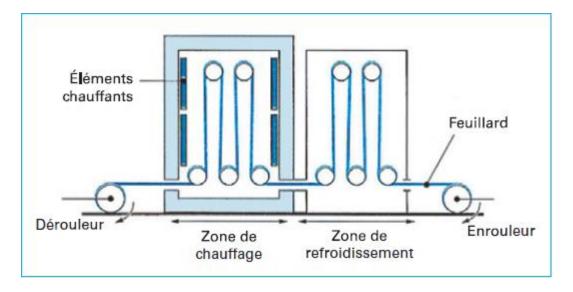


Figure 7: Four continu à traction de feuillard

6.2. Classification selon le mode de chargement

Les différents modes de chargement sont les suivants.

- Chargement horizontal
- fours à sole horizontale;
- fours à chargeuse ;
- fours à sole mobile.
 - o Chargement vertical
- fours puits ;
- fours à cloche.

6.3. Fours à chauffage direct et indirect

- Dans le chauffage direct, il y a contact entre les gaz issus de la combustion et les produits à chauffer). Une partie du transfert de chaleur s'effectuant par convection provoque des phénomènes à la surface du produit.
- Pour le chauffage indirect, l'interaction entre les gaz de combustion et les parois n'existe plus. Par contre, il s'introduit une résistance supplémentaire au transfert de chaleur qui ne doit se faire par conduction au travers de la paroi protectrice, puis par rayonnement et éventuellement convection vers la charge.

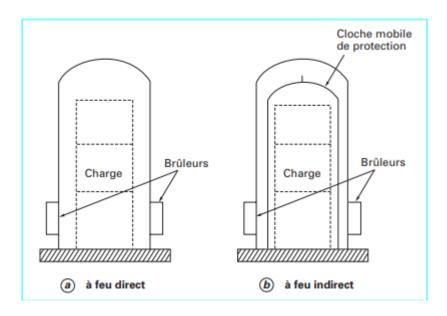


Figure 8 : Fours à chauffage direct et indirect

6.4. Fours à haute et basse température

Cette classification est arbitraire car une même température peut être considérée comme haute dans un type d'activité et basse dans une autre activité.

Exemple:

Une température de 700°C sera considérée comme haute dans l'industrie chimique

Et basse en sidérurgie ou dans l'industrie du verre. Même si cette limite est un tant soit peu arbitraire, elle n'en est pas moins réelle. les fours de sidérurgie, de verrerie, de cimenterie. La température que l'on veut obtenir sur le produit dépasse parfois nettement, 1 200 °C.

D'un point de vue technologique, au-dessus de 700°C à 800°C, il devient délicat de construire des fours à chauffage indirect.

D'un point de vue thermique :

- au-dessus de 1000°C, le transfert de chaleur se fait essentiellement par rayonnement ;
- au-dessous de 700°C, la part de la convection devient non négligeable et on cherchera à l'améliorer par mise en circulation des gaz autour du produit

6.5. Les combustibles utilisés

On peut également classer les fours en fonction de l'énergie utilisée. Le type d'énergie disponible et utilisé a en effet, un impact important sur la conception, l'utilisation et l'exploitation des fours. On trouvera dans le domaine des fours industriels, avec plus ou moins d'importance selon les activités, toutes les formes d'énergies :

Technologie des fours

- -des fours électriques : il s'agit des fours à résistance (effet de JOULE), à arcs, induction et à électrodes submergées.
- fours à gaz : ils utilisent le gaz naturel, mais aussi le gaz de cokerie, le gaz de raffinerie et le gaz à haut fourneaux.
- -fours à combustibles liquides : ils utilisent le fuel lourd, mais aussi le gazole et le naphta.
- -fours à combustibles solides : ils utilisent les charbons ou le coke de pétrole (généralement sous forme pulvérisée, mais aussi les déchets divers.

Chapitre 3. Transfert de chaleur dans les fours

1. Rappels

Un transfert de chaleur ou transfert thermique entre deux corps est une interaction énergétique qui résulte d'une différence de température entre les deux corps.

On distingue habituellement trois modes de transfert de chaleur :

- 1. *La conduction* thermique ou diffusion thermique
- 2. Le rayonnement thermique

3. La convection

Ces trois modes sont régis par des lois spécifiques, cependant strictement parlant, seuls la conduction et le rayonnement sont des modes fondamentaux de transmission de la chaleur ; la convection, tout en étant très importante, ne fait que combiner la conduction avec un déplacement de fluide.

En outre il est rare qu'une situation particulière ne concerne qu'un seul mode : le plus souvent 2 sinon 3 modes entrent en jeu.

2. La conduction

Est définie comme étant le mode de transmission de la chaleur (ou l'échange d'énergie interne) provoquée par la différence de température entre deux régions d'un milieu solide, liquide ou gazeux ou encore entre deux milieux en contact physique.

La conduction est le seul mécanisme intervenant dans le transfert de chaleur dans un solide homogène, opaque et compact.

La conduction s'effectue de proche en proche :

Si on chauffe l'extrémité d'un solide il y a transfert progressif.

Si on coupe le solide, on stoppe le transfert.

Exemple : Barre de métal chauffée à l'une de ces extrémités.

3. Le rayonnement thermique

Le rayonnement thermique est un phénomène de surface, c'est un mode de transmission par lequel la chaleur passe d'un corps à haute température à un autre plus froid sans nécessité de support matériel. C'est donc le seul mode de transfert de chaleur qui peut se propager dans le vide.

<u>L'exemple</u> le plus simple est celui du rayonnement solaire.

4. La convection

est le mode de transmission qui implique le déplacement d'un fluide gazeux ou liquide (écoulement) et échange avec une surface qui est à une température différente.

<u>Exemple</u>: C'est ce qui se passe le long d'un radiateur. L'air froid s'échauffe au contact avec le radiateur, se dilate et monte sous l'effet de la poussée d'Archimède. Il est alors remplacé par de l'air froid et ainsi de suite ; il ya existence de courants de fluide dans l'air ambiant.

On distinguera:

la convection forcée (due à l'action d'une pompe, ventilateur...)

la convection <u>naturelle</u> dans laquelle le mouvement du fluide est créé par des différences de densité, elles mêmes provoquées par des différences de températue.

La finalité d'un four est de transférer de l'énergie à une charge (produits) pour en élever la température. Ce transfert se fera par les trois modes de transfert de chaleur (rayonnement, convection, conduction), la plupart du temps simultanément, mais dans des proportions très variables.

5. Fours à haute température

Ce sont les fours de sidérurgie, de verrerie, de cimenterie. La température que l'on veut obtenir sur le produit dépasse, et parfois nettement, 1 200 °C.

C'est également le cas d'un certain nombre de fours de l'industrie du pétrole et de la chimie dans lesquels, bien que la température du produit soit inférieure à 500 °C, une partie importante de la chaleur est fournie directement par le rayonnement de la flamme dans une zone de radiation.

Le transfert de chaleur s'y fait essentiellement par rayonnement de la flamme et des gaz issus de la combustion. Les transferts de chaleur par rayonnement découlent fondamentalement de la loi de Stefan-Boltzmann :

$$\dot{Q} = a\sigma S \left(T_f^4 - T_c^4 \right)$$

Avec **Q**: puissance thermique

et de considérations géométriques liées aux dimensions et aux positions respectives des surfaces réceptrices de la chaleur (le produit à chauffer), des surfaces et volumes des émetteurs (flammes et gaz de combustion) et des surfaces réflectrices (parois du four).

Loi de Stefan-Boltzmann

Cette loi indique que la valeur de la puissance thermique émise par le rayonnement d'un corps noir est fonction de la température absolue de ce corps, à la puissance quatrième :

$$\dot{Q}_S = \sigma T^4$$

avec Qs puissance émise sur l'ensemble des longueurs d'onde par unité de surface,

T température du solide rayonnant (en kelvins),

 σ constante de Stefan-Boltzmann (5,67 x 10⁻⁸ W.m⁻².K⁻⁴ ou 4,89 x 10⁻⁸ kcal.m⁻².h⁻¹.K⁻⁴)

Dans un four, en première approximation, on considère que le four se comporte pour la charge comme un **corps noir** et la charge comme un **corps gris** vis-à-vis du four. Un *corps gris* a les mêmes caractéristiques d'émission énergétique qu'un corps noir, mais minorées par rapport à celui-ci.

On en déduit l'expression générale du transfert de chaleur par rayonnement :

$$\dot{Q} = a\sigma S \left(T_f^4 - T_c^4 \right)$$

avec Q puissance thermique transmise du four à la charge,

T_f température du four,

T_c température de la charge ou de la surface de la charge,

S surface de la charge offerte au rayonnement du four,

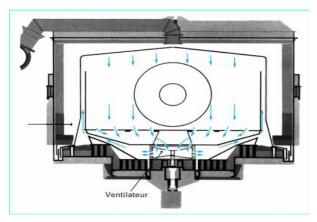
a coefficient d'absorption du rayonnement par la charge ; ce coefficient, qui est compris entre 0 et 1, est très proche de 1 lorsque : les dimensions du four sont grandes par rapport à celles de la charge ; la surface de la charge est peu réfléchissante

La convection jouera dans ces fours un rôle secondaire pour ce qui concerne la quantité de chaleur transférée, mais aura, dans un certain nombre de cas, un impact non négligeable sur l'égalisation des températures.

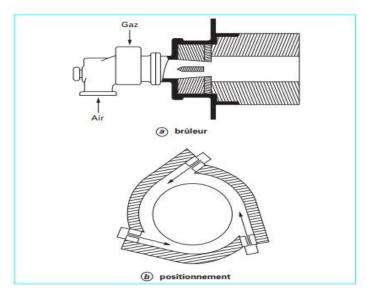
6. Fours à basse température

Ce sont, en particulier, les fours de traitement thermique de métallurgie, les fours de revêtement de surface et les fours pour les métaux non ferreux. La température que l'on veut obtenir sur le produit dépasse rarement 700 °C, et est parfois sensiblement inférieure. C'est également le cas des zones de convection des fours de l'industrie du pétrole et de la chimie. Le transfert de chaleur s'y fait essentiellement par convection de gaz transparents. La loi fondamentale du transfert de chaleur est la loi de Newton :

$$\dot{Q} = kS (T_f - T_c)$$


et on cherchera, pour un écart de température $(T_f - T_c)$ donné, à augmenter le transfert de chaleur en améliorant le coefficient de convection k qui s'écrit d'une façon générale :

$$k = A \frac{\lambda}{\ell} Re^{0.8} Pr^{0.33}$$


 \mathbf{Pr} (nombre de Prandlt) dépend essentiellement du fluide : ici les gaz de combustion. On voit qu'il faudra pour obtenir un coefficient d'échange \mathbf{k} élevé, essayer d'augmenter la valeur de \mathbf{Re} (nombre de Reynolds).

Cela se fera:

- o soit par mise en vitesse du fluide : implantation de ventilateurs à l'intérieur de l'enceinte (figure 1), utilisation de brûleurs à grande vitesse d'éjection des gaz de combustion dans le foyer (figure 2), recyclage externe des gaz ;
- o soit par augmentation des effets de pointe, comme l'adjonction d'ailettes ou de picots (studs) dans les zones de convection des fours tubulaires, qui accroissent simultanément la surface d'échange.

Figure 9: Ventilateur de circulation de gaz dans un four de réchauffage de pièces en métaux non ferreux

Figure 10 : Brûleur à grande vitesse et positionnement de ces brûleurs autour d'une charge cylindrique

7. Rôle de la conduction

Si le rayonnement et la convection sont les vecteurs principaux du transfert de chaleur du four vers la charge, avec, selon les cas, la prédominance de l'un ou de l'autre, la conduction assure le transfert de chaleur à l'intérieur des produits.

Pour les produits de grandes dimensions et/ou de faible conductivité thermique, la conduction est même assez souvent le mode déterminant dans la mesure où c'est le transfert de chaleur à l'intérieur de la charge qui limite la vitesse de chauffage et détermine le temps de séjour dans le four. Les lois à prendre en compte sont alors celles de la conduction en régime variable.

Exemple:

- réchauffage de lingots de forge ;
- fours de cuisson de produits réfractaires ;
- zone d'égalisation des fours de réchauffage de sidérurgie

La conduction joue aussi un rôle important pour les parois des fours, puisque c'est elle qui conditionne, en partie, les pertes thermiques du four et son rendement. Lorsque le régime de température est établi dans le four, ces pertes se calculeront par les lois de la conduction en régime permanent.

8. Chauffage à courants parallèles et chauffage à contre-courant

Dans les fours continus, les produits peuvent se déplacer dans le même sens que les fumées ou dans le sens inverse. L'efficacité maximale pour le transfert de chaleur est obtenue par une circulation à contre-courant. Cette disposition permet une plus grande production par unité de surface de sole ou de surface de four. Elle permet également d'obtenir une température des fumées en sortie de four plus faible, d'où un meilleur rendement énergétique global.

Loi de Newton et coefficient de convection

Le transfert de chaleur par convection du four à la charge est gouverné par la loi de Newton :

$$Q = k S (T_r - T_c)$$

avec Q puissance thermique transmise,
S surface de la charge au c

surface de la charge au contact de l'atmosphère du four.

T_f température des gaz dans le four,

T_c température de surface de la charge,

k coefficient d'échange thermique convectif

Le coefficient d'échange convectif k est fonction, d'une part, des conditions d'écoulement du fluide autour de la charge définies par le nombre de Reynolds Re; d'autre part, des caractéristiques physiques du fluide groupées dans le nombre de Prandlt Pr, par la relation générale:

$$Nu = A Re^a Pr^b$$

οù

 $Nu = k \ell/\lambda$ $Re = v\ell\rho/\eta$

et

$$Pr = c_p \eta / \lambda$$

avec v vitesse de l'écoulement,

 dimension caractéristique du solide autour duquel s'écoule le fluide,

ρ masse volumique du fluide,

capacité thermique massique à pression constante, du fluide,

η viscosité dynamique du fluide,

λ coefficient de conductivité thermique du fluide

Les caractéristiques physiques du fluide sont prises dans les conditions locales de température et de pression.

Nu, Re et Pr sont des nombres sans dimension, sous condition que chacun des termes qui les composent soient exprimés dans un système cohérent d'unités.

A, a et b sont des constantes qui varient selon la géométrie du système et la rugosité de la surface d'échange. On utilise souvent les valeurs suivantes : a = 0,80, b = 0,33 et A = 0,023 qui découlent des études expérimentales faites sur les écoulements compris entre deux plans ou dans un tube, mais pour des calculs précis il est conseillé de se reporter à des ouvrages spécialisés traitant des phénomènes de transfert de chaleur par convection. Par contre, cette disposition qui met les gaz les plus chauds en regard des produits à une température proche de la température finale recherchée peut, dans certains cas, générer quelques difficultés:

- surchauffe locale des produits ;
- fusion de surface des produits ;
- température de paroi trop élevée dans les fours tubulaires.

Dans ce cas on utilisera, au moins sur une partie du four, un cheminement parallèle des gaz et des produits, ce qui préservera l'intégrité de ces derniers.

9. Fours discontinus

Dans les fours discontinus, la montée en température de la charge et l'égalisation à l'intérieur du produit, se font sans déplacement dans l'espace de ce produit.

Pendant la période de montée en température, les produits étant généralement susceptibles d'absorber une quantité de chaleur importante, le transfert de chaleur est déterminé principalement par le rayonnement.

Pendant la période d'égalisation, la quantité de chaleur à fournir est relativement faible et c'est la conduction dans le produit qui régit le transfert de chaleur.

Durant cette période, la convection jouera un rôle important dans l'égalisation des températures sur toute la surface des produits. Pour ce faire, on organisera la circulation des gaz autour des produits de telle manière que les points de la charge qui ne sont pas soumis au rayonnement, direct de la flamme ou indirect des parois, soient balayés par les fumées.

Exemple:

- o sortie des fumées au niveau de la sole ;
- o mise en circulation périodique des fumées par des brûleurs fonctionnant en « tout ou rien ».

Exercices

Exercice 1

La paroi plane d'un four est composée de 3 couches successives de briques

- La température de la face intérieure du four est de 871 °C et la température de la face extérieure du four est maintenue à 52 °C par circulation d'air.
- 1) Calculer le flux perdu par unité de surface du four et déterminer les températures aux interfaces des couches.
- 2) Calculer le flux perdu par unité de surface du four en supposant qu'il existe une mince lame d'air de 6 mm d'épaisseur entre la couche de briques réfractaires et celle de briques isolantes. On supposera que les températures des faces internes et externes sont inchangées par rapport à la question 1). Dans ces conditions la conductivité thermique moyenne de l'air est $\lambda a = 0.055 \text{ kcal.h}^{-1}.\text{m}^{-1}.^{\circ}\text{C}^{-1}$.

couche	matériau	Epaisseur (cm)	λ_{m} (Kcal.h ⁻¹ .m ⁻¹ .°C ⁻¹
interieur	Briques réfractaires	20	1,01
médiane	Briques isolantes	10	0,22
extérieur	Briques de construction	15	0,595

<u>réponse</u>

E2)1) Flux perdu par unité de surface du four : $\varphi = 905,3$ kcal.h⁻¹.m⁻²

Températures intermédiaires : $\Theta_1 = 691,7$ °C, $\Theta_2 = 280,2$ °C

2) Flux perdu par unité de surface du four avec une couche d'air entre les deux couches de briques : $\omega' = 807.8 \text{ kcal.h}^{-1}.\text{m}^{-2}$

Exercice 2

Afin de mesurer la température de l'air à l'intérieur d'un four, on utilse un thermocouple dont la surface est supposée grise et diffuse d'émissivité $\epsilon=0.6$. l'échange convertif entre la surface du thermocouple et l'air se fait avec un coefficient $h=8\text{w/m}^2$.K. le thermocouple indique une température $Tm=488^\circ\text{c}$; alors que la température réelle de l'air « supposé transparant » est $T_\infty=568^\circ\text{C}$; cet écart étant du à l'échange radiatif du thermocouple avec les surfaces environnantes.

En partant d'un bilan thermque du thermocouple, déterminer la température T_p des parois du four.

Réponse

Le bilan thermique traduisant que la chaleur transférée par convection au thermocouple se dissipe par rayonnement vers les parois du four s'écrit :

$$h (T_{\infty} - T_m) = \varphi_{m-p(net)}$$

La densité de flux radiatif net entre la surface du thermocouple et les parois du four, $\varphi_{m-p(net)}$, est calculée en utilisant le schéma électrique équivalent à l'échange radiatif entre deux surfaces qui forment une enceinte fermée, représenté comme suit :

$$\varphi_{m-p(net)} \xrightarrow{\sigma T_m^4} R_m \qquad J_m \qquad R_{mp} \qquad J_p \qquad R_p \qquad \sigma T_p^4$$

où :
$$R_m = \frac{1 - \varepsilon}{\varepsilon}$$
, $R_{mp} = \frac{1}{F_{m-p}} = 1$ et $R_p \approx 0$ (surface très grande assimilée

à une surface noire)

soit:
$$\varphi_{m-p(net)} = \frac{\sigma (T_m^4 - T_p^4)}{R_m + R_{mp} + R_p} = \varepsilon \sigma (T_m^4 - T_p^4)$$

L'équation du bilan devient : $h\left(T_{\infty}-T_{m}\right)=\mathcal{E}\sigma\left(T_{m}^{4}-T_{p}^{4}\right)$, d'où :

$$T_p = \left(\frac{\varepsilon\sigma T_m^4 - h \left(T_\infty - T_m\right)}{\varepsilon\sigma}\right)^{1/4} = 462,76 \,^{\circ}\text{C}$$

Exercice 3

La paroi d'un grand four plat est composée de trois couches:

- 10 cm de briques réfractaires en kaolin à l'intérieur,
- 12.5 cm de briques isolantes en kaolin au milieu,
- et 12.5 cm de briques de magnésie à l'extérieur.

La température de la surface intérieure est 745°C.

Si l'air ambiant est à 30°C et que l'on admet un coefficient superficiel d'échange h=10 W.m⁻².°C⁻¹ à la paroi extérieure, calculer les pertes thermiques par m² et la température de la face extérieure du four.

Reprendre ce calcul en négligeant la résistance thermique par convection au niveau de la paroi extérieure du four.

Briques réfractaires: λ =0.87 W.m⁻¹.°C⁻¹ , isolantes: λ =0.60 W.m⁻¹.°C⁻¹ , de magnésie: λ =1 W.m⁻¹.°C⁻¹ .

Réponse

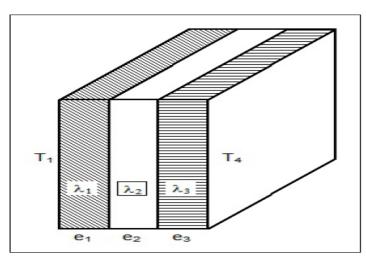
On utilise le modèle des résistances thermiques pour résoudre le problème.

- La résistance globale est la somme des résistances thermiques de chaque couche, soit
- $R=e_{réfractaire}/(\lambda_{réfractaire}\times S)+e_{isol}/(\lambda_{isol}\times S)+e_{magnésie}/(\lambda_{magnésie}\times S)+1/(h_{air}\times S)$, soit
- R=(0.1/0.87+0.125/0.60+0.125/1+1/10)/S=0.548/S
- Le flux de pertes thermiques par unité de surface s'écrit Φ =(745-30)/R d'ou Φ /S=715/0.548=**1305** W.m⁻².

En négligeant la résistance par convection au niveau de la paroi extérieure, on obtient

- $R=e_{réfractaire}/(\lambda_{réfractaire}\times S)+e_{isol}/(\lambda_{isol}\times S)+e_{magnésie}/(\lambda_{magnésie}\times S)$, soit
- R=(0.1/0.87+0.125/0.60+0.125/1)/S=0.448/S
- Le flux de pertes thermiques par unité de surface s'écrit Φ =(745-30)/R d'ou Φ /S=715/0.448=**1596 W.m**⁻².

Remarque: en calculant la température de la paroi extérieure du four, on obtient $\Phi/S=h_{air}\times(\theta_{ext}-30)$, d'ou $\theta_{ext}=30+\Phi/(h_{air}\times S)=30+1305/10=160^{\circ}C$. A ce niveau de température, les pertes thermiques par rayonnement ne sont pas négligeables. De toutes façon, avec de telles pertes, la surface extérieure du four doit être calorifugée, à la fois pour réduire les pertes mais aussi pour la protection du personnel.


Exercice 4

La paroi d'un four est constituée de trois matériaux isolants en série :

- Une couche intérieure de 18 cm d'épaisseur est en briques réfractaires ($\lambda = 1,175 \text{ W/m.}^{\circ}\text{C}$);
- Une couche de briques isolantes de 15 cm d'épaisseur ($\lambda = 0.259 \text{ W/m.}^{\circ}\text{C}$);
- Et une épaisseur suffisante de briques ($\lambda = 0.693 \text{ W/m.}^{\circ}\text{C}$).
- Quelle épaisseur de briques doit-on utiliser pour réduire la perte de chaleur à 721 W/m² lorsque les surfaces extérieures et intérieures sont respectivement à 38°C et 820°C ?
- 2. Lors de la construction on maintient un espace libre de 0,32 cm, (λ = 0,0317 W/m.°C) entre les briques isolantes et les briques. Quelle épaisseur de briques est alors nécessaire?

3. La température ambiante étant de 25°C, calculer le coefficient de transfert convectif $h_{\rm C}$ à l'extérieur de la paroi.

Réponse

$$T_1 := 820 \cdot ^{\circ}C$$

$$T_4 := 38 \cdot {}^{\circ}C$$

briques réfractaires :

$$\lambda_1 := 1.175 \cdot \frac{W}{m \cdot {}^{\circ}C}$$

$$e_1 := 18 \cdot cm$$

briques isolantes :

$$\lambda_2 := 0.259 \cdot \frac{W}{\text{m} \cdot {}^{\circ}\text{C}}$$
 $e_2 := 15 \cdot \text{cm}$

$$e_2 := 15 \cdot cm$$

briques:

$$\lambda_3 := 0.693 {\cdot} \frac{\mathrm{W}}{\mathrm{m} {\cdot} {}^{\circ}\mathrm{C}}$$

$$\varphi := 721 \cdot \frac{W}{m^2}$$

$$\Phi = \varphi \cdot S = -\lambda \cdot \frac{dT}{dx} \cdot S$$

On intègre pour chaque épaisseur, chaque valeur de λ constante

$$\begin{split} \int_0^{e_j} \Phi \, \mathrm{d} x &= - \int_{T_j}^{T_{j+1}} \lambda_j \cdot \mathrm{S} \, \mathrm{d} T \\ \Phi &= \frac{T_1 - T_2}{\frac{e_1}{\lambda_1 \cdot \mathrm{S}}} = \frac{T_2 - T_3}{\frac{e_2}{\lambda_2 \cdot \mathrm{S}}} = \frac{T_3 - T_4}{\frac{e_3}{\lambda_3 \cdot \mathrm{S}}} \\ \end{split} \qquad \qquad \Phi = \frac{\Phi}{\mathrm{S}} = \frac{T_1 - T_4}{\frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3}} \end{split}$$

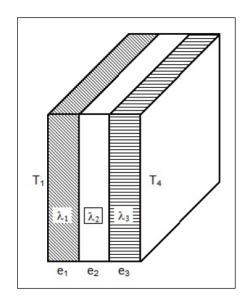
1. Epaisseur de briques

$$\mathbf{e}_{3} := \lambda_{3} \cdot \left(\frac{\mathsf{T}_{1} - \mathsf{T}_{4}}{\varphi} - \frac{\mathsf{e}_{1}}{\lambda_{1}} - \frac{\mathsf{e}_{2}}{\lambda_{2}} \right) \qquad 0.693 \cdot \left(\frac{820 - 38}{721} - \frac{.18}{1.175} - \frac{.15}{0.259} \right) \qquad \qquad \mathbf{e}_{3} = 24.4 \cdot \mathrm{cm}$$

 $\text{2. Couche supplémentaire}: \qquad \lambda'_2 := 0.0317 \cdot \frac{W}{m \cdot ^{\circ} C} \qquad \qquad e'_2 := 0.32 \cdot cm$

Exercice 5

Le mur d'un four comporte trois couches de matériaux différents accolées les unes aux autres :


- Une couche de briques réfractaires ($\lambda = 1,21 \text{ W/m.}^{\circ}\text{C}$);
- Une couche de revêtement calorifuge ($\lambda = 0.08 \text{ W/m.}^{\circ}\text{C}$);
- Une couche de briques ($\lambda = 0.69 \text{ W/m.}^{\circ}\text{C}$).

Chaque couche a une épaisseur de 10 cm. La température est de 872°C à l'intérieur du four et de 32°C à l'extérieur.

- 1. Si la surface du mur est de 42 m², calculer la perte calorifique par conduction pendant 24 heures.
- 2. Quelle est la température T_m au milieu du revêtement ?

Réponse

Technologie des fours

$$\mathtt{T}_1 := 872 \cdot {}^{\circ}\mathtt{C} \qquad \qquad \mathtt{T}_4 := 32 \cdot {}^{\circ}\mathtt{C}$$

$$T_4 := 32 \cdot {}^{\circ}C$$

$$\lambda_1 := 1.21 \cdot \frac{W}{m \cdot {}^{\circ}C} \qquad \quad e_1 := 10 \cdot cm$$

$$\lambda_2 := 0.08 \cdot \frac{W}{m \cdot {}^{\circ}C} \qquad \quad e_2 := 10 \cdot cm$$

$$\lambda_3 := 0.69 \cdot \frac{W}{m \cdot {}^{\circ}C}$$
 $e_3 := 10 \cdot cm$

$$S := 42 \cdot m^2$$

Conduction en régime permanent : Φ est constant

$$\Phi = \varphi \cdot S = -\lambda \cdot \frac{dT}{dx} \cdot S$$

On intègre pour chaque épaisseur, chaque valeur de λ constante

$$\int_0^{e_1} \Phi \, \mathrm{d} \mathbf{x} = - \! \int_{T_1}^{T_2} \lambda_1 \! \cdot \! \mathbf{S} \, \mathrm{d} \mathbf{T}$$

$$\Phi \cdot \mathbf{e}_1 = \lambda_1 \cdot \mathbf{S} \cdot (\mathbf{T}_1 - \mathbf{T}_2)$$

$$\Phi = \frac{T_1 - T_2}{\frac{e_1}{\lambda_1 \cdot S}} = \frac{T_2 - T_3}{\frac{e_2}{\lambda_2 \cdot S}} = \frac{T_3 - T_4}{\frac{e_3}{\lambda_3 \cdot S}}$$

$$\Phi := \frac{T_1 - T_4}{\frac{e_1}{\lambda_1 \cdot S} + \frac{e_2}{\lambda_2 \cdot S} + \frac{e_3}{\lambda_2 \cdot S}}$$

$$\Phi := \frac{\mathsf{T}_1 - \mathsf{T}_4}{\frac{\mathsf{e}_1}{\lambda_1 \cdot \mathsf{S}} + \frac{\mathsf{e}_2}{\lambda_2 \cdot \mathsf{S}} + \frac{\mathsf{e}_3}{\lambda_3 \cdot \mathsf{S}}}$$

Perte calorifique :

$$\Phi = \frac{872 - 32}{\frac{1}{121} + \frac{1}{008} + \frac{1}{069}} \cdot \frac{42}{0.10}$$

$$\Phi = 23.877 \cdot \text{kW}$$

En 24 heures:

$$\Phi \cdot 24 \cdot \mathbf{h} = 2.063 \times 10^9 \,\mathrm{J}$$

$$\Phi \cdot 24 \cdot h = 573.0 \cdot kWh$$

Chapitre 4. Calcul thermique des fours

1. Introduction

Chaque type de four a évidemment son processus de calcul propre, qui tient compte de sa technologie et de ses utilisations. On ne donnera donc que les principes de calcul communs à tous les fours.

2. Bilans énergétiques

Quel que soit le four, l'objectif est de fournir aux produits une quantité de chaleur déterminée par :

- sa température initiale ou température d'enfournement ;
- la température finale désirée ou température de défournement;
- la masse des produits à chauffer ;
- la chaleur massique des produits et, s'il a lieu, les chaleurs de transformation durant la montée en température.

Soit **Qu** cette quantité de chaleur utile.

3. Rendement énergétique

Le rendement d'un four est le rapport de l'énergie utile Qu à l'énergie Q qu'il faut fournir au four sous forme de combustible ou d'électricité.

En appellant Qp les diverses pertes thermiques, il vient :

$$Q = Qu + Qp$$

$$\eta = \frac{Q_u}{Q} = \frac{Q - Q_p}{Q}$$

Le terme **Qp** comprend :

- les pertes par les fumées Q_f ;
- les pertes par les parois **Qv**;
- l'énergie nécessaire au réchauffage des parois **Qmv** ;
- les pertes par les ouvertures du four **Qe** .

Il y a lieu de déterminer ces pertes pour calculer le rendement du four.

4. Rendement de combustion

Si l'on considère un combustible quelconque, il est caractérisé, entre autres, par :

- son pouvoir calorifique inférieur **PCI** ;
- le volume d'air nécessaire à sa combustion en stoechiométrie Va₀;
- le volume de fumées produit par sa combustion en stoechiométrie V_{f0} .

Dans les conditions usuelles d'utilisation dans les fours, la combustion se fait généralement avec de l'air en excès (et plus rarement avec de l'air en défaut).

Si on appelle e l'excès d'air exprimé en pourcentage, les volumes d'air utilisé et de fumées produites lors de la combustion complète d'une unité de masse (pour les solides et les liquides) ou de volume (pour les gaz) de combustible s'écrivent :

$$V_a = V_{a0} (1 + e/100)$$

 $V_f = V_{f0} + (V_{a0} \times e/100)$

Les pertes par les fumées 'Q_f' s'écrivent :

$$Q_f = V_f C_{pf} T_f$$

Avec

T_f température de sortie de fumées du four (en °C),

 \mbox{Cp}_f capacité thermique volumique moyenne à pression constante dans l'intervalle de température 0 °C à T_f

La chaleur apportée par l'air s'écrit :

$$Q_a = V_a C_{Da} T_a$$

T_a température de l'air à son entrée dans le four (en °C),

Cpa capacité thermique volumique à pression constante de l'air

On appelle rendement de combustion, le rapport :

$$\eta_c = \frac{PCI + Q_a - Q_f}{PCI}$$
 (2)

Le rendement de combustion ne dépend que du combustible, des conditions d'excès d'air dans lequel il est brûlé et de la température des fluides entrant et sortant du four. Il ne dépend pas du type de four, ni de sa technologie.

Si on considère le four et l'équipement éventuel de préchauffage de l'air à partir des fumées comme un seul système, et en considérant, dans ce cas, la température des fumées **Tf** à l'aval du réchauffeur d'air, la relation (2) devient :

$$\eta_c = \frac{PCI - Q_f}{PCI} \tag{3}$$

Relation entre le rendement énergétique et le rendement de combustion

Ramené à une unité de combustible, la relation (1) peut s'écrire :

$$\eta = \frac{PCI - Q_p}{PCI}$$

ou

$$\eta = \frac{PCI - Q_f - (Q_v + Q_{mv} + Q_e)}{PCI}$$

et en introduisant $\eta_{\it c}$ donné par la relation (3) :

$$\eta = \eta_c - \frac{(Q_v + Q_{mv} + Q_e)}{PCI}$$
 (4)

Dans un certain nombre d'installations, par exemple pour les fours continus à basse température, le terme :

$$\frac{(Q_v + Q_{mv} + Q_e)}{PCI}$$

est petit et, dans ce cas, il vient :

$$\eta \approx \eta_c$$

Rendement des fours continus

Dans un four continu en régime thermiquement stabilisé, les températures des fumées et de l'air de combustion sont constantes dans le temps et les parois sont en équilibre thermique, ce qui entraîne :

$$Q_{mv} = 0$$

Les fours continus étant assez peu souvent arrêtés et refroidis, l'énergie utilisée durant les périodes de mise en température est souvent négligeable dans le bilan global d'exploitation.

• Rendement des fours discontinus

Dans un four discontinu, la température des fumées et, pour les fours équipés de réchauffeurs d'air par récupération sur les fumées, celle de l'air de combustion sont variables au cours du cycle. Le calcul se fait donc sur la base de la totalité du cycle.

On détermine au préalable, la température moyenne des fumées $T_{\rm fm}$ au cours du cycle de durée ${\boldsymbol t}$:

$$T_{fm} = \frac{1}{t} \int_0^t T_f(t) dt$$

On évalue éventuellement, la température moyenne de l'air de combustion T_{am}:

$$T_{am} = \frac{1}{t} \int_{0}^{t} T_{a}(t) dt$$

On calcule ensuite les termes **Qv** et **Qmv**, ce qui nécessite la connaissance des caractéristiques physiques des parois réfractaires et isolantes.

Enfin, on tient compte de l'évolution des pertes par les ouvertures **Qe**, en fonction des variations de la température du four au cours du cycle.

On obient le rendement η de l'opération en introduisant ces valeurs dans la relation (3).

• Détermination des pertes par les parois 'Qv'

Dans les fours continus, en régime thermique établi, on applique pour les parois planes (murs, voûte, sole) la relation :

$$\dot{Q}_V = K \; (T_i - T_e) \; \mathcal{S}$$
 avec
$$K = \frac{1}{(\Sigma \; e_i / \lambda_i) + (1/k_e)}$$

- e_i épaisseur des i couches successives de réfractaires ou d'isolants;
- λ_i conductivité thermique des i couches successives de réfractaires ou d'isolants;
- k_e coefficient d'échange de la paroi externe avec l'ambiance ;
- T_i température de la paroi interne du four ;
- T_e température externe ambiante ;
- S surface externe du four.

Dans les fours convenablement isolés, **Ti** est très proche de la température de l'ambiance du four à l'endroit considéré. Le coefficient **ke** regroupe :

— un facteur rayonnement qui croît avec la température de la paroi externe **Te** ;

— un facteur convection qui croît avec la vitesse de circulation de l'air autour de la paroi externe.

Pour les fours qui supportent d'être portés à leur température normale d'utilisation sans être chargés, une approche, « des pertes » par les parois peut être obtenue en mesurant la puissance thermique Q_{min} fournie durant cette période, le four étant stabilisé thermiquement, sous forme de combustible. On obtient alors :

$$\dot{Q}_{VV} = \dot{Q}_{\min} \ \eta_{c}$$

Les pertes à vide ' **Qvv** ' peuvent être légèrement supérieures aux pertes par les parois **Qv** dans la mesure où, sans charge, la distribution des températures dans l'enceinte du four peut être différente de la distribution des températures avec charge.

Pour les fours discontinus, **Ti** varie avec le temps, il en est de même de l'évolution des températures dans les parois. Il faudra donc faire le calcul, pour un cycle, par tranche de temps. Ce calcul nécessite donc de résoudre préalablement un problème de conduction en régime variable dans un mur composite.

• Calcul de la chaleur accumulée

Le calcul de l'énergie nécessaire au réchauffage des parois '**Qmv**' demande la connaissance de la distribution de température dans les parois lorsque l'équilibre thermique est atteint, ainsi que celle des caractéristiques physiques, à la température considérée, des matériaux composants ces parois. Pour chacun des composants des parois, on a :

$$Q_{mvi} = M_i \ C_i \ (T_{fin} - T_{in})$$
 avec M_i masse du matériau considéré, c_i capacité thermique massique du matériau considéré, T_{in} température initiale du matériau, T_{fin} température finale du matériau

 C_i étant le plus souvent fonction de la température, on prendra la valeur moyenne entre Tin et Tfin.

Les températures **Tin** et **Tfin** variant dans l'épaisseur de la paroi, on prendra les valeurs moyennes entre les deux faces de la paroi.

Pour les fours continus, l'importance de **Qmv** dans le bilan global de l'installation est relativement faible. Cela n'est plus le cas pour les fours discontinus, pour lesquels la capacité thermique des parois joue un rôle important.

• Rendement en exploitation

Les rendements précédents sont des rendements instantanés sur une période de temps limitée. Ils sont utilisés pour déterminer les performances d'une installation dans des conditions bien définies.

En exploitation industrielle les conditions d'exploitation sont variables :

- le four n'est pas utilisé en permanence à sa production maximale ;
- certaines installations fonctionnent d'une façon discontinue.

Cela entraîne une consommation énergétique qui peut être sensiblement supérieure à celle obtenue lors d'un essai limité dans le temps. On utilise alors la notion de **consommation spécifique Cs** qui est le rapport de l'énergie totale utilisée pendant une période donnée (par exemple un mois) à la quantité de produit chauffé ou traité durant la même période :

$$C_s = \frac{\text{énergie contenue dans le combustible}}{\text{masse de produits chauffés}}$$

5. Flux thermiques admissibles

Le flux thermique admissible est la quantité de chaleur que l'on peut fournir à la charge par unité de temps et de surface. On l'exprime en **kW/m²** ou encore parfois en **kcal.h-¹.m-²**.

Dans un four continu, le flux reçu par le produit varie en fonction de la position de celui-ci dans le four.

Dans un four discontinu, le flux reçu varie au cours du temps. Très souvent ce flux est limité par les capacités d'absorption de la charge.

Un flux trop élevé peut entraîner :

- des contraintes thermiques inacceptables dans les pièces de grandes dimensions (fours de forge) ou de faible conductivité thermique (four de cuisson de céramique) ;
- une température de surface entraînant une fusion locale du produit (fours de réchauffage avant laminage);
- une température trop élevée de l'écran de protection intermédiaire (four à cloches mobiles)
- une température entraînant localement une dissociation du produit chauffé (four tubulaire de la chimie).

Remarque: La maîtrise des flux thermiques est un des points les plus importants dans la définition et la conduite des fours. Elle impose de savoir maîtriser et d'adapter à chaque four, les phénomènes de combustion et de transfert de chaleur.

6. Qualité du chauffage

Sauf dans des cas très particuliers où l'on cherche à obtenir des différences de températures entre les différents points d'un produit (par exemple : surchauffe des rives d'une bande métallique avant soudure, traitement de surface de pièces mécaniques), on recherche généralement à obtenir, à la sortie du four, un produit à une température la plus homogène possible.

Cela n'est pas toujours facile du fait des dissymétries qui existent inévitablement dans l'enceinte des fours :

- produits ou partie de produits inégalement exposés au rayonnement des flammes (fours de réchauffage de lingots) ;
- produits inégalement irrigués par les gaz en circulation (four de traitement thermique à basse température) ;
 - contacts des produits avec des supports refroidis (four à longerons mobiles) ;
 - déséquilibre entre plusieurs passes d'un même four (four de raffinage de pétrole).

Cette homogénéité de température est obtenue, ou au moins approchée, par :

- une zone dite d'égalisation, dans les fours continus ;
- un séjour à température constante en fin de cycle, dans les fours discontinus.

Dans les deux cas, les flux thermiques transmis du four à la charge deviennent faibles ou nuls, et c'est par conduction que se fait l'égalisation des températures.

La durée de cette période d'égalisation sera fonction :

- des écarts de température apparus au cours de la montée en température ;
- des dimensions transversales du (ou des) produits ;
- de la conductivité thermique du produit.

La qualité du chauffage sera donnée par l'écart de température maximal entre deux points d'un même produit et/ou entre deux produits successifs.

Exemple : écarts de température :

- sur la largeur d'une bande d'acier ;
- entre le haut et le bas d'un lingot ;

7. Puissance installée

C'est la quantité de chaleur maximale que l'on peut introduire par unité de temps dans le four.

Fours continus : La puissance installée sur l'ensemble du four est donnée par :

$$P = \dot{Q}_u/\eta = (\dot{Q}_u + \dot{Q}_v + \dot{Q}_e)/\eta_c$$
 avec η_c et η respectivement rendement de combustion et rendement du four

Dans les fours continus à plusieurs zones de chauffage, cette puissance devra être répartie entre les différentes zones. Chacune des zones devra donc être calculée comme indiqué cidessus mais avec, pour certaines des zones, un apport de chaleur complémentaire, celui des fumées entrant dans la zone considérée en provenance de la (ou des) zone(s) se trouvant en amont sur l'écoulement des fumées (figure).

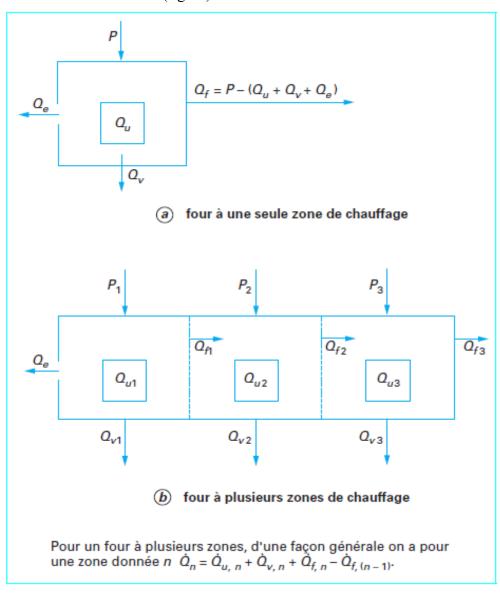


Figure 11 : Puissance installée

Fours discontinus : La quantité de chaleur totale à fournir au cours du cycle de durée t est donnée par :

$$Q_{\text{totale}} = \int_{0}^{t} (Q_u + Q_f + Q_v + Q_{mv} + Q_e) dt$$

L'énergie qu'il faudra fournir au four sur l'ensemble du cycle est :

$$E = Q_{totale}/\eta$$

La durée du cycle **t** étant connue par ailleurs, on en déduit la puissance moyenne :

$$P_{\mathsf{moy}} = E/t$$

La détermination de la puissance installée est un peu plus délicate, car on peut imaginer plusieurs cycles ayant la même P_{moy} .

8. Dimensionnement des fours

C'est le problème principal pour le concepteur et le constructeur. Les calculs de dimensionnement sont, évidemment, spécifiques à chaque type de four. Fondamentalement, ces calculs consistent à résoudre simultanément tout ou partie des relations suivantes.

La loi de Stefan-Boltzman qui régit les échanges par rayonnement entre le four et la charge

$$Q_r = \int a \sigma S (T_f^4 - T_c^4) dt$$

La loi de Newton qui régit les échanges par convection entre le four et la charge :

$$Q_c = \int k \ S \ (T_f - T_c) \ \mathrm{d}t$$

L'équation de Fourier qui régit les échanges par conduction à l'intérieur des produits :

$$\partial T/\partial t = \lambda/c_p \rho \left(\nabla T \right).$$

.

Ils se font actuellement avec des programmes informatiques de calcul, par des méthodes numériques plus ou moins sophistiqués, et des simplifications adaptées à chaque type de four, qui intègrent les données rappelées ci-dessous :

- flux thermiques acceptables;
- temps de séjour nécessaire à l'égalisation des températures ;
- chaleur utile;
- rendement de combustion;
- pertes diverses; etc.

On détermine de cette façon le temps de séjour du produit dans le four et, en fonction de la production souhaitée, les dimensions du four.		Technologie des fours
production souhaitée, les dimensions du four.	On détermine de	cette façon le temps de séjour du produit dans le four et, en fonction de la
	production souhaitée	e, les dimensions du four.

Exercices

Exercice 1

Dans un four, le débit de fluide froid est 12 t.h⁻¹, la température passe de 20 à 145°C, et l'oxygène dans les fumées est 2.5%. Lorsque le four est en régime stationnaire, calculer:

- le flux d'énergie dégagée par la combustion du méthane, dont le débit du méthane est 142kg/h
- le flux capté par le fluide froid,
- le flux emporté par les fumées
- le rendement obtenu.

Données: $M_{CH4}=16$ g.mol⁻¹, $M_{O2}=32$ g.mol⁻¹, $M_{N2}=28$ g.mol⁻¹, air à 21% d'O₂ et 79% d'N₂ en volume (ou en moles), enthalpie de la réaction de combustion complète du méthane $\Delta H_{CH4}=-801.5$ kJ.mol⁻¹.

Masse molaire moyenne de l'air: pour 100 moles d'air, on a 21 moles d' O_2 soit 21×32 g d' O_2 et 79 moles d' N_2 soit 79×28 g d' N_2 . La masse molaire moyenne de l'air est donc $M_{air}=(21\times32+79\times28)/100=28.84$ g.mol⁻¹.

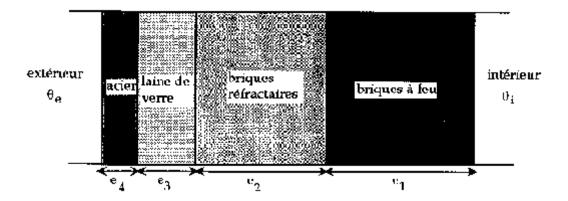
Réponse

L'équation de combustion complète s'écrit $CH_4 + 2 O_2 -> CO_2 + 2 H_2O$.

- Pour le débit de méthane obtenu 142.0 kg.h⁻¹, l'énergie dégagée par la combustion est Φ_1 =142.0×801.5/16.e-3=7.113.e6 kJ.h⁻¹, soit en divisant par 3600 1975.9 kW.
- Le flux capté par le fuide froid qui passe de 20 à 145°C est Φ_2 =12000×4.18×(145-20)=6.270.e6 kJ.h⁻¹, soit en divisant par 3600 1741.7 kW.
- L'énergie emportée par les fumées est $\Phi_3 = \Phi_1 \Phi_2 = 0.843$.e6 kJ.h⁻¹, soit 234.2 kW.
- Le rendement (par rapport au PCI) s'écrit énergie utile / énergie fournie=1741.7/1975.9=88.2%.

L'énergie emportée par les fumées peut être calculée par le débit fois le Cp moyen des fumées fois la deltaT sur les fumées entre l'entrée au brûleur et la sortie à la cheminée. Les fumées sortent à 272.6°C. Le Cp moyen des fumées entre 20°C et 272.6°C est donné dans le rapport de combustion à 31.35 J.mol⁻¹.K⁻¹. Reste donc à calculer le débit molaire des fumées. Comme le nombre de moles de part et d'autre de l'équation de réaction est identique, il suffit de calculer le débit molaire entrant dans le four.

- Pour le méthane, on a 142.0/16.e-3=8875.0 mol.h⁻¹.
- Pour l'air on a 2801 kg.h⁻¹, d'ou 2801/28.84.e-3=97122.1 mol.h⁻¹.
- Le débit molaire global est donc 97122.1+8875.0=105997.1 mol.h⁻¹.


 Le flux emporté par les fumées s'écrit donc Φ'₃=105997.1×31.35×(272.6-20)/1000= 0.839.e6 kJ.h⁻¹, soit 233 kW.

L'énergie emportée par les fumées peut être calculée par le débit fois le Cp moyen des fumées fois la deltaT sur les fumées entre l'entrée au brûleur et la sortie à la cheminée. Les fumées sortent à 272.6°C. Le Cp moyen des fumées entre 20°C et 272.6°C est donné dans le rapport de combustion à 31.35 J.mol⁻¹.K⁻¹. Reste donc à calculer le débit molaire des fumées. Comme le nombre de moles de part et d'autre de l'équation de réaction est identique, il suffit de calculer le débit molaire entrant dans le four.

- Pour le méthane, on a 142.0/16.e-3=8875.0 mol.h⁻¹.
- Pour l'air on a 2801 kg.h⁻¹, d'ou 2801/28.84.e-3=97122.1 mol.h⁻¹.
- Le débit molaire global est donc 97122.1+8875.0=105997.1 mol.h⁻¹.
- Le flux emporté par les fumées s'écrit donc Φ'₃=105997.1×31.35×(272.6-20)/1000= 0.839.e6 kJ.h⁻¹, soit 233 kW.

Exercice 2

La paroi d'un four électrique industriel est constituée de plusieurs matériaux comme l'indique le schéma ci-dessous.

Données numériques.

Température ambiante intérieure : $\theta_i = 1092$ °C.

Température ambiante extérieure : $\theta_e = 32$ °C.

Surface intérieure du four : $S = 8,00 \text{ m}^2$.

Résistance superficielle interne pour un mètre carré de paroi : $1/h_i = r_i = 0,036 \text{ m}^2.\text{K.W}^{-1}.$

Résistance superficielle externe pour un mètre carré de paroi : $1/h_e = r_e = 0,175 \text{ m}^2.\text{K.W}^{-1}.$

Technologie des fours

Caractéristiques des divers matériaux :

Matériau	Épaisseur	Conductivité thermique	
Brique à feu	$e_1 = 230 \text{ mm}$	$\lambda_1 = 1,04 \text{ W.m}^{-1}.\text{K}^{-1}$	
Brique réfractaire	$e_2 = 150 \text{ mm}$	$\lambda_2 = 0.70 \text{ W.m}^{-1}.\text{K}^{-1}$	
Laine de verre	$e_3 = 50 \text{ mm}$	$\lambda_3 = 0.07 \text{ W.m}^{-1}.\text{K}^{-1}$	
Acier	$e_4 = 3 \text{ mm}$	$\lambda_4 = 45 \text{ W.m}^{-1}.\text{K}^{-1}$	

- 1. Exprimer littéralement puis calculer la résistance thermique globale R de un mètre carré de paroi.
- 2. Exprimer littéralement puis calculer la densité de flux thermique φ (puissance thermique par unité de surface) traversant la paroi.
- 3. Déterminer 1es températures au niveau des diverses interfaces de 1'intérieur vers l'extérieur θ_{si} , θ_1 , θ_2 , θ_3 , θ_{se} .
- 4. En admettant que la transmission de la chaleur est uniforme sur l'ensemble des parois du four, calculer la puissance électrique p nécessaire à son fonctionnement à vide.

Réponse

1)
$$R = Ra + Rlv + Rbr + Rbf + 1/hi + 1/he$$

$$RT = 1,36 \text{ m}2.\text{K.W-1}$$

2)
$$\phi = (\theta I - \theta e)/R$$

$$\phi = 779 \text{ W.m-2}$$

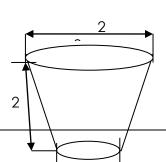
3)
$$\phi = hi(\theta i - \theta s i) \theta s i = \theta i - \phi/hi = 1064 ^{\circ}C$$

$$\phi = \lambda 1(\theta si - \theta 1)/e1 \theta 1 = \theta si - \phi .e1/\lambda 1 = 892$$
 °C

$$\phi = \lambda 2(\theta 1 - \theta 2)/e2 \ \theta 2 = \theta 1 - \phi.e2/\lambda 2 = 725 \ ^{\circ}C$$

$$\phi = \lambda 3(\theta 2 - \theta 3)/e3 \ \theta 3 = \theta 2 - \phi.e3/\lambda 3 = 169 \ ^{\circ}C$$

$$\phi = he(\theta se - \theta e) \theta se = \theta e + \phi/he = 168 °C$$


4) Puissance =
$$\Phi = \phi . S = 6,23 \text{ kW}$$

Exercice 3

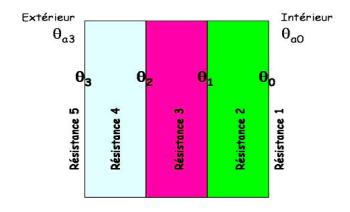
Un four partiellement conique est ouvert par le haut à l'ambiance de température 27°C. Les surfaces latérale (B) et du fond (R) (supposées comme des corps noirs) sont chauffées électriquement et maintenues à des températures de 100°C et 1200°C, respectivement.

Calculer le flux de chaleur radiale perdu par (R).

$$R_1 = \frac{r_1}{a} \qquad R_2 = \frac{r_2}{a}$$

Technologie des fours

$$X = 1 + \frac{1 + R_2^2}{R_1^2}$$


$$F_{1-2} = \frac{1}{2} \left[X - \sqrt{X^2 - 4(\frac{R_2^2}{R_1^2})} \right]$$

Exercice 4

Considérons un mur composite (voir la figure ci-dessous) et les différentes résistances au transfert suivantes : 1. Convection interne air - paroi, 2. conduction dans la première couche,

- 3. conduction dans la deuxième couche, 4. conduction dans la troisième couche,
- 5. Convection externe air paroi.

Si la température ambiante interne, θ_{a0} , et la température θ_2 de l'interface entre la deuxième couche et la troisième couche sont connues, les résistances à prendre en compte pour calculer le flux de chaleur sont :

les résistances 2 + 3 + 4

les résistances 1 + 2 + 3

les résistances 4 + 5

la résistance 3

les résistances 2 + 3

la résistance 4

Justifier votre réponse

Réponse

les résistances 1 + 2 + 3

les résistances 1 + 2 + 3 car il ne faut écrire que les résistance comprises entre ces deux températures.

Exercice 5

Dans un cylindre de 2,8cm de diamètre et de 3m de long circule de l'air à la température de 195°C, le cylindre reçoit un flux de chaleur égale à 5500W maintenu à la température de 25°C,

- Déterminer le coefficient de l'échange de chaleur.
- ➤ Déduire le nombre de Nusselt de l'écoulement sachant que K= 0,026W/m.°C
- ➤ Calculer le nombre de Reynolds de l'écoulement en admettant que : Le nombre de Prandtl est égal à 0,73

$$Nu = \frac{h.d}{k}$$
 $Nu = 0.023 \,\text{Re}^{0.8} \,\text{Pr}^{0.4}$

Réponse

- Le coefficient de l'échange de chaleur par convection (h):

$$\phi = h.S.(T_f - T_p) \iff h = \frac{\phi}{S.(T_f - T_p)}; S = \pi.D.L$$

$$h = \frac{\phi}{S.(T_f - T_p)} = \frac{5500W}{\pi.2,8.10^{-2}m.3m.(195 - 25)C} = 122,6 \frac{w}{m^2.C}$$

- Le nombre de Nusselt (Nu):

$$Nu = \frac{h.d}{k} = \frac{122,6 \frac{W}{m^2.C}.2,8.10^{-2}m}{0,026 \frac{W}{m.C}} = 132,03$$

Le nombre de Reynolds (Re):

$$Nu = 0.023. R_e^{0.8}. P_r^{0.4} \iff R_e = \sqrt[0.8]{\frac{Nu}{0.023. P_r^{0.4}}}$$

$$R_e = \sqrt[0.8]{\frac{Nu}{0.023. P_r^{0.4}}} = \sqrt[0.8]{\frac{132.03}{0.023. (0.73)^{0.4}}} = 58481.64$$

Chapitre 5. Isolation des fours

1. Conception générale

Les fours modernes comportent tous une enveloppe métallique généralement fortement fabriquée pour reprendre le poids de la voûte, les poussées des parois réfractaires et les efforts engendrés par les dilatations des éléments constitutifs.

À l'intérieur de cette enveloppe, on dispose plusieurs couches de matériaux isolants et réfractaires qui ont pour but :

- de limiter les déperditions thermiques ;
- de protéger l'espace environnant et le personnel d'exploitation.

2. Définitions

On distingue dans la construction réfractaire d'un four les éléments suivants.

- La sole: C'est un plan horizontal ou parfois incliné sur lequel reposent généralement les produits. La sole peut être fixe ou mobile (four à chariot, four à sole mobile); elle peut être directement au contact des produits solides (four tournant de forge) ou de produits liquides (four de fusion du verre).
- La voûte: Elle peut avoir des formes diverses: plate, cintrée, avec des rampants, suspendue. La voûte est en contact avec les gaz de combustion et, assez souvent, directement avec la flamme. Elle joue un rôle important dans le transfert de chaleur en renvoyant, par rayonnement sur les produits, l'énergie qu'elle reçoit de la flamme.
- Les murs verticaux ou piédroits : Ils font la liaison entre la voûte et la sole. Ils doivent reprendre le poids de la première et contenir les poussées de la seconde. Dans les fours où la charge est liquide, ils doivent également reprendre directement la poussée due à cette charge.

3. Physique des matériaux réfractaires

Les matériaux réfractaires dont on dispose sont de trois types :

- les matériaux précuits ;
- les matériaux non préformés ;
- les matériaux fibreux.

• Matériaux précuits

Ils se présentent sous forme de pièces standards (briques, couteaux) ou de pièces de forme spéciale (ouvreaux de brûleurs). Ils sont cuits à haute température et sont, de ce fait, parfaitement stabilisés. Leur composition chimique dépend du niveau de réfractérité que l'on veut atteindre. Leurs dimensions augmentent légèrement au cours de la montée en température du four, d'où la nécessité de prévoir des joints de dilatation lors de la construction.

• Matériaux non préformés

Ils sont mis à la disposition de l'utilisateur en vrac. Mélangé sur le chantier avec un liant et parfois un agrégat complémentaire, leur mise en forme et leur cuisson se fait sur place. On distingue :

- les bétons à liant hydraulique ;
- les plastiques à liant chimique.

Portés à leur température d'utilisation, ces produits subissent une céramisation qui vient relayer ou conforter les liaisons hydrauliques existantes lors de leur mise en place. Cette céramisation, se fait souvent avec un retrait dimensionnel dont il faut tenir compte lors de la conception et de la construction.

• Matériaux fibreux

Ils sont composés de fibres de quelques centimètres de longueur et de quelques micromètres de diamètre mises sous forme de nappes, ou parfois sous forme de pièces de géométrie particulière. Les matériaux fibreux ont une densité apparente nettement plus faible que celle des produits précédents. Ils permettent donc de diminuer considérablement l'inertie thermique de la construction et sont, de ce fait, particulièrement bien adaptés pour les fours à fonctionnement discontinu ou cyclique. Ils permettent également grâce à leur très faible densité le diminuer considérablement le poids des voûtes et les efforts sur les piédroits.

4. Chimie des matériaux réfractaires

Quelle que soit la forme physique sous laquelle se présente le matériau réfractaire, sa tenue à la température dépend principalement de sa composition chimique.

Les matériaux réfractaires les plus usuels sont obtenus à partir d'argiles silico-alumineuses et leur résistance à la température est fonction de leur teneur en alumine (Al_2O_3) , comme on peut le voir sur le tableau qui donne la résistance pyroscopique (essai de laboratoire normalisé) en fonction de la teneur en $(Al_2O_3 + TiO_2)$ du matériau.

Tableau 2. Résistance pyroscopique des matériaux réfractaires silico-alumineux en fonction de leur teneur en alumine

Al ₂ O _{3 +} TiO ₂ %	Résistance pyroscopique °C
≤ 20	1520
20/25	1580
25/30	1650
30/35	1670
35/40	1690
40/42	1710
42/45	1730

⁽¹⁾ L'oxyde de titane, dont la teneur est généralement faible inférieure à 2%, est comptabilisé avec l'alumine.

En dehors des réfractaires silico-alumineux, on utilise pour certaines applications particulières des matériaux réfractaires à base de silice (SiO₂) presque pure, de magnésie (MgO) ou encore de zircone (ZrO₂).

On retiendra que les performances d'un réfractaire donné sont fortement dépendantes de sa teneur en impuretés. Parmi celles-ci, les oxydes de sodium (Na₂O) et de potassium (K₂O) et, à un moindre degré, les oxydes de fer (FeO) jouent un rôle essentiel, car leur présence diminue considérablement la température maximale d'utilisation. On les désigne habituellement sous le terme de fondants.

5. Interactions entre les réfractaires et le four

Les réfractaires ne sont pas inertes par rapport à ce qui se passe dans le four et le choix des réfractaires qui se trouvent en contact avec les fumées, la flamme ou la charge est fortement conditionné par les caractéristiques de ces derniers.

Les matériaux fibreux, qui sont très poreux, sont exclus lorsqu'il y a contact avec une charge liquide ou lorsqu'il y a risque de projection de liquide. Ils sont également à éviter lorsque les gaz issus de la combustion comportent des éléments corrosifs (gaz sulfureux par exemple).

Au contact d'une charge liquide (fours de fusion), on utilise des produits compacts et lourds à forte teneur en élément réfractaire de base (alumine, magnésie ou autres).

Outre les corrosions d'origine chimique, les réfractaires peuvent être soumis à des érosions mécaniques. C'est le cas par exemple des fours poussants de métallurgie dans lequel

l'avancement des produits par glissement impose, pour la sole, des matériaux réfractaires très durs (corindon, par exemple) ; des zones de convection des fours de raffinage du pétrole équipées de ramoneurs à vapeur, si les jets de vapeur peuvent venir au contact des parois ; des fours rotatifs dans lesquels la charge avance par glissement sur les parois

6. Dimensionnement des parois réfractaires

Une fois déterminée la qualité de la première couche de réfractaire, en fonction du niveau de température dans le four et des interactions chimiques en surface, le choix et le dimensionnement des couches réfractaires et isolantes arrières sont choisies en fonction des déperditions thermiques et/ou de la température de paroi extérieure maximale acceptables. Ce calcul se fait généralement, en supposant l'équilibre thermique atteint, avec comme objectifs :

- de trouver un optimum entre des épaisseurs et des déperditions énergétiques économiquement acceptables ;
- d'obtenir sur les parois extérieures une température compatible avec la circulation ou la présence de personnel.

Dans certains cas, les différentes contraintes sont incompatibles entre elles et sur certains fours (fours de fusion à haute température par exemple), on est conduit à refroidir les parois extérieures par de l'eau en ruissellement ou en circulation dans une double paroi métallique.

Exercices

Exercice 1

La paroi plane d'un four est composée de 3 couches successives de briques.

Couche	Matériau	Épaisseur (cm)	λ _m (kcal/h.m.°C)
Intérieure	Briques réfractaires	20	1.01
Médiane	Briques isolantes	10	0.22
Extérieure	Briques de construction	15	0.595

La température de la face intérieure du four est de 871 °C et la température de la face extérieure du four est maintenue à 52 °C par circulation d'air.

- 1. Calculer le flux perdu par unité de surface du four et déterminer les températures aux interfaces des couches.
- 2. Calculer le flux perdu par unité de surface du four en supposant qu'il existe une mince lame d'air de 6 mm d'épaisseur entre la couche de briques réfractaires et celle de briques isolantes. On supposera que les températures des faces internes et externes sont inchangées par rapport à la question 1. Dans ces conditions la conductivité thermique moyenne de l'air est 0,055 kcal.h⁻¹.m⁻¹. °C⁻¹.

Réponse

E2)1) Flux perdu par unité de surface du four : $\varphi = 905,3$ kcal.h⁻¹.m⁻²

Températures intermédiaires : Θ_1 = 691,7 °C, Θ_2 = 280,2 °C

2) Flux perdu par unité de surface du four avec une couche d'air entre les deux couches de briques : $\omega' = 807.8 \text{ kcal.h}^{-1}.\text{m}^{-2}$

Exercice 2

La paroi plane d'un four est composée de 3 couches successives de briques :

- une couche de 15 cm de briques réfractaires d'alumine
- une couche de briques isolantes de kaolin
- une couche de 22,5 cm d'épaisseur de briques ordinaires de construction

La température des briques réfractaires de la face intérieure du four est de 982 °C. La température de la surface de contact des couches de briques réfractaires et isolantes est de 938 °C. La température de l'interface des couches de briques isolantes et de construction est de 138

°C. Dans les conditions de fonctionnement du four, les conductivités thermiques moyennes des couches de la paroi sont :

Couche	λ _m (W.m ⁻¹ .°C ⁻¹)
briques réfractaires d'alumine	λ, = 1,62
briques isolantes de kaolin	λ ₂ = 0,23
briques ordinaires de construction	λ ₃ = 1,39

Calculer:

- 1) l'épaisseur e₂ de la couche de briques isolantes de kaolin
- 2) la température de la surface extérieure du four.

Réponse

- E1)1) Epaisseur e_2 de la couche de briques isolantes de kaolin : e_2 = 0,39 m
- 2) Température de la surface extérieure du four: Θ_{ext} = 61,1°C

Exercice 3

La paroi d'un four de 0,244 m d'épaisseur est construite avec un matériau de conductivité thermique égale à 1,3 W.m⁻¹.°C⁻¹. La paroi est isolée à l'extérieur par un matériau ayant une conductivité de 0,346 W.m⁻¹.°C⁻¹ pour que les pertes thermiques soient inférieures à 1830 W.m⁻². La température de la paroi interne du four est égale à 1588 K et la température de la face externe est de 299 K.

Calculez l'épaisseur d'isolant nécessaire.

Réponse

Epaisseur de l'isolant : $e_2 = 0,179$ m

Conclusion

Les fours et les étuves se rencontrent dans un grand nombre de secteurs industriels mais principalement dans l'industrie des métaux, des matériaux et des céramiques. On distingue les fours discontinus appelés aussi fours intermittents ou fours à charge et les fours continus appelés fours tunnels ou fours à passage.

L'énergie utilisée peut être de l'électricité, du fuel lourd (FL) ou domestique (FOD), du gaz naturel ou du gaz de pétrole liquéfié (GPL).

Des formules de calcul simples, permettant de déterminer le rendement et la consommation spécifique d'un four, sont généralement suffisantes pour un prédimensionnement ou pour établir un coût d'exploitation énergétique ;

Les traitements thermiques sont constitués par un certain nombre d'opérations combinées de chauffage et de refroidissement ayant pour but d'améliorer les caractéristiques des matériaux.

Pour une meilleure précision de calcul, il peut être utile de faire une modélisation avec un logiciel approprié.

Si le problème posé est difficile (nouvelle conception de four, produit à traiter délicat, exigence de température précise, etc.), la modélisation est nécessaire pour démontrer la faisabilité d'un projet et pour optimiser les paramètres de fonctionnement au démarrage de l'installation.

Dans le cadre d'un investissement pour installer un nouveau four ou pour modifier un four existant, il est nécessaire de calculer les échanges thermiques. Indépendamment de la qualité du matériel, les conditions d'exploitation du four ou de l'étuve vont influencer ses performances.

Références bibliographiques

- Introduction aux transferts thermiques, Cours et exercices corrigés J.-L. Battaglia, A. Kusiak, J.-R. Puiggali, 2^{ème}Eds. DUNOD, 2014.
- 2. Énergie, pollution de l'air et développement durable C. Ronneau, Presses universitaires de Louvain, 2004
- 3. Techniques de l'ingénieur, Fours industriels I. JACUBOWEZ, BE8842 V1-1998
- 4. Techniques de l'ingénieur, thermique des fours. Gérard Paniez, BE 9 510v2 2013
- 5. Diagramme d'Ostwald, exercice d'application
- 6. Bonnefoy, Combustion, éléments de cours, 2014.
- 7. Notions sur la combustion, Contents Back
- 8. https://dyrassa.com/les-combustions-exercices-corriges/
- 9. Nicolas ERRIEN, transfert thermique, Université du Maine